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Abstract. We study the hyper-order of analytic solutions of linear differential equations
with analytic coefficients having the same order near a finite singular point. We improve
previous results given by S.Cherief and S.Hamouda (2021). We also consider the nonho-
mogeneous linear differential equations.
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1. Introduction and main results

Throughout this paper, we assume that the reader is familiar with the fundamental

results and the standard notations of the Nevanlinna value distrubition theory of

meromorphic function in the complex plane C and in the unit disc D = {z ∈ C :

|z| < 1} (see [2], [3], [8], [10]). We denote the order of growth of a meromorphic

function f in C by σ(f).

Recently the authors in [4], [6], [7] have investigated the growth of solutions of

linear differential equations near a finite singular point. They studied the order and

the hyper-order of analytic solutions of different types of linear differential equations

with analytic coefficients near a finite singular point by using an adapted definitions

and properties of Nevanlinna theory. In this paper, we continue this investigation

near a finite singular point.

First, we recall the appropriate definitions. Set C = C ∪ {∞} and suppose that f

is meromorphic in C \ {z0}, where z0 ∈ C. Define the counting function near z0 by

Nz0(r, f) = −

∫ r

∞

n(t, f)− n(∞, f)

t
dt− n(∞, f) log r,
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where n(t, f) counts the number of poles of f in the region {z ∈ C : t 6 |z0−z|}∪{∞},

each pole according to its multiplicity, and the proximity function by

mz0(r, f) =
1

2π

∫ 2π

0

log+ |f(z0 − reiϕ)| dϕ.

The characteristic function of f is defined in the usual manner by

Tz0(r, f) = mz0(r, f) +Nz0(r, f).

In addition, the order of a meromorphic function f near z0 is defined by

σT (f, z0) = lim sup
r→0

log+ Tz0(r, f)

− log r
.

For an analytic function f in C \ {z0}, we have also the definition

σM (f, z0) = lim sup
r→0

log+ log+ Mz0(r, f)

− log r
,

where Mz0(r, f) = max
|z0−z|=r

|f(z)|.

When the order is infinite, we introduce the notion of a hyper-order near z0 that

is defined as

σ2,T (f, z0) = lim sup
r→0

log+ log+ Tz0(r, f)

− log r
,

σ2,M (f, z0) = lim sup
r→0

log+ log+ log+ Mz0(r, f)

− log r
.

R em a r k 1.1 ([4]). It is shown in [6] that if f is a non-constant meromorphic

function in C \ {z0} and g(ω) = f(z0 − 1/ω), then g(ω) is meromorphic in C and

we have

T (R, g) = Tz0

( 1

R
, f

)

,

where R > 0 and so σT (f, z0) = σ(g). Also, if f is analytic in C \ {z0}, then g(ω)

is entire and thus σT (f, z0) = σM (f, z0) and σ2,T (f, z0) = σ2,M (f, z0). Then we can

use the notations σ(f, z0) and σ2(f, z0) without any ambiguity.

Many authors [1], [2], [3], [9], [10] have studied the linear differential equation

(1.1) f ′′ +A(z)eazf ′ +B(z)ebzf = 0,

where A(z) and B(z) are entire functions and a, b are complex numbers. Kwon in [9]

proved that if ab 6= 0 and arg a 6= arg b or a = cb with 0 < c < 1, then every solution

f 6≡ 0 of the equation (1.1) is of infinite order.
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Recently, Fettouch and Hamouda (see [6]) proved the following result.

Theorem 1.1 ([6]). Let z0 a, b be complex constants, such that arg a 6= arg b or

a = cb with 0 < c < 1 and n ∈ N \ {0}. Let A(z), B(z) 6≡ 0 be analytic functions

in C \ {z0} with max{σ(A, z0), σ(B, z0)} < n. Then every solution f 6≡ 0 of the

differential equation

f ′′ +A(z) exp
{ a

(z0 − z)n

}

f ′ +B(z) exp
{ b

(z0 − z)n

}

f = 0

satisfies σ(f, z0) = ∞ and σ2(f, z0) = n.

