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CERTAIN SUBCLASS OF ALPHA-CONVEX BI-UNIVALENT
FUNCTIONS DEFINED USING q-DERIVATIVE OPERATOR

Gagandeep Singh and Gurcharanjit Singh

Abstract. The present investigation deals with a new subclass of alpha-convex
bi-univalent functions in the unit disc E = {z : | z |< 1} defined with q-derivative
operator. Bounds for the first two coefficients and Fekete-Szegö inequality are
established for this class. Many known results follow as consequences of the
results derived here.

1. Introduction

Let us consider the analytic functions f which have the expansion of the form

(1) f(z) = z +
∞∑
k=2

akz
k ,

in the unit disc E = {z : |z| < 1} and normalized by f(0) = f ′(0)−1 = 0. The class
of these functions is denoted by A. Further, the class of functions f ∈ A and which
are univalent in E, is denoted by S. The functions of the form u(z) =

∑∞
k=1 ckz

k,
which are analytic in the unit disc E and satisfy the conditions u(0) = 0 and
|u(z)| < 1, are called Schwarz functions and the class of these functions is denoted
by U .

The classes S∗ of starlike functions and K of convex functions are defined as
follows:

S∗ =
{
f : f ∈ A, Re

(zf ′(z)
f(z)

)
> 0, z ∈ E

}
and

K =
{
f : f ∈ A, Re

( (zf ′(z))′

f ′(z)

)
> 0, z ∈ E

}
.

For 0 ≤ α ≤ 1, Mocanu [17] introduced the class M(α), which is a unification
of the classes S∗ and K and is defined as

M(α) =
{
f : f ∈ A, Re

(
(1− α)zf

′(z)
f(z) + α

(zf ′(z))′

f ′(z)

)
> 0, z ∈ E

}
.
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The functions in the classM(α) are known as alpha-convex functions. In particular,
M(0) ≡ S∗ and M(1) ≡ K.

If f and g are two analytic functions in E, then f is said to be subordinate
to g (denoted as f ≺ g) if there exists a Schwarz function u ∈ U such that
f(z) = g(u(z)). By making use of a subordination theorem for analytic functions,
many authors derived several subordination relationships between certain sub-
classes of analytic functions, for example, see [8, 16, 28]. Further, if g is univalent
in E, then f ≺ g implies f(0) = g(0) and f(E) ⊂ g(E). For −1 ≤ B < A ≤ 1 and
0 ≤ η < 1, Polatoglu et al. [19] defined the class P(A,B; η) which consists of the

functions p(z) such that p(z) ≺ 1 + [B + (A−B)(1− η)]z
1 +Bz

. For η = 0, the class
P(A,B; η) reduces to P(A,B), which is a subclass of A introduced by Janowski [12].

Quantum calculus is ordinary classical calculus which introduces q-calculus,
where q stands for quantum. Nowadays, q-calculus has attracted many researchers as
it is widely useful in various branches of Mathematics and Physics. The application
of q-calculus was initiated by Jackson [10, 11] and he developed q-integral and
q-derivative in a systematic way. For 0 < q < 1, Jackson [10] defined the q-derivative
of a function f ∈ A as

(2) Dqf(z) =
{
f(z)−f(qz)

(1−q)z for z 6= 0 ,
f ′(0) for z = 0 ,

where D2
qf(z) = Dq(Dqf(z)).

From (2), it is obvious that

Dqf(z) = 1 +
∞∑
k=2

[k]qakzk−1 ,

where [k]q = 1−qk
1−q = 1 + q + q2 + · · · + qk−1. If q → 1−, then [k]q → k. Further

Dqz
k = [k]qzk−1 and limq→1− Dqf(z) = f ′(z).

Using q-derivative operator, Seoudy and Aouf [21] defined the subclasses of
q-starlike and q-convex functions of order α(0 ≤ α < 1) as follows:

S∗q (α) =
{
f : f ∈ A, Re

(zDqf(z)
f(z)

)
> α, z ∈ E

}
and

Kq(α) =
{
f : f ∈ A, Re

(Dq(zDqf(z))
Dqf(z)

)
> α, z ∈ E

}
.

