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Chapter 2

The origins of product integration

The notion of product integral has been introduced by Vito Volterra at the end of
the 19th century. We start with a short biography of this eminent Italian mathe-
matician and then proceed to discuss his work on product integration.

Vito Volterra was born at Ancona on 3rd May 1860. His father died two years
later; Vito moved in with his mother Angelica to Alfonso, Angelica’s brother, who
supported them and was like a boy’s father. Because of their financial situation,
Angelica and Alfonso didn’t want Vito to study his favourite subject, mathematics,
at university, but eventually Edoardo Almagià, Angelica’s cousin and a railroad
engineer, helped to persuade them. An important role was also played by Volterra’s
teacher Ròiti, who secured him a place of assistant in a physical laboratory.

Vito Volterra1

In 1878 Volterra entered the University of Pisa; among his professors was the fa-
mous Ulisse Dini. In 1879 he passed the examination to Scuola Normale Superiore
of Pisa. Under the influence of Enrico Betti, his interest shifted towards mathe-
matical physics. In 1882 he offered a thesis on hydrodynamics, graduated doctor
of physics and became Betti’s assistent. Shortly after, in 1883, the young Volterra
won the competition for the vacant chair of rational mechanics and was promoted

1 Photo from [McT]
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to professor of the University of Pisa. After Betti’s death he took over his course in
mathematical physics. In 1893 he moved to the University of Turin, but eventually
settled in Rome in 1900. The same year he married Virginia Almagià (the daughter
of Edoardo Almagià).

During the first quarter of the 20th century Volterra not only represented the
leading figure of Italian mathematics, but also became involved in politics and was
nominated a Senator of the Kingdom in 1905.

When Italy entered the world war in 1915, Volterra volunteered the Army Corps
of Engineers and engaged himself in perfecting of airships and firing from them; he
also promoted the collaboration with French and English scientists. After the end
of the war he returned to scientific work and teaching at the university.

Volterra strongly opposed the Mussolini regime which came to power in 1922. As
one of the few professors who refused to take an oath of loyalty imposed by the
fascists in 1931, he was forced to leave the University of Rome and other scien-
tific institutions. After then he spent a lot of time abroad (giving lectures e.g. in
France, Spain, Czechoslovakia or Romania) and also at his country house in Ar-
iccia. Volterra, who was of Jewish descent, was also affected by the antisemitic
racial laws of 1938. Although he began to suffer from phlebitis, he still devoted
himself actively to mathematics. He died in isolation on 11th October 1940 without
a greater interest of Italian scientific community.

Despite the fact that Volterra is best known as a mathematician, he was a man of
universal interests and devoted himself also to physics, biology and economy. His
mathematical research often had origins in physical problems. Volterra was also
an enthusiastic bibliophile and his collection, which reached nearly seven thousand
volumes and is now deposited in the United States, included rare copies of scientific
papers e.g. by Galileo, Brahe, Tartaglia, Fermat etc. The monograph [JG] contains
a wealth of information about Volterra’s life and times.

Volterra’s name is closely connected with integral equations. He contributed the
method of successive approximations for solving integral equations of the second
kind, and also noted that an integral equation might be considered as a limiting
case of a system of algebraic linear equations; this observation was later utilized by
Ivar Fredholm (see also the introduction to Chapter 4).

His investigations in calculus of variations led him to the study of functionals (he
called them “functions of lines”); in fact he built a complete calculus including
the definitions of continuity, derivative and integral of a functional. Volterra’s
pioneering work on integral equations and functionals is often regarded as the dawn
of functional analysis. An overview of his achievements in this field can be obtained
from the book [VV5].

Volterra was also one of the founders of mathematical biology. The motivation
came from his son-in-law Umberto D’Ancona, who was studying the statistics of
Adriatic fishery. He posed to Volterra the problem of explaining the relative in-
crease of predator fishes, as compared with their prey, during the period of First
World War (see e.g. [MB]). Volterra interpreted this phenomenon with the help of
mathematical models of struggle between two species; from mathematical point of
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view, the models were combinations of differential and integral equations. Volterra’s
correspondence concerning mathematical biology was published in the book [IG].

A more detailed description of Volterra’s activites (his work on partial differential
equations, theory of elasticity) can be found in the biographies [All, JG] and also
in the books [IG, VV5]. An interesting account of Italian mathematics and its
intertwining with politics in the first half of the 20th century is given in [GN].

2.1 Product integration in the work of Vito Volterra

Volterra’s first work devoted to product integration [VV1] was published in 1887
and was written in Italian. It introduces the two basic concepts of the multiplicative
calculus, namely the derivative of a matrix function and the product integral. The
topics discussed in [VV1] are essentially the same as in Sections 2.3 to 2.6 of the
present chapter. The publication [VV1] was followed by a second part [VV2] printed
in 1902, which is concerned mainly with matrix functions of a complex variable. It
includes results which are recapitulated in Sections 2.7 and 2.8, and also a treatment
of product integration on Riemann surfaces. Volterra also published two short
Italian notes, [VV3] from 1887 and [VV4] from 1888, which summarize the results
of [VV1, VV2] but don’t include proofs.

Volterra’s final treatment of product integration is represented by the book Opéra-
tions infinitésimales linéaires [VH] written together with a Czech mathematician
Bohuslav Hostinský. The publication appeared in the series Collection de mono-
graphies sur la théorie des fonctions directed by Émile Borel in 1938.

More than two hundred pages of [VH] are divided into eighteen chapters. The
first fifteen chapters represent a French translation of [VV1, VV2] with only small
changes and complements. The remaining three chapters, whose author is Bohuslav
Hostinský, will be discussed in Chapter 4.

As Volterra notes in the book’s preface, the publication of [VH] was motivated
by the results obtained by Bohuslav Hostinský, as well as by an increased interest
in matrix theory among mathematicians and physicists. As the bibliography of
[VH] suggests, Volterra was already aware of the papers [LS1, LS2] by Ludwig
Schlesinger, who linked up to Volterra’s first works (see Chapter 3).

The book [VH] is rather difficult to read for contemporary mathematicians. One
of the reasons is a somewhat cumbersome notation. For example, Volterra uses the
same symbol to denote additive as well as multiplicative integration: The sign

∫

applied to a matrix function denotes the product integral, while the same sign ap-
plied to a scalar function stands for the ordinary (additive) integral. Calculations
with matrices are usually written out for individual entries, whereas using the ma-
trix notation would have greatly simplified the proofs. Moreover, Volterra didn’t
hesitate to calculate with infinitesimal quantities, he interchanges the order of sum-
mation and integration or the order of partial derivatives without any justification
etc. The conditions under which individual theorems hold (e.g. continuity or differ-
entiability of the given functions) are often omitted and must be deduced from the
proof. This is certainly surprising, since the rigorous foundations of mathematical
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analysis were already laid out at the end of the 19th century, and even Volterra
contributed to them during his studies by providing an example of a function which
is not Riemann integrable but has an antiderivative.

The following sections summarize Volterra’s achievements in the field of product
integration. Our discussion is based on the text from [VH], but the results are
stated in the language of contemporary mathematics (with occasional comments on
Volterra’s notation). Proofs of most theorems are also included; they are generally
based on Volterra’s original proofs except for a few cases where his calculations
with infinitesimal quantities were replaced by a different, rigorous argument.

2.2 Basic results of matrix theory

The first four chapters of the book [VH] recapitulate some basic results of matrix
theory. Most of them are now taught in linear algebra courses and we repeat
only some of them for reader’s convenience, as we will refer to them in subsequent
chapters.

Volterra refers to matrices as to substitutions, because they can be used to represent
a linear change of variables. A composition of two substitutions then corresponds
to multiplication of matrices: If

x′i =
n∑

j=1

aijxj and x′′i =
n∑

j=1

bijx
′
j ,

then

x′′i =
n∑

j=1

cijxj ,

where

cij =
n∑

k=1

bikakj , (2.2.1).

We will use the symbol Rn×n to denote the set of all square matrices with n rows
and n columns. If

A = {aij}ni,j=1, B = {bij}ni,j=1, C = {cij}ni,j=1,

we can write Equation (2.2.1) in the form C = B ·A.

A matrix A = {aij}ni,j=1 is called regular if it has a nonzero determinant. If
i ∈ {1, . . . , n}, the theorem on expansion by minors gives

det



a11 · · · a1n
...

. . .
...

an1 · · · ann


 =

n∑

k=1

aikAik, (2.2.2)

where
Aik = (−1)i+kMik
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is the so-called cofactor corresponding to minor Mik; the minor is defined as the
determinant of a matrix obtained from A by deleting the i-th row and k-th column.
Since the determinant of a matrix with two or more identical rows is zero, it follows
that

n∑

k=1

ajkAik = δij detA. (2.2.3)

for each pair of numbers i, j ∈ {1, . . . , n}; recall that δij is the Kronecker symbol

δij =

{
1 if i = j,
0 if i 6= j.

If we thus define the matrix

A−1 =

{
Aji

detA

}n

i,j=1

,

then Equation (2.2.3) yields

AA−1 = I = A−1A,

where

I =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




is the identity matrix. The matrix A−1 is called the inverse of A.

The definition of matrix multiplication gives the following rule for multiplication of
block matrices:

Theorem 2.2.1.1 Consider a matrix that is partitioned into m2 square blocks Aij
and a matrix partitioned into m2 square blocks Bij such that Aij has the same
dimensions as Bij for every i, j ∈ {1, . . . ,m}. Then



A11 · · · A1m

...
. . .

...
Am1 · · · Amm





B11 · · · B1m

...
. . .

...
Bm1 · · · Bmm


 =



C11 · · · C1m

...
. . .

...
Cm1 · · · Cmm


 ,

where Cik =
∑
j AijBjk.

We will be often dealing with block diagonal matrices, i.e. with matrices of the form




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am




1 [VH], p. 27
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composed of smaller square matrices A1, A2, . . . , Am; Volterra denotes such a matrix
by the symbols

{
A1 ·A2 · · ·Am

}
or





m∏

i=1

Ai



 ,

but we don’t follow his notation.

The following theorem expresses the fact that every square matrix can be trans-
formed to a certain canonical form called the Jordan normal form. Volterra proves
the theorem by induction on the dimension of the matrix; we refer the reader to
any good linear algebra textbook.

Theorem 2.2.2.1 To every matrix A ∈ Rn×n there exist matrices C, J ∈ Rn×n

such that
A = C−1JC

and J has the form

J =




J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jm


 , where Ji =




λi 0 · · · 0 0
1 λi · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λi




and {λ1, . . . , λm} are (not necessarily distinct) eigenvalues of A.

Recall that if A = C−1BC for some regular matrix C, then the matrices A, B are
called similar. Thus the previous theorem says that every square matrix is similar
to a certain Jordan matrix.
The next two theorems concern the properties of block diagonal matrices and are
simple consequences of Theorem 2.2.1.

Theorem 2.2.3. If Ai is a square matrix of the same dimensions as Bi for every
i ∈ {1, . . . ,m}, then




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am







B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bm


=




A1B1 0 · · · 0
0 A2B2 · · · 0
...

...
. . .

...
0 0 · · · AmBm


.

Theorem 2.2.4. The inverse of a block diagonal matrix composed of invertible
matrices A1, . . . , Am is equal to




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am




−1

=




A−1
1 0 · · · 0
0 A−1

2 · · · 0
...

...
. . .

...
0 0 · · · A−1

m


 .

1 [VH], p. 20–24
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2.3 Derivative of a matrix function

In this section we focus on first of the basic operations of Volterra’s matrix calculus,
which is the derivative of a matrix function.
A matrix function A : [a, b]→ Rn×n will be called differentiable at a point x ∈ (a, b)
if all the entries aij , i, j ∈ {1, . . . , n} of A are differentiable at x; in this case we
denote

A′(x) = {a′ij(x)}ni,j=1.