In [4], Cherief and Hamouda have extended Theorem 1.1 to higher order linear

differential equations and proved the following two results.

Theorem 1.2 ([4]). Let n ∈ N \ {0}, k > 2 be an integer and Aj(z) (j =

0, . . . , k−1) be analytic functions in C\{z0}, such that σ(Aj , z0) < n and A0(z) 6≡ 0.

If aj (j = 0, . . . , k − 1) are distinct complex numbers, then every solution f 6≡ 0 of

the differential equation

(1.2) f (k) +Ak−1(z) exp
{ ak−1

(z0 − z)n

}

f (k−1) + . . .+A0(z) exp
{ a0
(z0 − z)n

}

f = 0

that is analytic in C \ {z0}, satisfies σ(f, z0) = ∞.

Theorem 1.3 ([4]). Let n ∈ N \ {0}, k > 2 be an integer and Aj(z) (j =

0, . . . , k−1) be analytic functions in C\{z0}, such that σ(Aj , z0) < n and A0(z) 6≡ 0.

Let aj (j = 0, . . . , k−1) be complex constants. Suppose that there exist nonzero num-

bers as and al, such that 0 < s < l 6 k−1, as = |as|e
iθs , al = |al|e

iθl , θs, θl ∈ [0, 2π),

θs 6= θl. Let AsAl 6≡ 0 and for j 6= s, l, aj satisfy either aj = djas (0 < dj < 1)

or aj = djal (0 < dj < 1). Then every solution f 6≡ 0 of the equation (1.2) that is

analytic in C \ {z0}, satisfies σ(f, z0) = ∞.

In this paper, we continue to consider the above theorems and investigate the

hyper-order of analytic solutions of the equation (1.2). We also consider the nonho-

mogeneous equation. We prove the following results.

Theorem 1.4. Let n ∈ N\{0}, k > 2 be an integer and Aj(z), aj (j = 0, . . . , k−1)

satisfy the additional hypotheses of Theorem 1.2. Then every solution f of the

equation (1.2) that is analytic in C \ {z0} satisfies σ2(f, z0) = n, where z0 is an

essential singular point for f .
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E x am p l e 1.1. Consider the differential equation

(1.3) f ′′′ +
3

z

(

2 +
1

z

)

f ′′ −
1

z4
exp

{2

z

}

f ′ −
2

z4

(

3 +
3

z
+

1

z2

)

exp
{1

z

}

f = 0.

Obviously, the conditions of Theorem 1.4 are satisfied. Hence every solution f of the

equation (1.3) that is analytic in C\{0} satisfies σ2(f, 0) = 1, where 0 is an essential

singular point for f .

Let us remark that the function f(z) = exp{exp(1/z)} is a solution of the equa-

tion (1.3) that is analytic in C \ {0} with σ2(f, 0) = 1.

Theorem 1.5. Let n ∈ N\{0}, k > 2 be an integer and Aj(z), aj (j = 0, . . . , k−1)

satisfy the additional hypotheses of Theorem 1.3. Then every solution f of the

equation (1.2) that is analytic in C \ {z0}, satisfies σ2(f, z0) = n, where z0 is an

essential singular point for f .

Theorem 1.6. Let n ∈ N\{0}, k > 2 be an integer and Aj(z), aj (j = 0, . . . , k−1)

satisfy the hypotheses of Theorem 1.3 or those of Theorem 1.4. Let F 6≡ 0 be analytic

function in C\{z0} of order σ = σ(F, z0) < n. Then every solution f of the equation

(1.4) f (k) +Ak−1(z) exp
{ ak−1

(z0 − z)n

}

f (k−1) + . . .+A0(z) exp
{ a0
(z0 − z)n

}

f = F

that is analytic in C \ {z0} satisfies σ(f, z0) = ∞ and σ2(f, z0) = n, where z0 is an

essential singular point for f , with at most one exceptional analytic solution f0 of

finite order in C \ {z0}.

