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ACTA FACťLTATIS RERťЗI XATťRALIťЗI UMVERSITATIS COЗIEMANAE 

ЗIATIIEЗIATICA XVII - 1Í >7 

ALGEBRAIC ELEMENTS IN THE TRANSFORMATION THEORY OF 
2«-d ORDER LINEAR OSCILLATORY DIFFERENTIAL EQUATIONS 

O. BORUVKA, Brno 

1. In the last fifteen years, I have developed a transformation theory of 
ordinary 2 n d order linear homogeneous differential equations in the real 
domain. I t is a qualitative theory of global character. This theory deals 
with the effect of processes connected with the transformations of the 
variables on the integrals of the mentioned differential equations. 

The origin of the transformation theory of 2 n d order linear differential 
equations is due to E. E. KUMMER, who was the first to find the 3 r d order 
non-linear differential equation which forms the basis of the transformation 
theory (1834). This equation is: 

(Qq) -{X,t}+Q(X)X'* = q(t); 

Q and q are given functions of a variable, X the unknown function and the 
symbol {X, t} denotes the Schwarz derivative of X at the point t: 

SY n- 1 x'"(t) ^^iy) 
1 ' ' " 2 X'(t) 4 X'2(t) ' 

Kummer's ideas have prepared the way for more extensive investigations 
into the transformations of linear differential equations of the n t n order in 
connection with the equivalence problem. The most important results in this 
field are due to E. LAGUERRE, F . BRIOSCHI, G. H. H A L P H E N , A. R. FORSYTH, 

S. L I E and P . APPELL, in whose works we occasionally also find information 
about transformations of 2 n d order differential equations in the complex 
domain. 

The transformation theory in the real domain which I have developed may 
perhaps a t first sight appear only as a special case of the linear differential 
equations of the n*-- order (n > 2). One is, nevertheless, necessarily led to 
a systematic treatment of this case n — 2. This is due to the fact that the 
linear differential equations of the 2 n d order not only occupy a special position 



among those of the n (> 2)tn order, since only in case of n = 2 two differential 
equations are always equivalent, but the results concerning transformations 
of 2nd order differential equations are most useful even for a general n. 
A systematic investigation of this special case leads, moreover, to a consider­
able enrichment of the classical theory of the 2nd order differential equations, 
both as to the formation of new notions and as to the development of the 
method. 

2. The kernel of the mentioned transformation theory of 2nd order differen­
tial equations consists in investigating the connections between the solutions 
of the 2nd order linear differential equations 

(q) y" = q(t)y, *¥ = Q(T)Y (Q) 

and Kummer's non-linear 3 rd order differential equations (Qq), (qQ). The 
functions q, Q, which I shall occasionally call carriers of the differential 
equations (q), (Q), are generally only supposed to be continuous in their 
(open) intervals of definition j = (a, b) , J = (A, B). A fundamental piece 
of information about the mentioned connections, which was already known 
to Kummer, is that the solutions X(t), x(T) of the differential equations (Qq), 
(qQ) transform all the integrals Y, y of the linear differential equations (Q), 
(q), in the sens of the following formulas: 

Vix(oi ' Vmn 
3. Let us now first introduce some basic notions essetial to any further 

research into the transformation theory in question. 
Consider a differential equation (q) in an (open) interval j = (a, b). The 

carrier q is only assumed to be continuous. The integral space r of the differen­
tial equation (q) is understood to be the set of all the integrals of (q). The 
basis (u, v) of the differential equation (q) stands for a sequence of two linearly 
independent integrals u, v of (q). The basis of the integral space r is a basis 
of the differential equation (q). 

One of the most important notions of the transformation theory is the 
notion of a phase, about which I shall now say a few words. 

We discern phases of a basis (u, v) of the differential equation (q) and 
phases of the differential equation (q). 

By a phase of the basis (u, v) of the differential equation (q) we mean any 
function a continuous in the interval j and satisfying in the latter, except 
for the zeros of the integral v, the equation tg <x(t) = u(t) : v(t). 

I t is easily understood that the phases of the basis (u, ti) form a countable 
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system, the so called phase-system of the basis (u, v) and that the singular 
phases of the system differ by integer multiples of the number n. 

A phase of the differential equation (q) is understood to be a phase of any 
basis of the differential equation (q). 

Every phase a of the differential equation (q) has, in the interval j , the 
following properties: 

1. a eC 3 , 2. a' # 0. 
By means of a phase a of the differential equation (q), the carrier q of the 

latter is uniquely defined, in the S3iise of the formula 
(2) q(t) = -{*,t}-*'*(t). 