We also define A′(x) for the endpoints x = a and x = b as the matrix of the
corresponding one-sided derivatives (provided they exist).

Definition 2.3.1. Let A : [a, b]→ Rn×n be a matrix function that is differentiable
and regular at a point x ∈ [a, b]. We define the left derivative of A at x as

d
dx
A(x) = A′(x)A−1(x) = lim

∆x→0

A(x+ ∆x)A−1(x)− I
∆x

and the right derivative of A at x as

A(x)
d

dx
= A−1(x)A′(x) = lim

∆x→0

A−1(x)A(x+ ∆x)− I
∆x

.

Volterra doesn’t use the matrix notation and instead writes out the individual
entries:

d
dx
{aij} =

{
lim

∆x→0

n∑

k=1

aik(x+ ∆x)− aik(x)
∆x

Ajk(x)

}
,

{aik}
d

dx
=

{
lim

∆x→0

n∑

k=1

Aki(x)
akj(x+ ∆x)− akj(x)

∆x

}
,

where {Aji}ni,j=1 denote the entries of A−1. He also defines the left differential as

d{aij} = A(x+ dx)A(x)−1 = I +A′(x)A(x)−1 dx =

{
δij +

n∑

k=1

a′ik(x)Ajk(x) dx

}

and the right differential as

{aij}d = A(x)−1A(x+ dx) = I +A(x)−1A′(x) dx =

{
δij +

n∑

k=1

Aki(x)a′kj(x) dx

}
,

where dx is an infinitesimal quantity. Both differentials are considered as matrices
that differ infinitesimally from the identity matrix.
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Volterra uses infinitesimal quantities without any scruples, which sometimes leads
to very unreadable proofs. This is also the case of the following theorem; Volterra’s
justification has been replaced by a rigorous proof.

Theorem 2.3.2.1 If A,B : [a, b] → Rn×n are differentiable and regular matrix
functions at x ∈ [a, b], then

d
dx

(AB) =
d

dx
A+A

(
d

dx
B

)
A−1 = A

(
A

d
dx

+
d

dx
B

)
A−1,

(AB)
d

dx
= B

d
dx

+B−1

(
A

d
dx

)
B = B−1

(
A

d
dx

+
d

dx
B

)
B,

where all derivatives are taken at the given point x.

Proof. The definition of the left derivative gives

d
dx

(AB) = (AB)′(AB)−1 = (A′B +AB′)B−1A−1 = A′A−1 +AB′B−1A−1,

where the expression on the right hand side is equal to

d
dx
A+A

(
d

dx
B

)
A−1,

but can be also transformed to the form

AA−1A′A−1 +AB′B−1A−1 = A

(
A

d
dx

+
d

dx
B

)
A−1.

The second part is proved in a similar way.

Corollary 2.3.3.2 Consider a matrix function A : [a, b] → Rn×n that is differen-
tiable and regular on [a, b]. Then for an arbitrary regular matrix C ∈ Rn×n we
have

d
dx

(AC) =
d

dx
A.

The corollary can be expressed like this: The left derivative of a matrix function
doesn’t change, if the function is multiplied by a constant matrix from right. It is
also easy to prove a dual statement: The right derivative of a matrix function doesn’t
change, if the function is multiplied by a constant matrix from left. Symbolically
written,

(CA)
d

dx
= A

d
dx
.

As Volterra notes, this is a general principle: Each statement concerning matrix
functions remains true, if we replace all occurences of the word “left” by the word

1 [VH], p. 43
2 [VH], p. 39
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“right” and vice versa. A precise formulation and justification of this duality prin-
ciple is due to P. R. Masani and will be given in Chapter 5, Remark 5.2.2.

Theorem 2.3.4.1 If A : [a, b] → Rn×n is differentiable and regular at x ∈ [a, b],
then

d
dx

(A−1) = −A d
dx
, (A−1)

d
dx

= − d
dx
A,

where all derivatives are taken at the given point x.

Proof. Differentiating the equation AA−1 = I yields A′A−1 + A(A−1)′ = 0, and
consequently (A−1)′ = −A−1A′A−1. The statement follows easily.

Corollary 2.3.5.2 If A,B : [a, b] → Rn×n are differentiable and regular matrix
functions at x ∈ [a, b], then

d
dx

(A−1B) = A−1

(
d

dx
B − d

dx
A

)
A,

(AB−1)
d

dx
= B

(
A

d
dx
− B

d
dx

)
B−1,

where all derivatives are taken at the given point x.

Proof. A simple consequence of Theorems 2.3.2 and 2.3.4.

Theorem 2.3.6.3 Consider functions A,B : [a, b] → Rn×n that are differentiable
and regular on [a, b]. If

d
dx
A =

d
dx
B

on [a, b], then there exists a matrix C ∈ Rn×n such that B(x) = A(x)C for every
x ∈ [a, b].

Proof. Define C(x) = A−1(x)B(x) for x ∈ [a, b]. Corollary 2.3.5 gives

d
dx
C = A−1

(
d

dx
B − d

dx
A

)
A = 0,

which implies that 0 = C ′(x) for every x ∈ [a, b]. This means that C is a constant
function.

A combination of Theorem 2.3.6 and Corollary 2.3.3 leads to the following state-
ment: Two matrix functions have the same left derivative on a given interval, if
and only if one of the functions is obtained by multiplying the other by a constant
matrix from right. This is the fundamental theorem of Volterra’s differential cal-
culus; a dual statement is again obtained by interchanging the words “left” and

1 [VH], p. 41
2 [VH], p. 44
3 [VH], p. 46
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“right”. Both statements represent an analogy of the well-known theorem: Two
functions have the same derivative if and only if they differ by a constant.

Theorem 2.3.7.1 Consider a matrix function A : [a, b] → Rn×n that is differen-
tiable and regular on [a, b]. Then for an arbitrary regular matrix C ∈ Rn×n we
have

d
dx

(CA) = C

(
d

dx
A

)
C−1.

Proof. A simple consequence of Theorem 2.3.2.

Theorem 2.3.8. Let A : [a, b]→ Rn×n be a matrix function of the form

A(x) =




A1(x) 0 · · · 0
0 A2(x) · · · 0
...

...
. . .

...
0 0 · · · Ak(x)


 ,

where A1, . . . , Ak are square matrix functions. If

d
dx
Ai(x) = Bi(x), i = 1, . . . , k,

then

d
dx
A(x) =




B1(x) 0 · · · 0
0 B2(x) · · · 0
...

...
. . .

...
0 0 · · · Bk(x)


 .

Proof. The statement follows from the definition of left derivative and from The-
orems 2.2.3 and 2.2.4.

2.4 Product integral of a matrix function

Consider a matrix function A : [a, b] → Rn×n with entries {aij}ni,j=1. For every
tagged partition

D : a = t0 ≤ ξ1 ≤ t1 ≤ ξ2 ≤ · · · ≤ tm−1 ≤ ξm ≤ tm = b

of interval [a, b] with division points ti and tags ξi we denote

∆ti = ti − ti−1, i = 1, . . . ,m,

ν(D) = max
1≤i≤m

∆ti.

1 [VH], p. 41
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We also put

P (A,D) =
1∏

i=m

(I +A(ξi)∆ti) = (I +A(ξm)∆tm) · · · (I +A(ξ1)∆t1),

P ∗(A,D) =
m∏

i=1

(I +A(ξi)∆ti) = (I +A(ξ1)∆t1) · · · (I +A(ξm)∆tm).

Volterra now defines the left integral of A as the matrix

∫ b

a

{aij} = lim
ν(D)→0

P (A,D)

(in case the limit exists) and the right integral as

{aij}
∫ b

a

= lim
ν(D)→0

P ∗(A,D)

(again if the limit exists). Volterra isn’t very precise about the meaning of the limit
taken with respect to partitions; we make the following agreement:

If M(D) is a matrix which is dependent on the choice of a tagged partition D of
interval [a, b], then the equality

lim
ν(D)→0

M(D) = M

means that for every ε > 0 there exists δ > 0 such that |M(D)ij −Mij | < ε for
every tagged partition D of interval [a, b] satisfying ν(D) < δ and for i, j = 1, . . . , n.

The following definition also introduces a different notation to better distinguish
between ordinary and product integrals.

Definition 2.4.1. Consider function A : [a, b]→ Rn×n. If the limit

lim
ν(D)→0

P (A,D) or lim
ν(D)→0

P ∗(A,D)

exists, it is called the left (or right) product integral of A over the interval [a, b].
We use the notation

b∏

a

(I +A(t) dt) = lim
ν(D)→0

P (A,D)

for the left product integral and

(I +A(t) dt)
b∏

a

= lim
ν(D)→0

P ∗(A,D)
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for the right product integral.

We note that in the case when the upper limit of integration coincides with the
lower limit, then

a∏

a

(I +A(t) dt) = (I +A(t) dt)
a∏

a

= I.

In the subsequent text we use the following convention: A function A : [a, b] →
Rn×n is called Riemann integrable, if its entries aij are Riemann integrable func-
tions on [a, b]. In this case we put

∫ b

a

A(t) dt =

{∫ b

a

aij(t) dt

}n

i,j=1

.

We will often encounter integrals of the type

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk.

These integrals should be interpreted as iterated integrals, where xk ∈ [a, b] and
xi ∈ [a, xi+1] for i ∈ {1, . . . , k − 1}.
Lemma 2.4.2. Let A : [a, b]→ Rn×n be a Riemann integrable function such that
A(x)A(y) = A(y)A(x) for every x, y ∈ [a, b]. Then

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk =

=
1
k!

∫ b

a

∫ b

a

· · ·
∫ b

a

A(xk) · · ·A(x1) dx1 · · · dxk

for every k ∈ N.

Proof. If P (k) denotes all permutations of the set {1, . . . , k} and

Mπ = {(x1, . . . , xk) ∈ [a, b]k; xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(k)}

for every π ∈ P (k), then

∫ b

a

∫ b

a

· · ·
∫ b

a

A(xk) · · ·A(x1) dx1 · · · dxk =

=
∑

π∈P (k)

∫ ∫
· · ·
∫

Mπ

A(xk) · · ·A(x1) dx1 · · · dxk.

The assumption of commutativity implies

∫ ∫
· · ·
∫

Mπ

A(xk) · · ·A(x1) dx1 · · · dxk =
∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk
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for every permutation π ∈ P (k), which completes the proof.

Theorem 2.4.3.1 If A : [a, b] → Rn×n is a Riemann integrable function, then
both product integrals exist and

b∏

a

(I +A(x) dx) = I +
∞∑

k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk,

(I +A(x) dx)
b∏

a

= I +
∞∑

k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(x1) · · ·A(xk) dx1 · · · dxk.

Proof. Volterra’s proof goes as follows: Expanding the product P (A,D) gives

1∏

i=m

(I +A(ξi)∆ti) = I +
m∑

k=1


 ∑

1≤i1<···<ik≤m
A(ξik) · · ·A(ξi1)∆ti1 · · ·∆tik


 .

Volterra now argues that for ν(D)→ 0 we obtain

∑

1≤i1≤m
A(ξi1)∆ti1 →

∫ b

a

A(x1) dx1,

∑

1≤i1<i2≤m
A(ξi2)A(ξi1)∆ti1∆ti2 →

∫ b

a

∫ x2

a

A(x2)A(x1) dx1 dx2,

and generally

∑

1≤i1<···<ik≤m
A(ξik) · · ·A(ξi1)∆ti1 · · ·∆tik →

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk

for every k ∈ {1, . . . ,m}. Using the fact that m → ∞ for ν(D) → 0, Volterra
arrived at the result

b∏

a

(I +A(x) dx) = I +
∞∑

k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk.

The proof for the right product integral is carried out in a similar way.