2. Preliminary lemmas

Lemma 2.1 ([6]). Let f be a non-constant meromorphic function in C\{z0}. Let

α > 0 be a given real constant and j ∈ N. Then there exists a set E1 ⊂ (0, 1) of

finite logarithmic measure, that is
∫ 1

0
χE1

(t) dt/t < ∞, and a constant A > 0, that

depends on α and j, such that for all r = |z − z0| satisfying r /∈ E1, we have

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣
6 A

[ 1

r2
Tz0(αr, f) log Tz0(αr, f)

]j

,

where χE1
is the characteristic function of the set E1.
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Lemma 2.2 ([10]). Let g be a transcendental entire function, let 0 < η1 < 1
4

and ωR be a point such that |ωR| = R and |g(ωR)| > M(R, g)V (R)−1/4+η1

holds. Then there exists a set F1 ⊂ (1,∞) of finite logarithmic measure, that

is
∫∞

1
χF1

(t) dt/t < ∞, such that

g(j)(ωR)

g(ωR)
=

(V (R)

ωR

)j

(1 + o(1)), j ∈ N

holds as R → ∞ and R /∈ F1, where V (R) is the central index of g and M(R, g) =

max
|ω|=R

|g(ω)|.

R em a r k 2.1 ([7]). Let f be a non-constant analytic function in C \ {z0}. Then

the function g(ω) = f(z0 − 1/ω) is entire in C and Vz0(r) = V (R), where R = 1/r,

R > 0, V (R) is the central index of g in C and Vz0(r) is the central index of f near

the singular point z0.

By using Lemma 2.2, Remark 2.1 and similar arguments as in the proof of Theo-

rem 8 in [7], we can obtain the following lemma.

Lemma 2.3. Let f be a non-constant analytic function in C\{z0}. Let 0 < η1 < 1
4

and zr be a point such that |z0− zr| = r and |f(zr)| > Mz0(r, f)Vz0(r)
−1/4+η1 holds.

Then there exists a set E2 ⊂ (0, 1) of finite logarithmic measure, such that

f (j)(zr)

f(zr)
=

( Vz0(r)

z0 − zr

)j

(1 + o(1)), j ∈ N

holds as r → 0, r /∈ E2, where Vz0(r) is the central index of f near a singular point z0

and Mz0(r, f) = max
|z0−z|=r

|f(z)|.

Lemma 2.4. Let f be a non-constant analytic function in C\{z0}. For |z0−z| = r

sufficiently small, let zr = z0 − reiθr be a point satisfying |f(zr)| = max
|z0−z|=r

|f(z)|.

Then there exist a constant δr > 0 and a set E3 ⊂ (0, 1) of finite logarithmic

measure, such that for all z satisfying |z0− z| = r /∈ E3, r → 0 and arg(z0− z) = θ ∈

[θr − δr, θr + δr], we have

f (j)(z)

f(z)
=

(Vz0(z)

z0 − z

)j

(1 + o(1)), j ∈ N,

where Vz0(z) is the central index of f near a singular point z0.
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P r o o f. If zr = z0 − reiθr is a point satisfying |f(zr)| = Mz0(r, f), since |f(z)| is

continuous in |z0 − z| = r, then there exists a constant δr (> 0), such that for all z

satisfying |z0 − z| = r, r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr], we have

||f(z)| − |f(zr)|| < ε,

that is

|f(z)| >
1

2
|f(zr)| =

1

2
Mz0(r, f) > Mz0(r, f)Vz0(r)

−1/4+η1 .

By Lemma 2.3,
f (j)(z)

f(z)
=

(Vz0(z)

z0 − z

)j

(1 + o(1)), j ∈ N

holds for all z satisfying |z0−z| = r /∈ E2, r → 0 and arg(z0−z) = θ ∈ [θr−δr, θr+δr].

�

Lemma 2.5. Let f be a non-constant analytic function in C\{z0}. For |z0−z| = r,

let zr = z0 − reiθr be a point satisfying |f(zr)| = max
|z0−z|=r

|f(z)|. Then there exist

a constant δr > 0 and a set E4 ⊂ (0, 1) of finite logarithmic measure, such that for

all z satisfying |z0−z| = r /∈ E4, r → 0 and arg(z0−z) = θ ∈ [θr−δr, θr+δr], we have

∣

∣

∣

f(z)

f (j)(z)

∣

∣

∣
6 2rj , j ∈ N,

where z0 is an essential singular point for f .