The notion of a phase is closoly connected with that of a phase function: 
A phase function in tho interval j is understood to be a function with the 

above properties 1., 2. A phase function a is a phase of the differential equation 
(q) with the carrier q defined in the sense of the formula (2). 

A phase function a is called elementary if its values at any two points t, 
t + n ej are connected in the following way: <x.(t + n) = (x.(t) + n . sgn a\ 

The phases I have spoken about are the so called first phases of the basis 
(u, v) or the differential equation (q). Besides these, one analogously defines 
the second phases, namely by means of the equation tg p(t) = u'(t) : v'(t). 
Since we shall, in what follows, not deal with the latter, we shall simply 
always refer to phases instead of first phases. 

4. Let us now restrict our consideration to oscillatory differential equations 
(q). The term "oscillatory" means that the integrals of the differential 
equation (q) vanish, infinitely many times, in both directions towards the 
endpoints a, b of the interval j = (a, b). 

We shall start our considerations with the theorem that the differential 
equation (q) is oscillatory if, and only if, its phases are unbounded on both 
sides, from above and from below. 

The phases a of an oscillatory differential equation (q) have, therefore, 
besides the properties 1. and 2., even the following one: 

3. lim a(t) = —oo . sgn a', lim <x(t) = oo . sgn a\ 
t-+a+ * -*&-

We see that a phase function unbounded on both sides is a phase of an 
oscillatory differential equation (q), i.e. the one with the carrier q defined in 
the sens of formula (2). 

Oscillatory differential equations (q) have, furthermore, the characteristic 
property that they allow, in their intervals of definition, certain privileged 
functions, i.e. the so called central dispersions . . . , y-2(0- <P-i(t), <Po(t), <Pi(t), 
(p2(t), The central dispersion with the index v = 0, ± 1 , ± 2 , . . . of the 
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differential equation (q) is understood to be the function <pr(t) defined in the 
interval j as follows: 

The value <pn(t) or <p~n(t) of the central dispersion <pn or <p-n (n = 1, 2, . . . ) 
is, a t every point t ej, the n t n number conjugated with t on the right or on 
the left with regard to the differential equation (q). In other words: If one 
considers an integral y of the differential equation (q), vanishing at the point 
19 then <pn(t) or <p-n(t) is the n t n zero of y on the right or on the left of t. <p0(t) 
.Stands for the function t. The function <p^ is also called the fundamental 
dispersion of the differential equation (q) and is briefly denoted by <p. 

Every central dispersion yv has, in the interval j , the following properties: 

1. <Pv(t) ><pv-i(t), 2, <pve(J3, 3. <p\(t) > 0, 4. \\m<pv(t) = —-oo, lim <pr(t) =co 

, We see that every central dispersion <fV is an increasing phase function, 
Unbounded on both sides. 

Moreover, we can show that : 
Every central dispersion <pv and every phas3 a of the differential equation 

(q) are connected, a t every point t ej by the so called Abelian relation 

(3) &<Pv(t) = *(t) + vn . sgn a'. 

Instead of %\<pv(t)~\ we simply write <x<pv(t). 
Forming, in (3), on both sides the Schivarz derivative, one receives, with 

regard to (2), the relation 

— {<Pv,t} + q(<pv) cp'l = q(t). 

We see that every central dispersion <pv satisfies Rummer's differential equation 
(qq) and. consequently, transforms every integral Y of the differential equation 
(q) into an integral y of the same differential equation (q) in the sense of 
formula (1). 

The central dispersion <pv are the so called central dispersions of the first 
kind of the differential equation (q). Besides these, one also definies central 
dispersions of the 2n(1, 3r(1 and 4 t h kind of the differential equation (q). In 
what follows we shall, however, not meet with the latter and will therefore 
simply refer only to central dispersions instead of to central dispersions of 
the 1st kind. • 

5. Let us now make a closer study of the transformation theory of oscillatory 
differential equations and, for this purpose, first briefly describe a constructive 
integration theory of Rummer's differential equation (Qq): One first defines, 
constructively, certain functions continuously dependent on three parameters, 
i.e. the so called general dispersions of the differential equations (Q), (q), and 
then shows tha t the latter are exactly the integrals of Rummer 's differential 
equation (Qq). 
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Let, then, (q), (Q) be arbitrary oscillatory differential equations in the 
intervals j = (a, b), J = (A, B). Their integral spaces will be denoted by r 
QYR. 