The infinite series expressing the value of the product integrals are often referred
to as the Peano series. They were discussed by Giuseppe Peano in his paper [GP]
from 1888 dealing with systems of linear differential equations.

Remark 2.4.4. The proof of Theorem 2.4.3 given by Volterra is somewhat unsat-
isfactory. First, he didn’t justify that

∑

1≤i1<···<ik≤m
A(ξik) · · ·A(ξi1)∆ti1 · · ·∆tik →

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk

1 [VH], p. 49–52
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for ν(D)→ 0. This can be done as follows: Define

Xk = {(x1, . . . , xk) ∈ Rk; a ≤ x1 < x2 < · · · < xk ≤ b}

and let χk be the characteristic function of the set Xk. Then

lim
ν(D)→0

∑

1≤i1<···<ik≤m
A(ξik) · · ·A(ξi1)∆ti1 · · ·∆tik =

= lim
ν(D)→0

m∑

i1,...,ik=1

A(ξik) · · ·A(ξi1)χ(ξi1 , . . . , ξik)∆ti1 · · ·∆tik =

=
∫ b

a

∫ b

a

· · ·
∫ b

a

A(xk) · · ·A(x1)χ(x1, . . . , xk) dx1 · · · dxk =

=
∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk.

The second problem is that Volterra didn’t explain the equality

lim
ν(D)→0


I +

m∑

k=1

∑

1≤i1<···<ik≤m
A(ξik) · · ·A(ξi1)∆ti1 · · ·∆tik


 =

I +
∞∑

k=1

lim
ν(D)→0

∑

1≤i1<···<ik≤m
A(ξik) · · ·A(ξi1)∆ti1 · · ·∆tik .

We postpone its justification to Chapter 5, Lemma 5.5.9.

Theorem 2.4.5.1 If A : [a, b]→ Rn×n is a Riemann integrable function, then the
infinite series

x∏

a

(I +A(t) dt) = I +
∞∑

k=1

∫ x

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk,

(I +A(t) dt)
x∏

a

= I +
∞∑

k=1

∫ x

a

∫ xk

a

· · ·
∫ x2

a

A(x1) · · ·A(xk) dx1 · · · dxk

converge absolutely and uniformly for x ∈ [a, b].

Proof. We give only the proof for the first series: Its sum is a matrix whose (i, j)-th
entry is the number

∞∑

k=1




n∑

l1,...,lk−1=1

∫ x

a

∫ xk

a

· · ·
∫ x2

a

ai,l1(xk) · · · alk−1,j(x1) dx1 · · · dxk


 . (2.4.1)

1 [VH], p. 51–52
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The functions aij are Riemann integrable, therefore bounded: There exists a posi-
tive number M ∈ R such that |aij(t)| ≤M for i, j ∈ {1, . . . , n} and t ∈ [a, b]. Using
Lemma 2.4.2 we obtain the estimate

∣∣∣∣∣∣

n∑

l1,...,lk−1=1

∫ x

a

∫ xk

a

· · ·
∫ x2

a

ai,l1(xk) · · · alk−1,j(x1) dx1 · · · dxk

∣∣∣∣∣∣
≤

≤ nk−1Mk

∫ b

a

∫ xk

a

· · ·
∫ x2

a

dx1 · · · dxk =
1
n

(nM(b− a))k

k!

for every x ∈ [a, b]. Since

∞∑

k=1

1
n

(nM(b− a))k

k!
=

1
n
enM(b−a),

we see that (according to the Weierstrass M-test) the infinite series (2.4.1) converges
uniformly and absolutely on [a, b].

Theorem 2.4.6.1 If A : [a, c]→ Rn×n is a Riemann integrable function, then

c∏

a

(I +A(x) dx) =
c∏

b

(I +A(x) dx) ·
b∏

a

(I +A(x) dx)

and

(I +A(x) dx)
c∏

a

= (I +A(x) dx)
b∏

a

· (I +A(x) dx)
c∏

b

for every c ∈ [a, b].

Proof. Take two sequences of tagged partitions {D1
k}∞k=1 of interval [a, b] and

{D2
k}∞k=1 of interval [b, c] such that

lim
k→∞

ν(D1
k) = lim

k→∞
ν(D2

k) = 0.

If we put Dk = D1
k ∪ D2

k, we obtain a sequence of tagged partitions {Dk}∞k=1 of
interval [a, c] such that limk→∞ ν(Dk) = 0. Consequently

c∏

a

(I +A(x) dx) = lim
k→∞

P (A,Dk) = lim
k→∞

P (A,D2
k) · lim

k→∞
P (A,D1

k) =

=
c∏

b

(I +A(x) dx) ·
b∏

a

(I +A(x) dx).

The second part is proved in the same way.

1 [VH], p. 54–56
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Remark 2.4.7. Volterra also offers a different proof of Theorem 2.4.6, which goes
as follows1: Denote

D(i) = {x ∈ Ri; a ≤ x1 ≤ · · · ≤ xi ≤ c},

D(j, i) = {x ∈ Ri; a ≤ x1 ≤ · · · ≤ xj ≤ b ≤ xj+1 ≤ · · · ≤ xi ≤ c}
for each pair of numbers i ∈ N and j ∈ {0, . . . , i}. Clearly

D(i) = D(0, i) ∪



i−1⋃

j=1

D(i− j, i− j)×D(0, j)


 ∪D(i, i) (2.4.2)

for every i ∈ N. We have

b∏

a

(I +A(x) dx) = I +
∞∑

i=1

∫

D(i,i)
A(xi) · · ·A(x1) dx1 · · · dxi,

c∏

b

(I +A(x) dx) = I +
∞∑

i=1

∫

D(0,i)
A(xi) · · ·A(x1) dx1 · · · dxi.

Since both infinite series converge absolutely, their product is equal to the Cauchy
product:

c∏

b

(I +A(x) dx)
b∏

a

(I +A(x) dx) = I +
∞∑

i=1

∫

D(i,i)
A(xi) · · ·A(x1) dx1 · · · dxi+

+
∞∑

i=1

∫

D(0,i)
A(xi) · · ·A(x1) dx1 · · · dxi+

+
∞∑

i=1

(
i−1∑

j=1

(∫

D(0,j)
A(xj) · · ·A(x1) dx1 · · · dxj

)
·

·
(∫

D(i−j,i−j)
A(xi−j) · · ·A(x1) dx1 · · · dxi−j

))
=

= I +
∞∑

i=1

∫

D(i)
A(xi) · · ·A(x1) dx1 · · · dxi =

c∏

a

(I +A(x) dx)

(we have used Equation (2.4.2)).

If a and b are two real numbers such that a < b, we usually define

∫ a

b

f = −
∫ b

a

f.

1 [VH], p. 54–56
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The following definition assigns a meaning to product integral whose lower limit is
greater than its upper limit.

Definition 2.4.8. For any function A : [a, b]→ Rn×n we define

a∏

b

(I +A(t) dt) = lim
ν(D)→0

m∏

i=1

(I −A(ξi)∆ti) = (I −A(t) dt)
b∏

a

and

(I +A(t) dt)
a∏

b

= lim
ν(D)→0

1∏

i=m

(I −A(ξi)∆ti) =
b∏

a

(I −A(t) dt),

provided that the integrals on the right hand sides exist.

Corollary 2.4.9. If A : [a, b]→ Rn×n is a Riemann integrable function, then

a∏

b

(I +A(t) dt) = I +
∞∑

k=1

(−1)k
∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(x1) · · ·A(xk) dx1 · · · dxk,

(I +A(t) dt)
a∏

b

= I +
∞∑

k=1

(−1)k
∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk.

The following statement represents a generalized version of Theorem 2.4.6.

Theorem 2.4.10.1 If A : [p, q]→ Rn×n is a Riemann integrable function, then

c∏

a

(I +A(x) dx) =
c∏

b

(I +A(x) dx) ·
b∏

a

(I +A(x) dx),

(I +A(x) dx)
c∏

a

= (I +A(x) dx)
b∏

a

· (I +A(x) dx)
c∏

b

for every a, b, c ∈ [p, q].

Proof. If a ≤ b ≤ c, then the statement reduces to Theorem 2.4.6. Let’s have a
look at the case b < a = c: Denote

E(j, i) = {x ∈ Ri; b ≤ x1 ≤ · · · ≤ xj ≤ a and a ≥ xj+1 ≥ · · · ≥ xi ≥ b}

for each pair of numbers i ∈ N and j ∈ {0, . . . , i}. A simple observation reveals
that

E(j, i) = E(j, j)× E(0, i− j) (2.4.3)

for every i ∈ N and j ∈ {1, . . . , i− 1}. We also assert that

E(0, i) ∪ E(2, i) ∪ · · · = E(1, i) ∪ E(3, i) ∪ · · · (2.4.4)

1 [VH], p. 56–58
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for every i ∈ N. Indeed, if x ∈ Ri is a member of the union on the left side, then
x ∈ E(2k, i) for some k. If 2k < i and x2k ≤ x2k+1, then x ∈ E(2k+1, i). If 2k = i,
or 2k < i and x2k+1 < x2k, then x ∈ E(2k − 1, i). In any case, x is a member of
the union on the right side; the reverse inclusion is proved similarly.

Now, the Peano series expansions might be written as

a∏

b

(I +A(x) dx) = I +
∞∑

i=1

∫

E(i,i)
A(x1) · · ·A(xi) dx1 · · · dxi,

b∏

a

(I +A(x) dx) = I +
∞∑

i=1

(−1)i
∫

E(0,i)
A(x1) · · ·A(xi) dx1 · · · dxi

(we have used Corollary 2.4.9). Since both infinite series converge absolutely, their
product is equal to the Cauchy product:

a∏

b

(I +A(x) dx) ·
b∏

a

(I +A(x) dx) = I +
∞∑

i=1

∫

E(i,i)
A(x1) · · ·A(xi) dx1 · · · dxi+

+
∞∑

i=1

(−1)i
∫

E(0,i)
A(x1) · · ·A(xi) dx1 · · · dxi+

+
∞∑

i=1

(
i−1∑

j=1

(∫

E(j,j)
A(x1) · · ·A(xk) dx1 · · · dxk

)
·

·
(

(−1)i−j
∫

E(0,i−j)
A(x1) · · ·A(xi−j) dx1 · · · dxi−j

))
=

= I +
∞∑

i=1

i∑

j=0

(−1)i−j
∫

E(j,i)
A(x1) · · ·A(xi) dx1 · · · dxi,

where the last equality is a consequence of Equation (2.4.3). Equation (2.4.4)
implies

i∑

j=0

(−1)i−j
∫

E(j,i)
A(x1) · · ·A(xi) dx1 · · · dxi = 0

for every positive number i, which proves that

a∏

b

(I +A(x) dx) ·
b∏

a

(I +A(x) dx) = I.

We see that our statement is true is even in the case b > a = c.

The remaining cases are now simple to check: For example, if a < c < b, then

c∏

a

(I +A(x) dx) =
c∏

b

(I +A(x) dx) ·
b∏

c

(I +A(x) dx) ·
c∏

a

(I +A(x) dx) =
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= (I +A(x) dx)
b∏

a

· (I +A(x) dx)
c∏

b

.

The prove the second part, we calculate

(I +A(x) dx)
c∏

a

=
a∏

c

(I −A(x) dx) =
a∏

b

(I −A(x) dx) ·
b∏

c

(I −A(x) dx) =

= (I +A(x) dx)
b∏

a

· (I +A(x) dx)
c∏

b

.

Corollary 2.4.11. If A : [a, b]→ Rn×n is a Riemann integrable function, then

a∏

b

(I +A(x) dx) =

(
b∏

a

(I +A(x) dx)

)−1

,

(I +A(x) dx)
a∏

b

=

(
(I +A(x) dx)

b∏

a

)−1

.