P r o o f. Let zr = z0 − reiθr be a point satisfying |f(zr)| = max
|z0−z|=r

|f(z)|. Then

by Lemma 2.4 there exist a constant δr > 0 and a set E3 ⊂ (0, 1) of finite logarithmic

measure, such that for all z satisfying |z0− z| = r /∈ E3, r → 0 and arg(z0− z) = θ ∈

[θr − δr, θr + δr], we have

(2.1)
f (j)(z)

f(z)
=

(Vz0(z)

z0 − z

)j

(1 + o(1)), j ∈ N.

Since g(ω) = f(z0 − 1/ω) is a transcendental entire function, it follows that

V (R) → ∞ as R → ∞. On the other hand, V (R) = Vz0(r) (R = 1/r). Hence

Vz0(r) → ∞ as r → 0. Then by (2.1), for all z satisfying |z0 − z| = r /∈ E3, r → 0

and arg(z0 − z) = θ ∈ [θr − δr, θr + δr], we have

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣
>

1

2
r−j ,

that is,
∣

∣

∣

f(z)

f (j)(z)

∣

∣

∣
6 2rj , j ∈ N.

�
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Lemma 2.6 ([6]). Let A(z) be an analytic function in C \ {z0} with σ(A, z0) < n

(n ∈ N \ {0}). Set g(z) = A(z) exp{a/(z0 − z)n}, where a = α+ iβ 6= 0 is a complex

number, z0 − z = reiϕ, δa(ϕ) = α cos(nϕ) + β sin(nϕ), and H = {ϕ ∈ [0, 2π) :

δa(ϕ) = 0} (obviously, H is a finite set). Then for any given ε > 0 and for any

ϕ ∈ [0, 2π) \H , there exists r0 > 0, such that for 0 < r < r0, we have

(i) if δa(ϕ) > 0, then

(2.2) exp
{

(1− ε)δa(ϕ)
1

rn

}

6 |g(z)| 6 exp
{

(1 + ε)δa(ϕ)
1

rn

}

,

(ii) if δa(ϕ) < 0, then

(2.3) exp
{

(1 + ε)δa(ϕ)
1

rn

}

6 |g(z)| 6 exp
{

(1− ε)δa(ϕ)
1

rn

}

.

Lemma 2.7 ([4]). Let k > 2 be an integer and Aj(z) (j = 0, . . . , k−1) be analytic

functions in C\ {z0}, such that σ(Aj , z0) 6 α < ∞. If f is a solution of the equation

(2.4) f (k) +Ak−1(z)f
(k−1) + . . .+A1(z)f +A0(z)f = 0

that is analytic in C \ {z0}, then σ2(f, z0) 6 α.

Lemma 2.8 ([7]). Let f be a non-constant analytic function in C \ {z0}. Then

there exists a set E5 ⊂ (0, 1) of finite logarithmic measure, such that

f (j)(zr)

f(zr)
= (1 + o(1))

( Vz0(z)

z0 − zr

)j

, j ∈ N

holds as r → 0, r /∈ E5, where zr is a point on the circle |z0 − z| = r that satisfies

|f(zr)| = Mz0(r, f) = max
|z0−z|=r

|f(z)|.

Lemma 2.9 ([5]). Let f be a non-constant analytic function in C\{z0} of infinite

order with the hyper-order σ2(f, z0) = σ and Vz0(r) be the central index of f . Then

lim sup
r→0

log+ log+ Vz0(r)

− log r
= σ.