Let t0ej, T0eJ be arbitrary numbers. Choose in the integral space r 
a basis (u, v) and in the integral space R a basis ([/ , V) such that 

(4) u(t0) V(T0) - v(t0) U(T0) = 0. 

It is easily understood that the choice of .the latter depends on two arbitrary 
parameters. Let us now define, by means of the bases (u, v), (U, V), a linear 
representation p of the integral space r on the integral space R by making 
correspond, to every integral y e r of (q), y = hi + [xv, the integral py = 
= Y = XU + fiV of (Q), formed with the same constants X, jti. The quotient 
yp = w : IV of the wronskians w or IV of the basis (u, v) or (U, V) is allcalled 
the characteristic of the linear representation p. The latter has, with regard 
to the relation (4), the following property: Every integral y e r of (q), vanishing 
at t0, is in the linear representation p represented on an integral Y € R of 
(Q), vanishing at T0. In other words: y(t0) = 0 always yields py(T?) — 0 
With regard to this property, we call the linear representation p normalized 
vith respect to the numbers t0, T0. 

Let us, moreover, consider the numbers conjugated, both on the left and 
on the right, with t0, with respect to the differential equation (q): . . . , t~% = 

= y ^ o ) * t-i = «P-i(*o)> h = VoWo)* h = 9?i(*o)> h = <PS*)> • •> a n d , similarly, 
the analogous numbers with respect to the differential equation (Q): . . . , 
T-2 = 0-2(To), T.t = 0-x(To), T0 = 0O(TO), Tx = 0t(To), T2 = 02(TO), . . . . 
Every interval^. = [tv, tv+i) or j], = (tv-i, tv] for v = 0, ± 1 , ± 2 , . . . is called 
the vih right or left-hand side basic interval of the differential equation (q) 
with respect to the number t0; the intervals Jv = [Tv, Tv+1) or J'v ==- (Tv-u Tv\ 
are called analogously. We see: every number t ej lies in a determined basic 
interval j v or j ' , and, vice versa, every basic interval j v or j',, contains exactly 
one zero of every integral of (q). An analogous statement holds, of course, 
for every number T e J and for every integral Y of (Q). 

Now we shall define, in the interval j , a function X as follows: 
Let t e j be an arbitrary number and y an integral of the differential equation 

(q) vanishing a t the point t. The number t lies in a determined right-hand 
side vih basic interval j v . 

The value X(t) of the function X a t the point t is, according to whether 
XP > 0 or xp < 0, given as follows: 

In case xp > 0, X(t) is a zero of the integral py of (Q), namely the one 
lying in the right-hand side vih basic interval Jv. 

In case of yp < 0, X(t) is a zero of the integral py of (Q), namely the one 
lying in the left-hand side — vih basic interval JJX. 
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The function X is called general dispersion of the differential equations (q), 
(Q) with respect to the numbers tQ, TQ and the linear representation p. At the 
point tQ it obviously takes on the value TQ : X(tQ) = TQ. 

It is obvious that the general dispersions we have just defined continuously 
depend on three arbitrary parameters: one is the arbitrarily chosen initial 
value TQ and the two others are the parameters of the corresponding normalized 
linear representation p. 

From the properties of the general dispersions, which can be deduced from 
the above construction, we shall only mention the following: 

Let X be a general dispersion of the differential equations (q), (Q) and p 
the corresponding linear representation of the integral space r on the integral 
space 11. 

1. The sst of values of the function X is the interval J : X(j) = J. 
2. The function X is a phase function. 
3- There holds sgn X' = sgn %p. Consequently, the function X increases 

or decreases according to whether %p > 0 or %p < 0. 
4. The function X may be expressed by means of two phas?s cn(t), A(T) 

of the differential equations (q) or (Q) in the following way: 

X(t) = A~^(t). 

Vice versa, the function A~x(x.(t) formed by means of arbitrary phases a, A 
of the differential equations (q) or (Q) is a general dispersion of the differential 
equations (q), (Q). 

Moreover, there holds the following theorem: 
5. The general dispersions of the differential equations (q), (Q) are exactly 

the integrals of Rummer's differential equation (Qq). 
6. The above considerations, and especially the constructive integration 

theory we have just outlined, hold for differential equations (q), (Q) in arbitrary 
(open) intervals j , J. Let us now restrict our considerations to the case j = 
== J = (—oo, oo) and, consequently, deal only with oscillatory differential 
equations (q), (Q) in the interval j = (—00,00). That is exactly the case 
when algebraic elements enter the transformation theory and algebraic 
theorems, particularly those from the group theory, allow us to learn new 
facts about the integrals of Rummer's differential equation (Qq). 