Theorem 2.4.12.1 If A : [a, b] → Rn×n is a Riemann integrable function, then
the functions

Y (x) =
x∏

a

(I +A(t) dt),

Z(x) = (I +A(t) dt)
x∏

a

satisfy the integral equations

Y (x) = I +
∫ x

a

A(t)Y (t) dt,

Z(x) = I +
∫ x

a

Z(t)A(t) dt

for every x ∈ [a, b].

Proof. Theorem 2.4.3 implies

A(t)Y (t) = A(t) +
∞∑

k=1

∫ t

a

∫ xk

a

· · ·
∫ x2

a

A(t)A(xk) · · ·A(x1) dx1 · · · dxk. (2.4.5)

1 [VH], p. 52–53
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The Peano series converges uniformly and the entries of A are bounded, therefore
the series (2.4.5) also converges uniformly for t ∈ [a, b] and might be integrated
term by term to obtain

∫ x

a

A(t)Y (t) dt =
∫ x

a

A(t) dt+

+
∞∑

k=1

∫ x

a

∫ t

a

∫ xk

a

· · ·
∫ x2

a

A(t)A(xk) · · ·A(x1) dx1 · · · dxk dt = Y (x)− I.

The other integral equation is deduced similarly.

2.5 Continuous matrix functions

Volterra is now ready to state and prove the fundamental theorem of calculus for
product integral. Recall that the ordinary fundamental theorem has two parts:

1) If f is a continuous function on [a, b], then the function F (x) =
∫ x
a
f(t) dt satisfies

F ′(x) = f(x) for every x ∈ [a, b].
2) If f is a continuous function on [a, b] and F its antiderivative, then

∫ b

a

f(t) dt = F (b)− F (a).

The function
∫ x
a
f(t) dt is usually referred to as the indefinite integral of f ; similarly,

the functions
∏x
a(I+A(t) dt) and (I+A(t) dt)

∏x
a are called the indefinite product

integrals of A.

Before proceeding to the fundamental theorem we make the following agreement:
A matrix function A : [a, b]→ Rn×n is called continuous, if the entries aij of A are
continuous functions on [a, b].

Theorem 2.5.1.1 If A : [a, b] → Rn×n is a continuous matrix function, then the
indefinite product integrals

Y (x) =
x∏

a

(I +A(t) dt) and Z(x) = (I +A(t) dt)
x∏

a

satisfy the equations
Y ′(x) = A(x)Y (x),

Z ′(x) = Z(x)A(x)

for every x ∈ [a, b].

Proof. The required statement is easily deduced by differentiating the integral
equations obtained in Theorem 2.4.12.

1 [VH], p. 60–61
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The differential equations from the previous theorem can be rewritten in the form

d
dx

x∏

a

(I +A(t) dt) = A(x), (I +A(t) dt)
x∏

a

d
dx

= A(x),

which closely resembles the first part of the ordinary fundamental theorem. We see
that the left (or right) derivative is in a certain sense inverse operation to the left
(or right) product integral.

Remark 2.5.2. A function Y : [a, b]→ Rn×n is a solution of the equation

Y ′(x) = A(x)Y (x), x ∈ [a, b]

and satisfies Y (a) = I if and only if Y solves the integral equation

Y (x) = I +
∫ x

a

A(t)Y (t) dt, x ∈ [a, b]. (2.5.1)

This is a special type of equation of the form

y(x) = f(x) +
∫ x

a

K(x, t)y(t) dt,

which is today called the Volterra’s integral equation of the second kind. Volterra
proved (see e.g. [Kl, VV4]) that such equations may be solved by the method of
successive approximations; in case of Equation (2.5.1) we obtain the solution

Y (x) = I +
∞∑

k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk,

which is exactly the Peano series.

Theorem 2.5.3.1 Consider a continuous matrix function A : [a, b] → Rn×n. If
there exists a function Y : [a, b]→ Rn×n such that

d
dx

Y (x) = A(x)

for every x ∈ [a, b], then

b∏

a

(I +A(x) dx) = Y (b)Y (a)−1.

Similarly, if there exists a function Z : [a, b]→ Rn×n such that

Z(x)
d

dx
= A(x)

1 [VH], p. 62–63
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for every x ∈ [a, b], then

(I +A(x) dx)
b∏

a

= Z(a)−1Z(b).

Proof. We prove the first part: The functions
∏x
a(I +A(t) dt) and Y (x) have the

same left derivative for every x ∈ [a, b]. Theorem 2.3.6 implies the existence of a
matrix C such that

x∏

a

(I +A(t) dt) = Y (x)C

for every x ∈ [a, b]. Substituting x = a yields C = Y (a)−1.

Theorem 2.5.4.1 If A : [a, b]→ Rn×n is a continuous function, then the function

Y (x) =
x∏

a

(I +A(t) dt)

is the fundamental matrix of the system of differential equations

y′i(x) =
n∑

j=1

aij(x)yj(x), i = 1, . . . , n. (2.5.2)

Proof. Let yk denote the k-th column of Y , i.e.

yk(x) =
x∏

a

(I +A(t) dt) · ek,

where ek is the k-th vector from the canonical basis of Rn. Theorem 2.5.1 implies
that each of the vector functions yk, k = 1, . . . , n yields a solution of the system
(2.5.2). Since yk(a) = ek, the system of functions {yk}nk=1 is linearly independent
and represents a fundamental set of solutions of the system (2.5.2).

Example 2.5.5.2 Volterra now shows the familiar method of converting a linear
differential equation of the n-th order

y(n)(x) = p1(x)yn−1(x) + p2(x)yn−2(x) + · · ·+ pn(x)y(x)

to a system of equations of the first order. If we introduce the functions z0 = y,
z1 = z′0, z2 = z′1, . . . , zn−1 = z′n−2, then the above given n-th order equation is
equivalent to the system of equations written in matrix form as




z′0
z′1
...

z′n−2
z′n−1




=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
pn pn−1 pn−2 · · · p1







z0

z1
...

zn−2

zn−1



.

1 [VH], p. 69
2 [VH], p. 70
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The fundamental matrix of this system can be calculated using the product integral
and the solution of the original equation (which corresponds to the function z0)
is represented by the first column of the matrix (we obtain a set of n linearly
independent solutions).

Example 2.5.6. If n = 1, then the function A : [a, b] → Rn×n is in fact a scalar
function, and we usually write

∏b
a(1 + A(t) dt) instead of

∏b
a(I + A(t) dt). Using

Theorem 2.4.3 and Lemma 2.4.2 we obtain

y(x) =
x∏

a

(1 +A(t) dt) = 1 +
∞∑

k=1

1
k!

(∫ x

a

A(t) dt

)k
= exp

(∫ x

a

A(t) dt

)
,

which is indeed a solution of the differential equation y′(x) = A(x)y(x) and satisfies
y(a) = 1.

Example 2.5.7.1 Recall that if A ∈ Rn×n, then the exponential of A is defined as

expA =
∞∑

k=0

Ak

k!
(2.5.3).

The fundamental matrix of the system of equations

y′i(x) =
n∑

j=1

aijyj(x), i = 1, . . . , n

is given by

Y (x) =
x∏

a

(I +Adt) = I +
∞∑

k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

Ak dx1 · · · dxk =

I +
∞∑

k=1

(x− a)kAk

k!
= e(x−a)A

(we have used Theorem 2.4.3 and Lemma 2.4.2), which is a well-known result from
the theory of differential equations. We also remark that a similar calculation leads
to the relation

(I +A dt)
x∏

a

= e(x−a)A, x ∈ [a, b].

Example 2.5.8.2 Volterra is also interested in actually calculating the matrix
eA(x−a). Convert A to the Jordan normal form

A = C−1




J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk


C, where Ji =




λi 0 · · · 0 0
1 λi · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λi




1 [VH], p. 70–71
2 [VH], p. 66–68
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for i ∈ {1, . . . , k}. If

Si(x) =




eλix 0 0 · · · 0 0
x1

1! e
λix eλix 0 · · · 0 0

x2

2! e
λix x1

1! e
λix eλix · · · 0 0

...
...

. . .
...

...




is a square matrix which has the same dimensions as Ji, it is easily verified that

Si(x)−1 = Si(−x),

d
dx
Si(x) = Si(x)′Si(x)−1 = Ji.

Applying Theorem 2.3.8 to matrix

S(x) =




S1(x) 0 · · · 0
0 S2(x) · · · 0
...

...
. . .

...
0 0 · · · Sk(x)




we obtain

d
dx
S(x) =




J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk




and Theorem 2.3.7 gives

d
dx

(
C−1S(x)

)
= C−1




J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk


C = A.

Theorem 2.3.6 implies the existence of a matrix D ∈ Rn×n such that e(x−a)A =
C−1S(x)D for every x ∈ [a, b]; substituting x = a yields D = S(a)−1C.

Remark 2.5.9. Volterra gives no indication how to “guess” the calculation in the
previous example. We may proceed as follows: Let again A = C−1JC, where

J =




J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk


 , Ji =




λi 0 · · · 0 0
1 λi · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λi


 .

The definition of matrix exponential implies

exp(Ax) = exp(C−1JxC) = C−1 exp(Jx)C
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for every x ∈ R and it suffices to calculate exp(Jx). We see that

Jix = x




λi 0 · · · 0 0
0 λi · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 λi


+ x




0 0 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 .

It is easy to calculate an arbitrary power of the matrices on the right hand side (the
second one is a nilpotent matrix); the definition of matrix exponential then gives

exp(Jix) =




eλix 0 0 · · · 0 0
x1

1! e
λix eλix 0 · · · 0 0

x2

2! e
λix x1

1! e
λix eλix · · · 0 0

...
...

. . .
...

...


 ,

exp(Jx) =




exp(J1x) 0 · · · 0
0 exp(J2x) · · · 0
...

...
. . .

...
0 0 · · · exp(Jkx)


 .

Theorem 2.5.10.1 If A : [a, b] → Rn×n is a continuous function and ϕ : [c, d] →
[a, b] a continuously differentiable function such that ϕ(c) = a and ϕ(d) = b, then

b∏

a

(I +A(x) dx) =
d∏

c

(I +A(ϕ(t))ϕ′(t) dt).

Proof. Define

Y (x) =
x∏

a

(I +A(t) dt)

for every x ∈ [a, b]. Then

d
dt

(Y ◦ ϕ) = Y ′(ϕ(t))ϕ′(t)Y (ϕ(t))−1 = A(ϕ(t))ϕ′(t)

for every t ∈ [c, d]. The fundamental theorem for product integral gives

b∏

a

(I +A(x) dx) = Y (b)Y (a)−1 = Y (ϕ(d))Y (ϕ(c))−1 =
d∏

c

(I +A(ϕ(t))ϕ′(t) dt).

1 [VH], p. 65
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Theorem 2.5.11.1 If A : [a, b]→ Rn×n is a continuous function, then

det

(
b∏

a

(I +A(x) dx)

)
= exp

(∫ b

a

n∑

i=1

aii(x) dx

)
.

Proof. Denote

Y (x) =
x∏

a

(I +A(t) dt), x ∈ [a, b].

The determinant of Y (x) might be interpreted as a function of the n2 entries yij(x),
i, j ∈ {1, . . . , n}. The chain rule therefore gives

(detY )′(x) =
n∑

i,j=1

∂(detY )
∂yij

y′ij(x).

Formula (2.2.2) for the expansion of determinant by minors implies

∂(detY )
∂yij

= Yij ,

and consequently

(detY )′(x) =
n∑

i,j=1

y′ij(x)Yij(x) =
n∑

i,j,k=1

aik(x)ykj(x)Yij(x) =

=
n∑

i,j,k=1

aik(x)δik(x) detY (x) =

(
n∑

i=1

aii(x)

)
detY (x)

(we have used Theorem 2.5.1 and Equation (2.2.3)). However, the differential
equation

(detY )′(x) =

(
n∑

i=1

aii(x)

)
detY (x)

has a unique solution that satisfies

detY (a) = det I = 1.