Lemma 2.10. Let k > 2 be an integer, Aj(z) (j = 0, . . . , k − 1) and F 6≡ 0 be

analytic functions in C \ {z0}, such that max{σ(Aj , z0), σ(F, z0)} 6 α < ∞. If f is

an infinite order solution of the equation

(2.5) f (k) +Ak−1(z)f
k−1 + . . .+A1(z)f

′ +A0(z)f = F

that is analytic in C \ {z0}, then σ2(f, z0) 6 α.
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P r o o f. Assume that f is an infinite analytic solution in C \ {z0} of the equa-

tion (2.5). By (2.5), we have

(2.6)
∣

∣

∣

f (k)

f

∣

∣

∣
6 |Ak−1(z)|

∣

∣

∣

f (k−1)

f

∣

∣

∣
+ . . .+ |A1(z)|

∣

∣

∣

f ′

f

∣

∣

∣
+
∣

∣

∣

F

f

∣

∣

∣
+ |A0(z)|.

By Lemma 2.8, there exists a set E5 ⊂ (0, 1) of finite logarithmic measure, such that

for all j = 0, 1, . . . , k, we have

(2.7)
f (j)(zr)

f(zr)
= (1 + o(1))

(Vz0(zr)

z0 − zr

)j

as r → 0, r /∈ E5, where zr is a point on the circle |z0 − z| = r that satisfies

|f(zr)| = Mz0(r, f) = max
|z0−z|=r

|f(z)|. For any given ε > 0, there exists r0 > 0, such

that for all 0 < r = |z0 − z| < r0 we have

(2.8)
∣

∣

∣
Aj(z)

∣

∣

∣
6 exp

{ 1

rα+ε

}

, j = 0, 1, . . . , k − 1

and

(2.9)
∣

∣

∣
F (z)

∣

∣

∣
6 exp

{ 1

rα+ε

}

.

Since Mz0(r, f) > 1 as r → 0, it follows from (2.9) that

(2.10)
|F (z)|

Mz0(r, f)
6 exp

{ 1

rα+ε

}

as r → 0.

By substituting (2.7), (2.8) and (2.10) into (2.6), we obtain

(2.11)
(Vz0(r)

r

)k

|1 + o(1)| 6 (k + 1)
(Vz0(r)

r

)k−1

|1 + o(1)| exp
{ 1

rα+ε

}

for all |z0 − zr| = r /∈ E5, r → 0 and |f(zr)| = Mz0(r, f). By (2.11) and Lemma 2.9,

we get

σ2(f, z0) 6 α.

�

3. Proof of theorems

P r o o f of Theorem 1.4. Assume that f is an analytic solution of (1.2) in C\{z0},

where z0 is an essential singular point for f . By Lemma 2.1, there exist a set

E1 ⊂ (0, 1) of finite logarithmic measure and a constant λ > 0, such that for all

r = |z0 − z| satisfying r /∈ E1, we have

(3.1)
∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣
6 λ

[1

r
Tz0(αr, f)

]2j

, j = 1, . . . , k.
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For each sufficiently small |z0 − z| = r, let zr = z0 − reiθr be a point satisfying

|f(zr)| = max
|z0−z|=r

|f(z)|. By Lemma 2.5, there exist a constant δr > 0 and a set

E4 ⊂ (0, 1) of finite logarithmic measure such that for all z satisfying |z0 − z| =

r /∈ E4, r → 0, and arg(z0 − z) = θ ∈ [θr − δr, θr + δr], we have

(3.2)
∣

∣

∣

f(z)

f (j)(z)

∣

∣

∣
6 2rj , j = 1, . . . , k.

Set aj = αj + iβj , δaj
(θ) = αj cos(nθ) + βj sin(nθ), z0 − z = reiθ,

H1 =
k−1
⋃

j=0

{θ ∈ [0, 2π) : δaj
(θ) = 0},

H2 =
⋃

06i<j6k−1

{θ ∈ [0, 2π) : δaj−ai
(θ) = 0}.

Since aj are distinct complex numbers, then there exists only one s ∈ {0, . . . , k− 1},

such that for any given θ ∈ [θr − δr, θr + δr] \ (H1 ∪H2), we have

δ1 = δas
(θ) = max{δaj

(θ) : j = 0, . . . , k − 1}.

We have δ1 > 0 or δ1 < 0.

Case 1. δ1 > 0. Set δ2 = max{δaj
(θ) : j 6= s}. Then δ2 < δ1.