The prototype of the differential equations to be considered is the differential 
equation (—1), i.e. y" = —y in the interval j = (—00,00). The integrals of 
this differential equation obviously have, in both directions, an infinite number 
of 7r-equidistantly displaced zeros, i.e. arranged so that the difference between 
any two neighbouring zeros of every integral is always the same, namely n. 
Hence it follows that the fundamental dispersion <p of the differential equation 
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(—1) is linear, <p(t) = t + n, and more generally, that the following formula 
holds for the central dispersion <pv: 

<pv(t) = t + v7t (V = 0, ± 1 , ± 2 , . . . ) . 

If, furthermore, a is a phase of the differential equation (—1), then the 
Abelian relation (3) yields 

<x(t + n) = <x(t) -f n . sgn a'. 
We see that all the phases of the differential equation (—1) are elementary. 
7. Let us now consider the set © formed of all the phase functions-unbounded 

on both sides, i.e. both from above and from below- in the interval j = 
= (—oo, oo). We see, first, that the function <x{i(t) composed of two arbitrary 
elements a, /? e ©, is again an element of ©. With regard to this, we shal 
now introduce, in the set ©, a multiplication consisting in composing functions. 
For any two phase functions a, /? e ©, the product a/? is therefore understood 
to be the composed function <x[f}(t)]. The set © is obviously, with regard to 
this multiplication, a semi-group. The latter evidently contains the unit 
element 1, i.e. the phase function e(t) = t; furthermore, there exists, to every 
element <x(t) e ©, the inverse element a~1(^), namely the function <x~x(t) 
inverse to the function <x(t). Thus we have shown that thfe set ©, together 
with the considered multiplication, forms a group. Let us call it the phase 
group ©. 

The phase group © consists, according to its definition, exactly of the 
phases of all the oscillatory differential equations (q) in the interval j = 
= (—00,00). To discern the phases of the singular differential equations 
(q), we shall now introduce, in the phase group ©, a relation & in the 
following way: the relation a ^ / ? expresses that the phase function /? is 
a phase of the same differential equation (q) as the phase function a. I t is 
easily verified that this relation 0t is reflexive, symmetrical and transitive 
and therefore forms an equivalence relation. Consequently, there exists, on 
the phase group ©, a decomposition 11 such that any two elements a, (t e © 
are phases of the same differential equation (q) if, and only if, they lie in 
the same element d e JR. 

Let now (£ be that element of 11 in which the unit element e(t) = t of © is 
contained. The formula (2) shows that the phase function e(t) is a phase 
of the above differential equation (—1). Consequently, the element (£ € U 
consists of all the phases of the differential equation (—1) and can be shown 
to be an undergroup of 6 : 6 c ® , This undergroup will be called the 
fundamental undergroup of ©. Furthermore, there holds the following theorem: 
The decomposition R coincides with the right-hand side elms decomposition of the 
phase group © with regard to (£: 

R = ®/r<£. 
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The set of all the oscillatory differential equations (q) in the interval j = 
= (—oo,co) therefore admits an one-one representation on the right-hand 
side class decomposition (5/r(£, namely the one tha t makes correspond, to 
every differential equation (q), the element q e (6/r(£ consisting of the phases 
of(q) . 

We shall now consider the undergroup of (5 consisting of all the elementary> 
phase functions; let us denote it by $). Since, as we know, all the phases of 
the differential equation ( — 1) are elementary and form the fundamental 
undergroup (£, we see, first, that § is an overset of (£. A further investigation 
which I cannot describe here in detail, shows tha t the elementary phase 
functions generally depend on arbitrary periodic functions with period n 
whereas the elements of C depend only on three parameters. I t follows tha t 
.5 is a proper overset of (£. I t can, moreover, be shown that § is a subgroup 
of (5. Hence there hold, between the groups (5, § , (£, the relations: 

(5) (9 3 5 z> G, 

the overgroups as well as the subgroups in question being proper. 
Let us now consider the righ-hand side class decomposition H of the phase 

group (5 with respect to the subgroup § : H = (S/r-d. 
First, the relations (5) yield the formula: 

(.Ir==)©/r6^ffi/fffi(= 77), 

by Avhich the decomposition / / is a covering of /?,"in other words, each element 
of / / is the set-sum of some elements of U ([1]). Furthermore, the following 
theorem applies: 

The elements of 7?, contained in an arbitrary element g a e H (a e (5), 
consist of phases of all the differential equations (q) whose fundamental 
dispersion <p is the same. 