It is obvious that f ∈ Kq(α) if and only if f ∈ S∗q (α). For q → 1− and α = 0, the
classes S∗q (α) and Kq(α) reduces to the classes S∗ and K, respectively.
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By Koebe one-quarter theorem [7], every function f ∈ S has an inverse f−1,
defined by

f−1(f(z)) = z(z ∈ E)
and

f(f−1(w)) = w
(
|w| < r0(f) : r0(f) ≥ 1

4

)
where
(3) f−1(w) = w − a2w

2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + . . .

A function f ∈ A for which both f and f−1 are univalent in E, is called
a bi-univalent function. The class of functions of the form (1) and which are

bi-univalent in E, is denoted by Σ. The functions z

1− z , − log(1−z), 1
2 log

(
1 + z

1− z

)
,

are some of the examples of the functions in the class Σ. The well known Koebe
function f(z) = z

(1− z)2 is not a member of the class Σ.

Lewin [13] was the first, who investigated the class Σ and proved that |a2| <
1.51. Subsequently, bounds for the initial coefficients of numerous sub-classes of
bi-univalent functions were studied by various authors in [3, 5, 9, 18, 22, 23, 24, 25,
26, 27]. Further several subclasses of bi-univalent functions defined with q-derivative
operator were studied by various authors including [1, 2, 6, 14, 15, 20, 29, 30].

Using the notion of q-derivative, now we define a subclass of alpha-convex
bi-univalent functions and establish the bounds of |a2|, |a3| and Fekete-Szegö in-
equality for this class.

Definition 1.1. A function f ∈ Σ is said to be in the class MΣq(A,B; η;α;λ) if
the following conditions are satisfied:

(1− λ)zDqf(z)
f(z) + λ

Dq(zDqf(z))
Dqf(z) ≺

(
1 + [B + (A−B)(1− η)]z

1 +Bz

)α
and

(1− λ)wDqg(w)
g(w) + λ

Dq(wDqg(w))
Dqg(w) ≺

(1 + [B + (A−B)(1− η)]w
1 +Bw

)α
,

where g(w) = f−1(w) as given in (3), −1 ≤ B < A ≤ 1, 0 ≤ λ ≤ 1, 0 < α ≤ 1 and
0 ≤ η < 1.
The following observations are obvious:

(i) MΣq(1− 2β,−1; 0; 1;λ) ≡ BΣq(β, λ).
(ii) MΣq(1,−1; 0;α;λ) ≡MΣq(α, λ).
(iii) For q → 1−, MΣq(1− 2β,−1; 0; 1;λ) ≡ BΣ(β, λ), the class studied by Li

and Wang [14].
(iv) For q → 1−, MΣq(1,−1; 0;α;λ) ≡MΣ(α, λ), the class introduced by Li

and Wang [14].
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(v) MΣq(1,−1; 0;α;λ) ≡ S∗Σq(α, λ).
(vi) MΣq(1− 2β,−1; 0; 1;λ) ≡ KΣq(β, λ).

Throughout this paper, we make the assumptions that 0 < α ≤ 1, 0 ≤ λ ≤ 1,
0 ≤ β < 1, 0 ≤ η < 1, −1 ≤ B < A ≤ 1, z ∈ E, w ∈ E and g(w) = f−1(w) as
given in (3).

For deriving the main results, we use the following lemma:

Lemma 1.1 ([4]). If p(z) = 1 + [B + (A−B)(1− η)]u(z)
1 +Bu(z) = 1 +

∑∞
k=1 pkz

k,

u(z) ∈ U , then

|pn| ≤ (A−B)(1− η) , n ≥ 1 .

2. The class MΣq(A,B; η;α;λ)

Theorem 2.1. If f ∈MΣq(A,B; η;α;λ), then

(4) |a2| ≤ √
2α2(A− B)(1− η)√

2α[([3]q − [2]q) + λ(−2[3]q + [3]2q + [2]q + [2]2q − [2]3q)] + (1− α)[([2]q − 1) + λ(1− 2[2]q + [2]2q)]2

and

(5) |a3| ≤
α(A−B)(1− η)

([3]q − 1) + λ(1− 2[3]q + [3]2q)
+ α2(A−B)2(1− η)2

[([2]q − 1) + λ(1− 2[2]q + [2]2q)]2
.