Subcase 1.1. If δ2 > 0 then 0 < δ2 < δ1. Thus by Lemma 2.6, for any given ε

(0 < 2ε < (δ1 − δ2)/(δ1 + δ2)), for all z satisfying |z0−z| = r, r → 0 and arg(z0−z) =

θ ∈ [θr − δr, θr + δr] \ (H1 ∪H2), we have

(3.3)
∣

∣

∣
As(z) exp

{ as
(z0 − z)n

}∣

∣

∣
> exp

{

(1 − ε)
δ1
rn

}

and

(3.4)
∣

∣

∣
Aj(z) exp

{ aj
(z0 − z)n

}∣

∣

∣
6 exp

{

(1 + ε)
δ2
rn

}

, j 6= s.

By (1.2), it follows that

(3.5) −As(z) exp
{ as
(z0 − z)n

}

=
f (k)

f (s)
+

k−1
∑

j=s+1

Aj(z) exp
{ aj
(z0 − z)n

}f (j)

f (s)

+

s−1
∑

j=0

Aj(z) exp
{ aj
(z0 − z)n

}f (j)

f

f

f (s)
.
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Substituting (3.1)–(3.4) into (3.5), for all z satisfying |z0 − z| = r /∈ E1 ∪ E4, r → 0

and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H1 ∪H2), we obtain

(3.6) exp
{

(1− ε)
δ1
rn

}

6 M1r
s exp

{

(1 + ε)
δ2
rn

}[Tz0(αr, f)

r

]2k

,

where M1 > 0 is a constant. Hence by (3.6), we obtain σ2(f, z0) > n. On the other

hand, by Lemma 2.7, we have σ2(f, z0) = n.

Subcase 1.2. Let δ2 < 0. By Lemma 2.6, for any given ε (0 < 2ε < 1), for all z

satisfying |z0 − z| = r /∈ E1 ∪ E4, r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \

(H1 ∪H2), we have (3.3) and

(3.7)
∣

∣

∣
Aj(z) exp

{ aj
(z0 − z)n

}∣

∣

∣
6 exp

{

(1 − ε)
δ2
rn

}

< 1, j 6= s.

Substituting (3.1)–(3.3), (3.7) into (3.5), for all z satisfying |z0 − z| = r /∈ E1 ∪ E4,

r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H1 ∪H2), we obtain

(3.8) exp
{

(1− ε)
δ1
rn

}

6 M2r
s
[Tz0(αr, f)

r

]2k

,

where M2 > 0 is a constant. Hence by (3.8), we obtain σ2(f, z0) > n. On the other

hand, by Lemma 2.7, we have σ2(f, z0) = n.

Case 2. Let δ1 < 0. By Lemma 2.6, for any given ε (0 < 2ε < 1), for all z satisfying

|z0 − z| = r /∈ E1 ∪ E4, r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H1 ∪ H2),

we have

(3.9)
∣

∣

∣
Aj(z) exp

{ aj
(z0 − z)n

}
∣

∣

∣
6 exp

{

(1− ε)
δ1
rn

}

< 1, j = 0, . . . , k − 1.

By (1.2), we get

(3.10) −1 =
k−1
∑

j=1

Aj(z) exp
{ aj
(z0 − z)n

}f (j)

f

f

f (k)
+A0(z) exp

{ a0
(z0 − z)n

} f

f (k)
.

Substituting (3.1)–(3.3), (3.9) into (3.10), for all z satisfying |z0 − z| = r /∈ E1 ∪E4,

r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H1 ∪H2), we obtain

(3.11) 1 6 M3r
k exp

{

(1 + ε)
δ1
rn

}[Tz0(αr, f)

r

]2k

,

where M3 > 0 is a constant. Hence by (3.11), we obtain σ2(f, z0) > n. On the other

hand, by Lemma 2.7, we have σ2(f, z0) = n. �
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P r o o f of Theorem 1.5. Assume that f is an analytic solution of (1.2) in C\{z0},

where z0 is an essential singular point for f . By Lemma 2.1, there exist a set

E1 ⊂ (0, 1) of finite logarithmic measure and a constant λ > 0, such that for all

r = |z0 − z| satisfying r /∈ E1, we have (3.1).