It is given by

detY (x) = exp

(∫ x

a

n∑

i=1

aii(t) dt

)
, x ∈ [a, b].

1 [VH], p. 61–62
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Theorem 2.5.12.1 If A : [a, b]→ Rn×n is a continuous function and C ∈ Rn×n a
regular matrix, then

b∏

a

(I + C−1A(x)C dx) = C−1
b∏

a

(I +A(x) dx)C.

Proof. Define

Y (x) =
x∏

a

(I +A(t) dt)

for every x ∈ [a, b]. Theorem 2.3.7 gives

d
dx

(C−1Y ) = C−1

(
d

dx
Y

)
C = C−1AC,

and therefore

b∏

a

(I + C−1A(x)C dx) = C−1Y (b)(C−1Y (a))−1 = C−1
b∏

a

(I +A(x) dx)C.

2.6 Multivariable calculus

In this section we turn our attention to matrix functions of several variables, i.e. to
functions A : Rm → Rn×n, where m,n ∈ N. We introduce the notation

∂A

∂xk
(x) =

{
∂aij
∂xk

(x)

}n

i,j=1

,

provided the necessary partial derivatives exist.

Definition 2.6.1. Let G be a domain in Rm and x ∈ G. Consider a function
A : G→ Rn×n that is regular at x and such that ∂A

∂xk
(x) exists. We define the left

partial derivative of A at x with respect to the k-th variable as

d
dxk

A(x) =
∂A

∂xk
(x)A−1(x).

Remark 2.6.2. Volterra also introduces the left differential of A as the matrix

dA = A(x1 + dx1, . . . , xm + dxm)A−1(x1, . . . , xm) = I +
m∑

k=1

(
d

dxk
A(x)

)
dxk,

(2.6.1)

1 [VH], p. 63
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which differs infinitesimally from the identity matrix. He also claims that

dA =
m∏

k=1

(
I +

(
d

dxk
A(x)

)
dxk

)
,

since the product of infinitesimal quantities can be neglected.

Recall the following well-known theorem of multivariable calculus: If f1, . . . , fm :
Rm → R are functions that have continuous partial derivatives with respect to all
variables, then the following statements are equivalent:

(1) There exists a function F : Rm → R such that ∂F
∂xi

= fi for i = 1, . . . ,m.

(2)
∂fi
∂xj
− ∂fj
∂xi

= 0 for i, j = 1, . . . ,m, i 6= j.

Volterra proceeds to the formulation of a similar theorem concerning left derivatives.

Definition 2.6.3. Let A,B : Rm → Rn×n be matrix functions that possess partial
derivatives with respect to the i-th and j-th variable. We define

∆(A,B)xi,xj =
∂B

∂xi
− ∂A

∂xj
+BA−AB.

Volterra’s proof of the following lemma has been slightly modified to make it more
readable. We also require the equality of mixed partial derivatives, whereas Volterra
supposes that the mixed derivatives can be interchanged without any comment.

Lemma 2.6.4.1 Let m ∈ N, i, j ∈ {1, . . . ,m}, i 6= j. Let G be an open set in Rm

and x ∈ G. Consider a pair of matrix functions X,Y : G → Rn×n that possess
partial derivatives with respect to xi and xj at x, and a function S : G → Rn×n

that satisfies
d

dxi
S(x) = X(x), (2.6.2)

∂2S

∂xi∂xj
(x) =

∂2S

∂xj∂xi
(x).

Then the equality

∂

∂xi

(
S−1

(
Y − d

dxj
S

)
S

)
= S−1∆(X,Y )xi,xjS

holds at the point x.

Proof. Using the formula for the derivative of an inverse matrix and the assumption
(2.6.2) we calculate

∂S−1

∂xi

(
Y − d

dxj
S

)
S = −S−1 ∂S

∂xi
S−1

(
Y − d

dxj
S

)
S =

1 [VH], p. 81
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= −S−1X

(
Y − d

dxj
S

)
S = S−1

(
−XY +X

(
d

dxj
S

))
S,

further

S−1 ∂

∂xi

(
Y − d

dxj
S

)
S = S−1

(
∂Y

∂xi
− ∂

∂xi

(
∂S

∂xj
S−1

))
S =

= S−1

(
∂Y

∂xi
− ∂2S

∂xi∂xj
S−1 − ∂S

∂xj

∂S−1

∂xi

)
S =

= S−1

(
∂Y

∂xi
− ∂(XS)

∂xj
S−1 − ∂S

∂xj
S−1 ∂S

∂xi
S−1

)
S =

= S−1

(
∂Y

∂xi
− ∂X

∂xj
−X

(
d

dxj
S

)
−
(

d
dxj

S

)
X

)
S =

= S−1

(
∂Y

∂xi
− ∂X

∂xj
−X

(
d

dxj
S

)
−
(

d
dxj

S

)
X

)
S,

and finally

S−1

(
Y − d

dxj
S

)
∂S

∂xi
= S−1

(
Y − d

dxj
S

)
XS = S−1

(
Y X −

(
d

dxj
S

)
X

)
S.

The product rule for differentiation gives (using the previous three equations)

∂

∂xi

(
S−1

(
Y − d

dxj
S

)
S

)
= S−1

(
−XY +X

(
d

dxj
S

)
+
∂Y

∂xi
− ∂X

∂xj
−

−X
(

d
dxj

S

)
−
(

d
dxj

S

)
X + Y X −

(
d

dxj
S

)
X

)
S = S−1∆(X,Y )xi,xjS.

Theorem 2.6.5.1 If B1, . . . , Bm : Rm → Rn×n are continuously differentiable
with respect to all variables, then the following statements are equivalent:

(1) There exists a function A : Rm → Rn×n such that Bk = d
dxk

A for k = 1, . . . ,m.
(2) ∆(Bi, Bj)xi,xj = 0 for i, j = 1, . . . ,m, i 6= j.

Proof. We start with the implication (1)⇒ (2):

∂Bi
∂xj
− ∂Bj
∂xi

=
∂

∂xj

(
∂A

∂xi
A−1

)
− ∂

∂xi

(
∂A

∂xj
A−1

)
=

=
∂

∂xj

(
∂A

∂xi

)
A−1 +

∂A

∂xi

∂A−1

∂xj
− ∂

∂xi

(
∂A

∂xj

)
A−1 − ∂A

∂xj

∂A−1

∂xi
=

1 [VH], p. 78–85
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=
∂A

∂xi

∂A−1

∂xj
− ∂A

∂xj

∂A−1

∂xi
= − ∂A

∂xi
A−1 ∂A

∂xj
A−1 +

∂A

∂xj
A−1 ∂A

∂xi
A−1 = BjBi −BiBj

(statement (1) implies that the mixed partial derivatives of A are continuous, and
therefore interchangeable).

The reverse implication (2) ⇒ (1) is first proved for m = 2: Suppose that the
function A : R2 → Rn×n from (2) exists. Choose x0 ∈ R and define

S(x, y) =
x∏

x0

(I +B1(t, y) dt).

Then
d

dx
S = B1 =

d
dx
A,

which implies the existence of a matrix function T : R→ Rn×n such that A(x, y) =
S(x, y)T (y) (T is independent on x). We calculate

d
dy
T =

d
dy

(S−1A) = S−1

(
d
dy
A− d

dy
S

)
S = S−1

(
B2 −

d
dy
S

)
S.

We now relax the assumption that the function A exists; the function on the right
hand side of the last equation is nevertheless independent on x, because Lemma
2.6.4 gives

∂

∂x

(
S−1

(
B2 −

d
dy
S

)
S

)
= S−1∆(B1, B2)x,yS = 0.

Thus we define

T (y) =
y∏

y0

(
I + S−1(x, t)

(
B2(x, t)− d

dy
S(x, t)

)
S(x, t) dt

)

(where x is arbitrary) and A = ST . Since

d
dx
A =

d
dx

(ST ) =
d

dx
S = B1

and
d
dy
A =

d
dy

(ST ) =
d
dy
S + S

(
d
dy
T

)
S−1 = B2,

the proof is finished; we now proceed to the case m > 2 by induction: Choose
x0 ∈ R and define

S(x1, . . . , xm) =
x1∏

x0

(I +B1(t, x2, . . . , xm) dt).
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If the function A : Rm → Rn×n exists, we must have

d
dx1

S = B1 =
d

dx1
A

and consequently

A(x1, . . . , xm) = S(x1, . . . , xm)T (x2, . . . , xm)

for some matrix function T : Rm−1 → Rn×n. Then

d
dxk

T =
d

dxk
(S−1A) = S−1

(
Bk −

d
dxk

S

)
S, k = 2, . . . ,m.

We now relax the assumption that the function A exists and define

Uk = S−1

(
Bk −

d
dxk

S

)
S, k = 2, . . . ,m.

Each of these functions Uk is indeed independent on x1, because Lemma 2.6.4 gives

∂Uk
∂x1

= S−1∆(B1, Bk)x1,xkS = 0.

Since
∆(Ui, Uj)xi,xj = S−1∆(Bi, Bj)xi,xjS = 0, i, j = 2, . . . ,m,

the induction hypothesis implies the existence of a function T of m − 1 variables
x2, . . . , xm such that

d
dxk

T = Uk, k = 2, . . . ,m.

We now let A = ST and obtain

d
dx1

A =
d

dx1
(ST ) =

d
dx1

S = B1

and
d

dxk
A =

d
dxk

(ST ) =
d

dxk
S + S

(
d

dxk
T

)
S−1 = Bk

for k = 2, . . . ,m, which completes the proof.

Remark 2.6.6. Volterra’s proof of Theorem 2.6.5 contains a deficiency: We have
applied Lemma 2.6.4 to the function

S(x1, . . . , xm) =
x1∏

x0

(I +B1(t, x2, . . . , xm) dt)

without verifying that

∂2S

∂xi∂x1
(x) =

∂2S

∂x1∂xi
(x), i ∈ {2, . . . ,m}.
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This equality follows from the well-known theorem of multivariable calculus pro-
vided the derivatives ∂S

∂xi
exist in some neighbourhood of x for every i ∈ {1, . . . ,m},

and the derivatives
∂2S

∂x1∂xi
(x)

are continuous at x for every i ∈ {2, . . . ,m}. We have

∂S

∂x1
= B1

and consequently
∂2S

∂x1∂xi
=
∂B1

∂xi
,

which is a continuous function for every i ∈ {2, . . . ,m}. The existence of the
derivatives ∂S

∂xi
for i ∈ {2, . . . ,m} is certainly not obvious but follows from Theorem

3.6.14 on differentiating the product integral with respect to a parameter, which
will be proved in Chapter 3.

Remark 2.6.7. An analogy of Theorem 2.6.5 holds also for right derivatives; the
condition ∆(Bi, Bj)xi,xj = 0 must be replaced by ∆∗(Bi, Bj)xi,xj = 0, where

∆∗(A,B)xi,xj =
∂B

∂xi
− ∂A

∂xj
+AB −BA.

The second fundamental notion of multivariable calculus is the contour integral.
While Volterra introduces only product integrals along a contour ϕ in R2, which
he denotes by ∫

ϕ

X dx · Y dy,

we give a general definition for curves in Rm; we also use a different notation.

We will always consider curves that are given using a parametrization ϕ : [a, b] →
Rm that is piecewise continuously differentiable, which means that ϕ′−(x) exists for
x ∈ (a, b], ϕ′+(x) exists for x ∈ [a, b), and ϕ′−(x) = ϕ′+(x) except a finite number of
points in (a, b).

The image of the curve is then defined as

〈ϕ〉 = ϕ([a, b]) = {ϕ(t); t ∈ [a, b]}.