Finally, let us note tha t cardinal number of the set of the elements of Tl 
contained in an arbitrary element § a e H is always the same and equal to 
tha t of the continuum. Consequently: the cardinal number of the set of all 
the differential equations (q) whose fundamental dispersion q> is the same 
does not depend on the latter and is always equal to the cardinal number $$ 
of the continuum ([2]). 

8. We shall now return to the general dispersions of two differential equations 
(q)> (Q)> namely to the integrals of Kummer's differential equation (Qq). 
As we have said above, every general dispersion X of the differential equations 
(q), (Q) transforms all the integrals Y of the differential equation (Q) to 
integrals y of the differential equations (q), the transformation being expressed 
by the first formula (1). 

I t can, first, be easily seen tha t the general dispersions of the differential 
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equations (q), (Q) form elements of the phase group (S. Indeed, every general 
dispersion X of (q), (Q) is, as we know, a phase function, whose set of values 
coincides with the interval of definition J of (Q). But since J = (—00,00), 
the general dispersion X is a phase function unbounded on both sides and 
hence an element of the phase group (5. I t is, besides, easy to show that the 
general dispersion .X is a phase of the differential equation (qx), the relation 
between the functions qx, q, Q being as follows: 

qx(t) = q(t) - [1 + Q(X)] X'*(t). 

We shall now determine the general dispersions of the differential equations 
(q)> (Q) i n the i^hase group (5 by means of the following theorem: 

Let a be a phase of the differential equation (q) and A be one of (Q). The integral 

space (X)(Qq) of Hummer's differential equation (Qq), i.e. the set of all general 

dispersions of the differential equations (q), (Q) is given by the following formula: 

(0) (X){QQ) = A-WOL; 

(£ naturally stands for the fundamental subgroup of (5. 
This theorem yields a number of results of which I shall only mention 

a few, so as not to spoil the general outline by too many details. 
I t may first be shown [by means of (6)], tha t the integral spaces X{QQ)% 

(X)(QlQl) of two arbitrary Rummer's differential equations (Qq), (QKH) have 
the sam3 cardinal numbers and can be one-one represented on each other 
in the S2iise of formula: 

Xx = Z-*Xz. 

In this formula: X e (X)(QQ) , Xt e (X)(QlQl), Z standing for a fixed integral 

°f (QQi) and z for one of (qq i). 
Let us next consider the case of two coinciding differential equations (Q), 

(q) and Kummer's corresponding differential equation (qq). Every integral 
of this differential equation transforms, in the sense of formula (1), every 
integral Y of the differential equation (q) into an integral y of the same 
differential equation (q). From the above theorem it follows that : 

The integral space (X)(qq) of Kummer's differential equation (qq) is the 
subgroup of (5 conjugated with (£: 

(7) (-X)(qq> = a-1®-; 

a naturally denotes an arbitrary phase of the differential equation (q). 
Consequently: 

The integral spaces (X)(qq), (-X)(qiqi) of two arbitrary differential equations 
(qq), (q^x) are isomorphous, the isomorphism being given by the following 
formula: 
(8) Xx = z-xXz\ 
z denotes a fixed integral of the differential equation (qqx). 
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A further consideration now permits to investigate, more closely, the al­
gebraic structure of the integral space (X)(qq) of every differential equation 
(qq). One proceeds by first finding out the structure of the integral space of 
the differential equation (—1, —1), i.e. of the group a _ 1 Sa (a e(E) and then, 
by means by formula (8), passing to the differential equation (qq). One finds, 
particularly, that the increasing integrals contained in the integral space 
(X)(m) of (qq) form a normal subgroup 21 of index 2, the center of this subgroup 
coinciding with the infinite cyclic group formed by all the central dispersions 
<pv of the differential equation (q). 

Herewith I have arrived ^t the conclusion of my lecture. Let me only 
add the remark, addressed particularly to those who take a special interest 
in the above considerations, that the latter form part of my book "Lineare 
Differentialtransformationen 2. Ordnung". This book will be published by 
the Deutscher Verlag der Wissenschaften, Berlin (DDR), in 1967. 
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