For each sufficiently small |z0 − z| = r, let zr = z0 − reiθr be a point satisfying

|f(zr)| = max
|z0−z|=r

|f(z)|. By Lemma 2.5, there exist a constant δr > 0 and a set

E4 ⊂ (0, 1) of finite logarithmic measure such that for all z satisfying |z0−z| = r /∈ E4

and arg(z0 − z) = θ ∈ [θr − δr, θr + δr], we have (3.2).

Set

H3 = {θ ∈ [0, 2π) : δas
(θ) = 0 or δal

(θ) = 0}

and

H4 = {θ ∈ [0, 2π) : δas
(θ) = δal

(θ)}.

For any given θ ∈ [θr − δr, θr + δr] \ (H3 ∪H4), we have δas
(θ) 6= 0, δal

(θ) 6= 0 and

δas
(θ) > δal

(θ) or δas
(θ) < δal

(θ).

Set c1 = δas
(θ) and c2 = δal

(θ).

Case 1. c1 > c2. Here we also divide our proof in three subcases.

Subcase 1.1. c1 > c2 > 0. Set c3 = max{δaj
(θ) : j 6= s}. Then 0 < c3 < c1. Thus

by Lemma 2.6, for any given ε (0 < 2ε < (c1 − c3)/(c1 + c3)), for all z satisfying

|z0 − z| = r /∈ E1 ∪ E4, r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H3 ∪ H4),

we have

(3.12)
∣

∣

∣
As(z) exp

{ as
(z0 − z)n

}∣

∣

∣
> exp

{

(1 − ε)
c1
rn

}

and

(3.13)
∣

∣

∣
Aj(z) exp

{ aj
(z0 − z)n

}∣

∣

∣
6 exp

{

(1 + ε)
c3
rn

}

, j 6= s.

Substituting (3.1), (3.2), (3.12), (3.13) into (3.5), for all z satisfying |z0 − z| = r /∈

E1 ∪ E4, r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H1 ∪H2), we obtain

(3.14) exp
{

(1− ε)
c1
rn

}

6 M4r
s exp

{

(1 + ε)
c3
rn

}[Tz0(αr, f)

r

]2k

,

where M4 > 0 is a constant. Hence by (3.14), we obtain σ2(f, z0) > n. On the other

hand, by Lemma 2.7, we have σ2(f, z0) = n.

Subcase 1.2. c1 > 0 > c2. Set γ1 = max{dj : j 6= s, l}. Thus, by Lemma 2.6, for

any given ε (0 < 2ε < (1− γ1)/(1 + γ1)), for all z satisfying |z0 − z| = r /∈ E1 ∪ E4,

r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H3 ∪H4), we have

(3.15)
∣

∣

∣
Aj(z) exp

{ aj
(z0 − z)n

}
∣

∣

∣
6 exp

{

(1 + ε)
γ1c1
rn

}

, j 6= s.
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Substituting (3.1), (3.2), (3.12), (3.15) into (3.5), for all z satisfying |z0 − z| = r /∈

E1 ∪ E4, r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H1 ∪H2), we obtain

(3.16) exp
{

(1− ε)
c1
rn

}

6 M5r
s exp

{

(1 + ε)
γ1c1
rn

}[Tz0(αr, f)

r

]2k

,

where M5 > 0 is a constant. Hence by (3.16), we obtain σ2(f, z0) > n. On the other

hand, by Lemma 2.7, we have σ2(f, z0) = n.

Subcase 1.3. 0 > c1 > c2. Set γ2 = min{dj : j 6= s, l}. By Lemma 2.6, for

any given ε (0 < 2ε < 1), for all z satisfying |z0 − z| = r /∈ E1 ∪ E4, r → 0 and

arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H3 ∪H4), we have

(3.17)
∣

∣

∣
As(z) exp

{ as
(z0 − z)n

}∣

∣

∣
6 exp

{

(1 − ε)
c1
rn

}

and

(3.18)
∣

∣

∣
Aj(z) exp

{ aj
(z0 − z)n

}∣

∣

∣
6 exp

{

(1 + ε)
γ2c1
rn

}

, j 6= s.