Definition 2.6.8. Consider a piecewise continuously differentiable function ϕ :
[a, b] → Rm and a system of m matrix functions B1, . . . , Bm : 〈ϕ〉 → Rn×n. The
contour product integral of these functions along ϕ is defined as

∏

ϕ

(I+B1 dx1+· · ·+Bm dxm) =
b∏

a

(I+(B1(ϕ(t))ϕ′1(t) + · · ·+Bm(ϕ(t))ϕ′m(t)) dt).
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Given an arbitrary curve ϕ : [a, b]→ Rm, we define the curve −ϕ as

(−ϕ)(t) = ϕ(−t), t ∈ [−b,−a].

This curve has the same image as the original curve, but is traversed in the opposite
direction.
For any pair of curves ϕ1 : [a1, b1] → Rm, ϕ2 : [a2, b2] → Rm such that ϕ1(b1) =
ϕ2(a2) we define the composite curve ϕ1 + ϕ2 by

(ϕ1 + ϕ2)(t) =

{
ϕ1(t), t ∈ [a1, b1],
ϕ2(t− b1 + a2), t ∈ [b1, b1 + b2 − a2].

Theorem 2.6.9.1 Contour product integral has the following properties:

(1) If ϕ1 + ϕ2 is a curve obtained by joining two curves ϕ1 and ϕ2, then

∏

ϕ1+ϕ2

(I +B1 dx1 + · · ·+Bm dxm) =

=
∏

ϕ2

(I +B1 dx1 + · · ·+Bm dxm) ·
∏

ϕ1

(I +B1 dx1 + · · ·+Bm dxm).

(2) If −ϕ is a curve obtained by reversing the orientation of ϕ, then

∏

−ϕ
(I +B1 dx1 + · · ·+Bm dxm) =

(∏

ϕ

(I +B1 dx1 + · · ·+Bm dxm)

)−1

.

Proof. Let ϕ1 : [a1, b1]→ Rm, ϕ2 : [a2, b2]→ Rm. Then

∏

−ϕ
(I +B1 dx1 + · · ·+Bm dxm) =

b1+b2−a2∏

b1

(I + (B1(ϕ(t− b1 + a2))ϕ′1(t) + · · ·+Bm(ϕ(t− b1 + a2))ϕ′m(t)) dt)·

·
b1∏

a1

(I + (B1(ϕ(t))ϕ′1(t) + · · ·+Bm(ϕ(t))ϕ′m(t)) dt).

The change of variables Theorem 2.5.10 gives

b1+b2−a2∏

b1

(I + (B1(ϕ(t− b1 + a2))ϕ′1(t) + · · ·+Bm(ϕ(t− b1 + a2))ϕ′m(t)) dt) =

1 [VH], p. 91
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=
b2∏

a2

(I + (B1(ϕ(t))ϕ′1(t) + · · ·+Bm(ϕ(t))ϕ′m(t)) dt),

which proves the first statement. The second one is also a direct consequence of
Theorem 2.5.10. Note that the change of variables theorem was proved only for
continuously differentiable functions, while our contours are piecewise continuously
differentiable. It is however always possible to partition the integration interval in
such a way that the integrated functions are continuously differentiable on every
subinterval.

Definition 2.6.10. Let G be a subset of Rm and B1, . . . , Bm : G → Rn×n. The
contour product integral

∏
(I +B1 dx1 + · · ·+Bm dxm) is called path-independent

in G if

∏

ϕ

(I +B1 dx1 + · · ·+Bm dxm) =
∏

ψ

(I +B1 dx1 + · · ·+Bm dxm)

for each pair of curves ϕ,ψ : [a, b]→ G such that ϕ(a) = ψ(a) and ϕ(b) = ψ(b).

Using Theorem 2.6.9 it is easy to see that the contour product integral is path-
independent in G if and only if

∏

ϕ

(I +B1 dx1 + · · ·+Bm dxm) = I

for every closed curve ϕ in G.

As already mentioned, Volterra is concerned especially with curves in R2. His effort
is directed towards proving the following theorem:

Theorem 2.6.11.1 Let G be a simply connected domain in R2. Consider a pair
of functions A,B : G→ Rn×n such that ∆(A,B)x,y = 0 at every point of G. Then

∏

ϕ

(I +A dx+B dy) = I

for every piecewise continuously differentiable closed curve ϕ in G.

Although Volterra’s proof is somewhat incomplete, we try to indicate its main steps
in the rest of the section. Theorem 2.6.11 is of great importance for Volterra as
he uses it to prove an analogue of Cauchy theorem for product integral in complex
domain; this topic will be discussed in the next section.

Definition 2.6.12. A set S in R2 is called simple in the x-direction, if the set
S ∩ {(x, y0); x ∈ R} is connected for every y0 ∈ R. Similarly, S is simple in the
y-direction, if the set S ∩ {(x0, y); y ∈ R} is connected for every x0 ∈ R.

1 [VH], p. 95
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Equivalently said, the intersection of S and a line parallel to the x-axis (or the
y-axis) is either an interval (possibly degenerated to a single point), or an empty
set.

Definition 2.6.13. Let F be a closed bounded subset of R2 that is simple in the
x-direction. For every y ∈ R denote

πF = {y ∈ R; there exists x ∈ R such that (x, y) ∈ G}. (2.6.3)

Further, for every y ∈ πF let

xA(y) = inf{x; (x, y) ∈ F}, xB(y) = sup{x; (x, y) ∈ F}.

The meaning of these symbols is illustrated by the following figure. Note that the
segment [xA(y), xB(y)] × {y} is contained in F for every y ∈ πF , i.e. the set F is
enclosed between the graphs of the functions y 7→ xA(y) and y 7→ xB(y), y ∈ πF .

(x, y)

xA(y) xB(y)

F

x

y

πF

Definition 2.6.14. Let F be a closed bounded subset of R2 that is simple in the
x-direction. The double product integral of a continuous function A : F → Rn×n

is defined as

∏

F

(I +A(x, y) dx dy) =
supπF∏

inf πF

(
I +

(∫ xB(y)

xA(y)
A(x, y) dx

)
dy

)
.

Before proceeding to the next theorem we recall that a Jordan curve is a closed
curve with no self-intersections. Formally written, it is a curve with parametrization
ϕ : [a, b]→ R2 that is injective on [a, b) and ϕ(a) = ϕ(b). It is known that a Jordan
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curve divides the plane in two components – the interior and the exterior of ϕ. In
the following text we denote the interior of ϕ by Intϕ.

Theorem 2.6.15.1 Consider a piecewise continuously differentiable Jordan curve
ϕ : [a, b]→ R2 such that the set F = 〈ϕ〉∪Intϕ is simple in the x-direction. Assume
that ϕ starts at a point C = (cx, cy) such that cy = inf πF and cx = xA(cy). Denote

S(x, y) =
x∏

xA(y)

(I +X(t, y) dt)
(xA(y),y)∏

C

(I +X dx+ Y dy),

where the second integral is taken over that part of ϕ that joins the points C and
(xA(y), y) (see the figure below).

(x, y)(xA(y), y)

C

ϕ

Let G be an open neighbourhood of the set F . Then the equation

∏

ϕ

(I +X dx+ Y dy) =
∏

F

(I + S−1∆(X,Y )x,yS dx dy)

holds for each pair of continuously differentiable functions X,Y : G→ Rn×n.

Theorem 2.6.15 might be regarded as an analogy of Green’s theorem, since it pro-
vides a relationship between the double product integral over F and the contour
product integral over the boundary of F . The proof in [VH] is somewhat obscure
(mainly because of Volterra’s calculations with infinitesimal quantities) and will
not be reproduced here. A statement similar to Theorem 2.6.15 will be proved in
Chapter 3, Theorem 3.7.4.

Theorem 2.6.16.2 Consider a piecewise continuously differentiable Jordan curve
ϕ : [a, b] → R2 such that the set F = 〈ϕ〉 ∪ Intϕ is simple in the x-direction.
Let G be an open neighbourhood of the set F . If A,B : G → Rn×n is a pair of
continuously differentiable functions such that ∆(A,B)x,y = 0 at every point of G,
then ∏

ϕ

(I +Adx+B dy) = I.

1 [VH], p. 92–94
2 [VH], p. 95
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Proof. Let C = (cx, cy) be the point such that cy = inf πF and cx = xA(cy). If A
is the starting point of ϕ, we may write ϕ = ϕ1 + ϕ2, where ϕ1 is the part of the
curve between the points A, C and ϕ2 is the part between C, A provided we travel
along ϕ in direction of its orientation.

C

A

ϕ1

ϕ2

Theorem 2.6.15 gives ∏

ϕ2+ϕ1

(I +Adx+B dy) = I,

and consequently

∏

ϕ

(I +Adx+B dy) =
∏

ϕ1+ϕ2

(I +Adx+B dy) =

=
∏

ϕ2

(I +A dx+B dy)
∏

ϕ2+ϕ1

(I +A dx+B dy)

(∏

ϕ2

(I +Adx+B dy)

)−1

= I.

Remark 2.6.17. In case the set G in statement of the last theorem is simple both
in the x direction and in the y direction, there is a simpler alternative proof of
Theorem 2.6.16. It is based on Theorem 2.6.5, which we proved for G = R2, but
the proof is exactly the same also for sets G which are simple in x as well as in y
direction. Consequently, the assumption ∆(A,B)x,y = 0 and Theorem 2.6.5 imply
the existence of a function T : G→ R2 such that

A(x, y) =
d

dx
T (x, y), B(x, y) =

d
dy

T (x, y)

for every (x, y) ∈ G. Thus for arbitrary closed curve ϕ : [a, b]→ G we have

∏

ϕ

(I +Adx+B dy) =
∏

ϕ

(
I +

d
dx

T dx+
d
dy

T dy

)
=

=
b∏

a

(
I +

(
∂T

∂x
(ϕ(t))T (ϕ(t))−1ϕ′1(t) +

∂T

∂y
(ϕ(t))T (ϕ(t))−1ϕ′2(t)

)
dt

)
=
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=
b∏

a

(
I +

d
dt

(T ◦ ϕ)(t) dt

)
= T (ϕ(b))T (ϕ(a))−1 = I.

Both the statement and its proof is easily generalized to the case of curves in Rm,
m > 2.

Volterra now comes to the justification of Theorem 2.6.12: Let G be a simply
connected domain in R2 and A,B : G→ Rn×n such that ∆(A,B)x,y = 0 at every
point of G. We have to verify that

∏

ϕ

(I +A dx+B dy) = I (2.6.4)

for every piecewise continuously differentiable closed curve ϕ in G. Theorem 2.6.16
ensures that the statement is true, if the set F = 〈ϕ〉 ∪ Intϕ is simple in the x-
direction. Volterra first notes that it remains true, if F can be split by a curve in
two parts each of which is simple in the x-direction.

ϕ2d

ϕ2c

ϕ2b ϕ1c

ϕ1b

ϕ1a

ϕ1dϕ2a

T

S

Indeed, using the notation from the above figure, if ϕ1 = ϕ1a+ϕ1b+ϕ1c+ϕ1d and
ϕ2 = ϕ2a + ϕ2b + ϕ2c + ϕ2d, then

∏

ϕ1

(I +Adx+B dy) = I,
∏

ϕ2

(I +Adx+B dy) = I,

and thus
∏

ϕ1+ϕ2

(I +Adx+B dy) =
∏

ϕ2

(I +A dx+B dy) ·
∏

ϕ1

(I +A dx+B dy) = I.

Now if S denotes the initial point of ϕ, then

∏

ϕ

(I +Adx+B dy) =

=
T∏

S

(I +A dx+B dy) ·
∏

ϕ1+ϕ2

(I +Adx+B dy) ·
S∏

T

(I +Adx+B dy) = I,
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where
∏T
S denotes the contour product integral taken along the part of ϕ that

connects the points S, T , and
∏S
T is taken along the same curve with reversed

orientation (it is thus the inverse matrix of
∏T
S ).