Proof. From Definition 1.1, using the concept of subordination, we have

(1− λ)zDqf(z)
f(z) + λ

Dq(zDqf(z))
Dqf(z)

=
(1 + [B + (A−B)(1− η)]u(z)

1 +Bu(z)

)α
= [p(z)]α, u ∈ U(6)

and

(1− λ)wDqg(w)
g(w) + λ

Dq(wDqg(w))
Dqg(w)

=
(1 + [B + (A−B)(1− η)]v(w)

1 +Bv(w)

)α
= [q(w)]α, v ∈ U ,(7)

where p(z) = 1 + p1z + p2z
2 + . . . and q(w) = 1 + q1w + q2w

2 + . . . .
Expanding and equating the coefficients of z and z2 in (6) and of w and w2 in (7),
we obtain

(8)
[
([2]q − 1) + λ(1− 2[2]q + [2]2q)

]
a2 = αp1 ,
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([3]q − 1) + λ(1− 2[3]q + [3]2q)

]
a3

+
[
(1− [2]q) + λ(−1 + [2]q + [2]2q − [2]3q)

]
a2

2 = αp2 + α(α− 1)p2
1

2(9)

and

(10) −
[
([2]q − 1) + λ(1− 2[2]q + [2]2q)

]
a2 = αq1 ,[

([3]q − 1) + λ(1− 2[3]q + [3]2q)
]
(2a2

2 − a3)

+
[
(1− [2]q) + λ(−1 + [2]q + [2]2q − [2]3q)

]
a2

2 = αq2 + α(α− 1)q2
1

2 .(11)

(8) and (10) together gives

(12) p1 = −q1

and

(13) 2
[
([2]q − 1) + λ(1− 2[2]q + [2]2q)

]2
a2

2 = α2(p2
1 + q2

1) .

Adding (9) and (11) and using (13), it yields

2α
[
([3]q − [2]q) + λ(−2[3]q + [3]2q + [2]q + [2]2q − [2]3q)

]
a2

2

= α2(p2 + q2) + (α− 1)
[
([2]q − 1) + λ(1− 2[2]q + [2]2q)

]2
a2

2 ,(14)

which gives

(15) a2
2 =

α2(p2 + q2)
2α[([3]q − [2]q) + λ(−2[3]q + [3]2q + [2]q + [2]2q − [2]3q)] + (1− α)[([2]q − 1) + λ(1− 2[2]q + [2]2q)]2

.

Taking modulus, applying triangle inequality and using Lemma 1.1 in (15), we
can easily obtain (4).
Now subtracting (11) from (9), we get

(16) 2
[
([3]q − 1) +λ(1− 2[3]q + [3]2q)

]
(a3− a2

2) = α(p2− q2) + α(α− 1)
2 (p2

1− q2
1) .

Using (12), (13) and (16), it gives

(17) a3 = α(p2 − q2)
2[([3]q − 1) + λ(1− 2[3]q + [3]2q)]

+ α2(p2
1 + q2

1)
2[([2]q − 1) + λ(1− 2[2]q + [2]2q)]2

.

Using (12) and (13) in (17), and applying triangle inequality, we obtain
(18)

|a3| ≤
α(|p2|+ |q2|)

2[([3]q − 1) + λ(1− 2[3]q + [3]2q)]
+ α2(2|p1|2)

2[([2]q − 1) + λ(1− 2[2]q + [2]2q)]2
.

Using Lemma 1.1, the result (5) can be easily obtained from (18). �

On putting A = 1− 2β, B = −1, η = 0, α = 1, Theorem 2.1 gives the following
result.
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Corollary 2.1. If f ∈ BΣq(β;λ), then

|a2| ≤
2
√

(1− β)√
2α[([3]q − [2]q) + λ(−2[3]q + [3]2q + [2]q + [2]2q − [2]3q)]

and

|a3| ≤
2(1− β)

([3]q − 1) + λ(1− 2[3]q + [3]2q)
+ 4(1− β)2

[([2]q − 1) + λ(1− 2[2]q + [2]2q)]2
.

For A = 1, B = −1, η = 0, Theorem 2.1 yields the following result.

Corollary 2.2. If f ∈MΣq(α;λ), then

|a2| ≤
2α√

2α[([3]q − [2]q) + λ(−2[3]q + [3]2q + [2]q + [2]2q − [2]3q)] + (1− α)[([2]q − 1) + λ(1− 2[2]q + [2]2q)]2

and

|a3| ≤
2α

([3]q − 1) + λ(1− 2[3]q + [3]2q)
+ 4α2

[([2]q − 1) + λ(1− 2[2]q + [2]2q)]2
.