By induction it follows that (2.6.4) holds if the set F = 〈ϕ〉 ∪ Intϕ can be decom-
posed into a finite number of subsets which are simple in the x-direction. Volterra
now states that this is possible for every curve ϕ in consideration, and so Theorem
2.6.12 is proved. He however gave no justification of the last statement, so his proof
remains incomplete.

2.7 Product integration in complex domain

So far we have been concerned with real matrix functions defined on a real interval,
i.e. with functions A : [a, b] → Rn×n. Most of our results can be, without greater
effort, generalized to complex-valued matrix functions, i.e. to functions A : [a, b]→
Cn×n. However, in the following two sections, we will focus our interest to matrix
functions of a complex variable, i.e. A : G → Cn×n, where G is a subset of the
complex plane.
A matrix function A = {ajk}nj,k=1 will be called differentiable at a point z ∈ C, if
its entries ajk are differentiable at that point. We will use the notation

A′(z) = {a′jk(z)}nj,k=1.

The function A is called holomorphic in an open domain G ⊆ C, if it is differentiable
everywhere in G.

Definition 2.7.1. The left derivative of a complex matrix function A at a point
z ∈ C is defined as

d
dz
A = A′(z)A−1(z),

provided that A is differentiable and regular at the point z.

Each matrix function A of a complex variable z might be interpreted as a function
of two real variables x, y, where z = x+ iy. The Cauchy-Riemann equation states
that

A′(z) =
∂A

∂x
(x+ iy) =

1
i

∂A

∂y
(x+ iy),

thus the left derivative satisfies

d
dz
A =

d
dx
A =

1
i

d
dy
A,

provided all the derivatives exist.
We now proceed to the definition of product integral along a contour in the complex
domain. We again restrict ourselves to contours with a piecewise continuously
differentiable parametrization ϕ : [a, b] → C, i.e. ϕ′−(x) exists for all x ∈ (a, b],
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ϕ′+(x) exists for all x ∈ [a, b), and ϕ′−(x) = ϕ′+(x) except a finite number of points
in (a, b).

Definition 2.7.2. Let ϕ : [a, b]→ C be a piecewise continuously differentiable con-
tour in the complex plane and A a matrix function which is defined and continuous
on 〈ϕ〉. The left product integral along ϕ is defined as

∏

ϕ

(I +A(z) dz) =
b∏

a

(I +A(ϕ(t))ϕ′(t) dt). (2.7.1)

As Volterra remarks, the left contour product integral is equal to the limit

lim
ν(D)→0

P (A,D),

where D is a tagged partition of [a, b] with division points ti, tags ξi ∈ [ti−1, ti] and

P (A,D) =
1∏

i=m

(I +A(ϕ(ξi))(ϕ(ti)− ϕ(ti−1))) . (2.7.2)

Instead of our
∏
ϕ(I +A(z) dz) he uses the notation

∫
ϕ
A(z) dz.

The product integral
∏
ϕ(I+A(z) dz) can be converted to a contour product integral

taken along a contour ϕ̃ in R2 with the parametrization

ϕ̃(t) = (Re ϕ(t), Im ϕ(t)), t ∈ [a, b].

Indeed, define A1(x, y) = A(x+ iy) and A2(x, y) = iA(x+ iy). Then

∏

ϕ

(I +A(z) dz) =
b∏

a

(I +A(ϕ(t))ϕ′(t) dt) =

b∏

a

(I + (A1(ϕ(t))Re ϕ′(t) +A2(ϕ(t))Im ϕ′(t)) dt),

thus ∏

ϕ

(I +A(z) dz) =
∏

ϕ̃

(I +A(x+ iy) dx+ iA(x+ iy) dy). (2.7.3)

The following theorem is an analogy of Theorem 2.6.9. It can be proved directly in
the same way as Theorem 2.6.9, or alternatively by using the relation (2.7.3) and
applying Theorem 2.6.9.

Theorem 2.7.3.1 The left contour product integral has the following properties:

1 [VH], p. 107
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(1) If ϕ1 + ϕ2 is a curve obtained by joining two curves ϕ1 and ϕ2, then

∏

ϕ1+ϕ2

(I +A(z) dz) =
∏

ϕ2

(I +A(z) dz) ·
∏

ϕ1

(I +A(z) dz).

(2) If −ϕ is a curve obtained by reversing the orientation of ϕ, then

∏

−ϕ
(I +A(z) dz) =

(∏

ϕ

(I +A(z) dz)

)−1

.

Our interest in product integral of a matrix function A : [a, b] → Rn×n stems
from the fact that it provides a solution of the differential equation (or a system of
equations)

y′(x) = A(x)y(x),

where y : [a, b] → Rn. The situation is similar in the complex domain: Since
the contour product integral is a limit of the products (2.7.2), we expect that the
solution of the differential equation

y′(z) = A(z)y(z)

that satisfies y(z0) = y0 will be given by

y(z) =

(∏

ϕ

(I +A(w) dw)

)
y0,

where ϕ : [a, b] → C is a contour connecting the points z0 and z. However, this
definition of y is correct only if the product integral is independent on the choice
of a particular contour, i.e. if

∏

ϕ

(I +A(z) dz) =
∏

ψ

(I +A(z) dz),

whenever ϕ and ψ are two curves with the same initial points and the same end-
points. From Theorem 2.7.3 we see that

∏
ϕ+(−ψ)(I + A(z) dz) should be the

identity matrix. Equivalently said,

∏

ϕ

(I +A(z) dz) = I

should hold for every closed contour ϕ.
Volterra proves that the last condition is satisfied in every simply connected do-
main G provided that the function A is holomorphic in G. He first uses the formula
(2.7.3) to convert the integral in complex domain to an integral in R2. Then, since

∆(A, iA)x,y =
∂iA

∂x
− ∂A

∂y
+ iAA−AiA = 0,
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Theorem 2.6.11 implies that the contour product integral along any closed curve
in G is equal to the identity matrix. Because we didn’t prove Theorem 2.6.11, we
offer a different justification taken over from [DF].

Theorem 2.7.4.1 If G ⊆ C is a simply connected domain and A : G → Cn×n

a holomorphic function in G, then the contour product integral of A is path-
independent in G.

Proof. Let ϕ : [a, b] → G be a curve in G. We expand the product integral of A
along ϕ to the Peano series

∏

ϕ

(I +A(z) dz) =
b∏

a

(I +A(ϕ(t))ϕ′(t) dt) =

= I +
∫ b

a

A(ϕ(t))ϕ′(t) dt+
∫ b

a

∫ t2

a

A(t2)A(t1)ϕ′(t2)ϕ′(t1) dt1 dt2 + · · ·

This infinite series might be written as

∏

ϕ

(I +A(z) dz) = I +
∫ ϕ(b)

ϕ(a)
A(z) dz +

∫ ϕ(b)

ϕ(a)

∫ z2

ϕ(a)
A(z2)A(z1) dz1 dz2 + · · ·

where the contour integrals are all taken along ϕ (or its initial segment). However,
since ordinary contour integrals of holomorphic functions are path-independent
in G, the sum of the infinite series depends only on the endpoints of ϕ.

In case the product integral is path-independent in a given domain G, we will
occasionally use the symbol

z2∏

z1

(I +A(z) dz)

to denote product integral taken along an arbitrary curve in G with initial point z1

and endpoint z2.
Volterra now claims that if G is a simply connected domain and A is a holomorphic
matrix function in G, then the function

Y (z) =
z∏

z0

(I +A(w) dw)

provides a solution of the differential equation Y ′(z) = A(z)Y (z) in G.

Theorem 2.7.5. If G ⊆ C is a simply connected domain and A : G → Cn×n a
holomorphic function in G, then the function

Y (z) =

(
z∏

z0

(I +A(w) dw)

)

1 [DF], p. 62–63
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satisfies Y ′(z) = A(z)Y (z) in G.

Proof. The statement is obtained by differentiating the series

z∏

z0

(I +A(w) dw) = I +
∫ z

z0

A(w) dw +
∫ z

z0

∫ w2

z0

A(w2)A(w1) dw1 dw2 + · · ·

with respect to z.

Corollary 2.7.6. Let G ⊆ C be a simply connected domain and A : G → Cn×n

a holomorphic function. If z0 ∈ G and y0 ∈ Cn, then the function y : G → Cn

defined by

y(z) =

(
z∏

z0

(I +A(w) dw)

)
y0

satisfies y′(z) = A(z)y(z) in G and y(z0) = y0.

Theorem 2.7.7.1 Let G ⊆ C be a domain and A : G → Cn×n a holomorphic
matrix function in G. If ϕ1, ϕ2 : [a, b] → G are two positively oriented Jordan
curves such that ϕ1 ⊂ Intϕ2 and Intϕ2\ Intϕ1 ⊂ G, then

∏

ϕ1

(I +A(z) dz) and
∏

ϕ2

(I +A(z) dz)

are similar matrices.

Proof. We introduce two disjoint auxiliary segments ψ1, ψ2 that connect the curves
ϕ1, ϕ2 (see the figure).

ψ1

ϕ1b

ϕ2b

ψ2
ϕ2a

ϕ1a ϕ1 = ϕ1a + ϕ1b,

ϕ2 = ϕ2a + ϕ2b

Theorem 2.7.4 gives

∏

ϕ2a

(I +A(z) dz) ·
∏

ψ1

(I +A(z) dz) ·
(∏

ϕ1a

(I +A(z) dz)

)−1

=

(∏

ψ2

(I +A(z) dz)

)−1

1 [VH], p. 114–116
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and

(∏

ϕ1b

(I+A(z) dz)

)−1

·
(∏

ψ1

(I+A(z) dz)

)−1

·
∏

ϕ2b

(I+A(z) dz) =
∏

ψ2

(I+A(z) dz).

Multiplying the first equality by the second from left yields

(∏

ϕ1b

(I +A(z) dz)

)−1

·
(∏

ψ1

(I +A(z) dz)

)−1

·
∏

ϕ2b

(I +A(z) dz) ·
∏

ϕ2a

(I +A(z) dz)·

·
∏

ψ1

(I +A(z) dz) ·
(∏

ϕ1a

(I +A(z) dz)

)−1

= I,

which can be simplified to

(∏

ψ1

(I+A(z) dz)

)−1

·
∏

ϕ2

(I+A(z) dz)·
∏

ψ1

(I+A(z) dz) =
∏

ϕ1

(I+A(z) dz). (2.7.4)

Remark 2.7.8. Volterra offers a slightly different proof of the previous theorem:
From Theorem 2.7.4 he deduces that

(∏

ϕ2

(I+A(z) dz)

)−1

·
(∏

ψ1

(I+A(z) dz)

)−1

·
∏

ϕ2

(I+A(z) dz)
∏

ψ1

(I+A(z) dz) = I,

which implies (2.7.4). This argument is however incorrect, because the domain
bounded by ψ1 + ϕ2 − ψ1 − ϕ2 need not be simply connected.

Definition 2.7.9. Let R > 0, G = {z ∈ C; 0 < |z − z0| < R}. Suppose A : G →
Cn×n is holomorphic in G. Let ϕ : [a, b]→ G be a positively oriented Jordan curve,
z0 ∈ Intϕ. Then ∏

ϕ

(I +A(z) dz) = CJC−1,

where J is certain Jordan matrix, which is, according to Theorem 2.7.7, independent
on the choice of ϕ. This Jordan matrix is called the residue of A at the point z0.

Example 2.7.10.1 We calculate the residue of a matrix function

T (z) =
A

z − z0
+B(z)

1 [VH], p. 117–120
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at the point z0, where A ∈ Cn×n and B is a matrix function holomorphic in the
neighbourhood U(z0, R) of point z0. We take the product integral along the circle
ϕr(t) = z0 + reit, t ∈ [0, 2π], r < R and obtain

∏

ϕr

(I + T (z) dz) =
2π∏

0

(I + iA+ ireitB(z0 + reit) dt).