For q → 1− and on putting A = 1, B = −1, η = 0, Theorem 2.1 agrees with the
following result due to Li and Wang [14].

Corollary 2.3. If f ∈MΣ(α;λ), then

|a2| ≤
2α√

(1 + λ)(α+ 1 + λ− αλ)

and

|a3| ≤
α

1 + 2λ + 4α2

(1 + λ)2 .

For q → 1− and on substituting A = 1− 2β,B = −1, η = 0, α = 1, Theorem 2.1
coincides with the following result due to Li and Wang [14].

Corollary 2.4. If f ∈ BΣ(β;λ), then

|a2| ≤
√

2(1− β)
1 + λ

and

|a3| ≤
1− β
1 + 2λ + 4(1− β)2

(1 + λ)2 .

On putting A = 1− 2β, B = −1, η = 0, α = 1, λ = 1, the following result can
be easily obtained from Theorem 2.1.
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Corollary 2.5. If f ∈ KΣq(β), then

|a2| ≤
2
√

(1− β)√
2α[−[3]q + [3]2q + [2]2q − [2]3q]

and

|a3| ≤
2(1− β)
−[3]q + [3]2q

+ 4(1− β)2

[−[2]q + [2]2q]2
.

On putting A = 1, B = −1, η = 0, λ = 0 in Theorem 2.1, the following result is
obvious.

Corollary 2.6. If f ∈ S∗Σq(α), then

|a2| ≤
2α√

2α([3]q − [2]q) + (1− α)([2]q − 1)2

and

|a3| ≤
2α

[3]q − 1 + 4α2

([2]q − 1)2 .

Theorem 2.2. If f ∈MΣq(A,B; η;α;λ), then

|a3 − µa2
2| ≤

{ α(1−η)(A−B)
([3]q−1)+λ(1−2[3]q+[3]2q)

, if 0 ≤ |l(µ)| < 1
2[([3]q−1)+λ(1−2[3]q+[3]2q)]

,

2α(1− η)(A−B)|l(µ)|, if |l(µ)| ≥ 1
2[([3]q−1)+λ(1−2[3]q+[3]2q)]

,

where

(19) l(µ) =
α(1− µ)

2α[([3]q − [2]q) + λ(−2[3]q + [3]2q + [2]q + [2]2q − [2]3q)] + (1− α)[([2]q − 1) + λ(1− 2[2]q + [2]2q)]2
.

Proof. Using (13) in (17), we have

(20) a3 = α(p2 − q2)
2[([3]q − 1) + λ(1− 2[3]q + [3]2q)]

+ a2
2 .

Making use of (20), it yields

(21) a3 − µa2
2 = α(p2 − q2)

2[([3]q − 1) + λ(1− 2[3]q + [3]2q)]
+ (1− µ) .

Further (21) can be expressed as

a3 − µa2
2 = α

[(
l(µ) + 1

2[([3]q − 1) + λ(1− 2[3]q + [3]2q)]

)
p2

+
(
l(µ)− 1

2[([3]q − 1) + λ(1− 2[3]q + [3]2q)]

)
q2

]
,(22)
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where l(µ) is defined in (19).
Taking modulus, applying triangle inequality and using Lemma 1.1, (22) yields

|a3 − µa2
2| ≤ α(1− η)(A−B)

∣∣∣(l(µ) + 1
2[([3]q − 1) + λ(1− 2[3]q + [3]2q)]

)
+
(
l(µ)− 1

2[([3]q − 1) + λ(1− 2[3]q + [3]2q)]

)∣∣∣ .(23)

For 0 ≤ |l(µ)| < 1
2[([3]q−1)+λ(1−2[3]q+[3]2q)]

,

|a3 − µa2
2| ≤

α(1− η)(A−B)
([3]q − 1) + λ(1− 2[3]q + [3]2q)

.(24)

For |l(µ)| ≥ 1
2[([3]q−1)+λ(1−2[3]q+[3]2q)]

,

|a3 − µa2
2| ≤ 2α(1− η)(A−B)|l(µ)| .(25)

The proof of Theorem 2.2 is obvious from (24) and (25).
�

Conclusion

This paper is concerned with the study of a new and generalized class of
alpha-convex bi-univalent functions using q-derivative operator. The class is defined
using the concept of subordination. Some earlier known results follow as special
cases of the results proved here. This paper will work as a motivation to the other
researchers to study some more relevant subclasses of bi-univalent functions using
subordination.
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