Volterra suggests the following procedure (which is however not fully correct, see
Remark 2.7.11): Since iA+ ireitB(z0 + reit)→ iA for r → 0, we have

∏

ϕr

(I + T (z) dz)→
2π∏

0

(I + iA dt).

The integrals
∏
ϕr

(I+T (z) dz), r ∈ (0, R), are all similar to a single Jordan matrix.

Their limit
∏2π

0 (I + iAdt) is thus similar to the same matrix and it is sufficient to
find its Jordan normal form. By the way, this integral is equal to e2πiA, giving an
analogy of the residue theorem:

The matrix
∏

ϕr

(I + T (z) dz) is similar to e2πiA. (2.7.5)

Consider the Jordan normal form of A:

A = C−1




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ak


C, where Aj =




λj 0 · · · 0 0
1 λj · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λj


 .

Using the result of Example 2.5.8 we obtain

2π∏

0

(I + iA dt)= C−1




S1(2π) 0 · · · 0
0 S2(2π) · · · 0
...

...
. . .

...
0 0 · · · Sk(2π)


 ·

·


C
−1




S1(0) 0 · · · 0
0 S2(0) · · · 0
...

...
. . .

...
0 0 · · · Sk(0)







−1

= C−1




S1(2π) 0 · · · 0
0 S2(2π) · · · 0
...

...
. . .

...
0 0 · · · Sk(2π)


C,

where

Sj(x) =




eiλjx 0 0 · · · 0 0
x1

1! e
iλjx eiλjx 0 · · · 0 0

x2

2! e
iλjx x1

1! e
iλjx eiλjx · · · 0 0

...
...

. . .
...

...



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is a square matrix of the same dimensions as Aj . The Jordan normal form of the
matrix 



S1(2π) 0 · · · 0
0 S2(2π) · · · 0
...

...
. . .

...
0 0 · · · Sk(2π)


 ,

and therefore also the demanded residue, is




V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · Vk


, where Vj =




e2πiλj 0 · · · 0 0
1 e2πiλj · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 e2πiλj




is a square matrix of the same dimensions as Sj .

Remark 2.7.11. The calculation from the previous example contains two defi-
ciencies: First, Volterra interchanges the order of limit and product integral to
obtain

lim
r→0

2π∏

0

(I + iA+ ireitB(z0 + reit) dt) =
2π∏

0

(I + iA dt)

without any further comment. However, the convergence iA+ireitB(z0+reit)→ iA
for r → 0 is uniform and in this case, as we will prove in Chapter 5, Theorem 5.6.4,
the statement is in fact true.
The second deficiency is more serious. Volterra seems to have assumed that if some
matrices S(r), r ∈ (0, R) (in our case S(r) is the product integral taken along ϕr),
are all similar to a single Jordan matrix J , then limr→0 S(r) is also similar to J .
This statement is incorrect, as demonstrated by the example

S(r) =

(
1 0
r 1

)
,

where S(r) is similar to (
1 0
1 1

)

for r > 0, but

lim
r→0

S(r) =

(
1 0
0 1

)

isn’t. The mentioned statement can be proved only under additional assumptions
on S(r). For example, if the matrices S(r), r > 0, have n distinct eigenvalues
λ1, . . . , λn, then the limit matrix limr→0 S(r) has the same eigenvalues, because

det(S(0)− λI) = lim
r→0

det(S(r)− λI) = (λ− λ1) · · · (λ− λn).
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This means that all the matrices S(r), r ≥ 0, are similar to a single Jordan matrix




λ1 0 · · · 0 0
0 λ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 λn




A more detailed discussion of the residue theorem for product integral can be found
in the book [DF]; for example, if the set

σ(A)− σ(A) = {λ1 − λ2; λ1 and λ2 are eigenvalues of matrix A}

doesn’t contain any positive integers, then the statement (2.7.5) is shown to be
true.

2.8 Linear differential equations at a singular point

In this section we assume that the reader is familiar with the basics of the theory
of analytic functions (see e.g. [EH] or [VJ]). We are interested in studying the
differential equation

Y ′(z) = A(z)Y (z), (2.8.1)

where the function A is holomorphic in the ring P (z0, R) = {z ∈ C; 0 < |z − z0| <
R} and R > 0. If we choose z1 ∈ P (z0, R) and denote r = min(|z1−z0|, R−|z1−z0|),
then the function

Y1(z) =
z∏

z1

(I +A(w) dw)

provides a solution of (2.8.1) in B(z1, r) = {z ∈ C; |z − z1| < r}; the product inte-
gral is path-independent, because A is holomorphic in U(z1, r). The holomorphic
function Y1 can be continued along an arbitrary curve ϕ v P (z0, R); this procedure
leads to a (multiple-valued) analytic function Y, which will be denoted by

Y(z) =
z∏

z1

(I +A(w) dw), z ∈ P (z0, R).

If the element (z1, Y1) ∈ Y is continued along a curve ϕ in P (z0, R) to an element

(z2, Y2) ∈ Y (we write this as (z1, Y1)
ϕ→(z2, Y2)), then (using Y1(z1) = I)

Y2(z2) =
∏

ϕ

(I +A(w) dw) · Y1(z1) =
∏

ϕ

(I +A(w) dw).

Let ϕ be the circle with center z0 which passes through the point z1, i.e.

ϕ(t) = z0 + (z1 − z0) exp(it), t ∈ [0, 2π].

59



If (z1, Y2) ∈ Y is the element such that (z1, Y1)
ϕ→(z1, Y2), then

d
dz
Y1 =

d
dz
Y2 = A(z)

for z ∈ B(z1, r). Consequently, there is a matrix C ∈ Cn×n such that Y2(z) =
Y1(z) · C. Substituting z = z1 gives

C =
∏

ϕ

(I +A(w) dw).

Volterra refers1 to the point z0 as point de ramification abélien of the analytic
function Y; this means that it is the branch point of Y, but not of its derivative A,
which is a single-valued function. Volterra proceeds to prove that Y can be written
in the form

Y = S1 · S2,

where S1 is single-valued in P (z0, R) and S2 is an analytic function that is uniquely
determined by the matrix C =

∏
ϕ(I +A(w) dw).

Here is the proof2: We write C = M−1TM , where T is a Jordan matrix. Then

T =




T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...
0 0 · · · Tk


, kde Tj =




e2πiλj 0 · · · 0 0
1 e2πiλj · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 e2πiλj


,

where we have expressed the eigenvalues of T in the form exp(2πiλj); this is cer-
tainly possible as the matrices C and consequently also T are regular, and thus
have nonzero eigenvalues. We now define the analytic function

V(z) =
z∏

z1

(
I +

U

w − z0
dw

)
, z ∈ P (z0, R),

where

U =




U1 0 · · · 0
0 U2 · · · 0
...

...
. . .

...
0 0 · · · Uk


 and Uj =




λj 0 · · · 0 0
1 λj · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λj




and Uj has the same dimensions as Tj for j ∈ {1, . . . , k}. Consider a function
element (z1, V1) of V; what happens if we continue it along the circle ϕ? As in the
case of function Y we obtain the result

(z1, V1)
ϕ→(z1, V1 ·D),

1 [VH], p. 121
2 [VH], p. 122–124
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where

D =
∏

ϕ

(
I +

U

w − z0
dw

)
=

2π∏

0

(I + iU dw).

In Example 2.7.10 we have calculated the result

D = S(2π) · S(0)−1 = S(2π) =




S1(2π) 0 · · · 0
0 S2(2π) · · · 0
...

...
. . .

...
0 0 · · · Sk(2π)


,

where

Sj(x) =




eiλjx 0 0 · · · 0 0
x1

1! e
iλjx eiλjx 0 · · · 0 0

x2

2! e
iλjx x1

1! e
iλjx eiλjx · · · 0 0

...
...

. . .
...

...


.

The matrix D is similar to the Jordan matrix T ; thus

D = N−1TN,

and consequently

(z1, V1)
ϕ→(z1, V1N

−1TN),

(z1, Y1)
ϕ→(z1, Y1M

−1TM).

We now consider the analytic function

S1(z) = Y(z)M−1NV(z)−1

and continue its element along ϕ:

(z1, Y1M
−1NV −1

1 )
ϕ→(z1, Y1M

−1TMM−1N(V1N
−1TN)−1) = (z1, Y1M

−1NV −1
1 ).

Thus the analytic function S1 is in fact single-valued in P (z0, R). The proof is
finished by putting

S2(z) = V(z)N−1M.

Consequently
Y = S1 · S2

and S2 is uniquely determined by the matrix C.

We now briefly turn our attention to the analytic function V. Assume that

(z1, V1)
ψ→(z, V2),
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where ψ : [a, b]→ P (z0, R), ψ(a) = z1, ψ(b) = z. It is known from complex analysis
that given the curve ϕ, we can find a function a function g : [a, b]→ C such that

exp(g(t)) = ψ(t)− z0,

for every t ∈ [a, b]; g is a continuous branch of logarithm of the function ψ − z0.
For convenience we will use the notation

g(t) = log(ψ(t)− z0)

with the understanding that g is defined as above. We also have

g′(t) =
ψ′(t)

ψ(t)− z0

for every t ∈ [a, b]. We now calculate

V2(z) =
∏

ψ

(
I +

U

z − z0
dz

)
=

b∏

a

(
I +

U

ψ(t)− z0
ψ′(t) dt

)
.

Substituting v = g(t) gives

V2(z) =
g(b)∏

g(a)

(I + U dv) = S(g(b))S(g(a))−1,

where

S(z) =




S1(z) 0 · · · 0
0 S2(z) · · · 0
...

...
. . .

...
0 0 · · · Sk(z)




is a block diagonal matrix composed of the matrices

Sj(z) =




eλjz 0 0 · · · 0 0
z1

1! e
λjz eλjz 0 · · · 0 0

z2

2! e
λjz z1

1! e
λjz eλjz · · · 0 0

...
...

. . .
...

...


 .

Consequently, the solution of Equation (2.8.1), i.e. the analytic function Y, can be
expressed as

Y(z) = S1(z)S2(z) = S1(z)S(g(b))S(g(a))−1N−1M, (2.8.2)

where
S(g(b)) = S(log(z − z0)),
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Sj(log(z − z0)) =

=




(z − z0)λj 0 0 · · · 0 0
(z − z0)λj log(z − z0) (z − z0)λj 0 · · · 0 0

(z − z0)λj log2(z−z0)
2! (z − z0)λj log(z − z0) (z − z0)λj · · · 0 0

...
...

. . .
...

...


 .

The above result can be applied to obtain the general form of solution of the
differential equation

y(n)(z) + p1(z)y(n−1)(z) + · · ·+ pn(z)y(z) = 0, (2.8.3)

where the functions pi are holomorphic in P (z0, R). We have seen that this equation
of the n-th order is easily converted to a system of linear differential equations of
first order, which can be written in the vector form as

y′(z) = A(z)y(z),

where A is a holomorphic matrix function in P (z0, R). The fundamental matrix of
this system is given by (2.8.2); the first row of this matrix then yields the funda-
mental system of solutions (composed of n analytic functions) of Equation (2.8.3).
From the form of Equation (2.8.2) we infer that every solution of Equation (2.8.3)
can be expressed as a linear combination of analytic functions of the form

(z − z0)λj
(
ϕj0(z) + ϕj1(z) log(z − z0) + · · ·+ ϕjnj (z) lognj (z − z0)

)
,

where ϕjk are holomorphic functions in P (z0, R).

Thus we see that Volterra was able to obtain the result of Lazarus Fuchs (see
Chapter 1) using the theory of product integration. The next chapters of Volterra’s
book [VH] are concerned with the study of analytic functions on Riemann surfaces;
the topic is rather special and we don’t follow Volterra’s treatment here.
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