Substituting (3.1), (3.2), (3.17), (3.18) into (3.10), for all z satisfying |z0 − z| = r /∈

E1 ∪ E4, r → 0 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr] \ (H1 ∪H2), we obtain

(3.19) 1 6 M6r
k exp

{

(1 + ε)
γ2c1
rn

}[Tz0(αr, f)

r

]2k

,

where M6 > 0 is a constant. Hence by (3.19), we obtain σ2(f, z0) > n. On the other

hand, by Lemma 2.7, we have σ2(f, z0) = n.

Case 2. c1 < c2. Using the same reasoning as in Case 1, we can also obtain

σ0(f, z0) = n. �

P r o o f of Theorem 1.6. First we show that (1.4) can possess at most one

exceptional analytic solutionf0 in C \ {z0} of finite order. In fact, if f
∗ is another

analytic solution of finite order of the equation (1.4), then f0 − f∗ is an analytic

solution in C\{z0} of finite order of the corresponding homogeneous equation of (1.4).

This contradicts Theorem 1.4 and Theorem 1.5.

We assume that f is an infinite order analytic solution in C \ {z0} of the equa-

tion (1.4), where z0 is an essential singular point for f . By Lemma 2.10, it follows

that σ2(f, z0) 6 n.

Now we prove that σ2(f, z0) > n. By Lemma 2.1, there exist a set E1 ⊂ (0, 1)

of finite logarithmic measure and a constant λ > 0, such that for all z satisfying

|z0 − z| = r /∈ E1, we have (3.1). For each sufficiently small |z0 − z| = r, let zr =
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z0 − reiθr be a point satisfying |f(zr)| = max
|z0−z|=r

|f(z)|. By Lemma 2.5, there exist a

constant δr > 0 and a set E4 ⊂ (0, 1) of finite logarithmic measure such that for all z

satisfying |z0 − z| = r /∈ E4 and arg(z0 − z) = θ ∈ [θr − δr, θr + δr], we have (3.2).

Since |f(z)| is continous in |z0−z| = r, then there exists a constant λr > 0 such that

for all z satisfying |z0−z| = r sufficiently small and arg(z0−z) = θ ∈ [θr−λr, θr+λr],

we have

(3.20)
1

2
|f(zr)| < |f(z)| <

3

2
|f(zr)|.

On the other hand, for any given ε (0 < 2ε < n− σ), there exists r0 > 0, such that

for all 0 < r = |z0 − z| < r0, we have

(3.21) |F (z)| 6 exp
{ 1

rσ+ε

}

.

Since Mz0(r, f) > 1 as r → 0, it follows from (3.20) and (3.21) that

(3.22)
∣

∣

∣

F (z)

f(z)

∣

∣

∣
6 2 exp

{ 1

rσ+ε

}

as r → 0.

Set γ = min{δr, λr}.

(i) Suppose that aj(j = 0, . . . , k − 1) satisfy the hypotheses of Theorem 1.4.

Since aj are distinct complex numbers, then there exists only s ∈ {0, . . . , k − 1}

such that for any given θ ∈ [θr −γ, θr+γ]\ (H1∪H2), where H1 and H2 are definied

above, we have

δ1 = δas
(θ) = max{δaj

(θ) : j = 0, . . . , k − 1}.

We have δ1 > 0 or δ1 < 0.

Case 1. δ1 > 0. Set δ2 = max{δaj
(θ) : j 6= s}. Then δ2 < δ1.

Subcase 1.1. δ2 > 0. From (3.1)–(3.4), (3.22) and (1.4), for all z satisfying

|z0 − z| = r /∈ E1 ∪ E4, r → 0 and arg(z0 − z) = θ ∈ [θr − γ, θr + γ] \ (H1 ∪ H2),

we obtain

(3.23) exp
{

(1− ε)
δ1
rn

}

6 B1r
s exp

{ 1

rσ+ε

}

exp
{

(1 + ε)
δ2
rn

}[Tz0(αr, f)

r

]2k

,

where B1 > 0 is a constant. From (3.23), we get σ2(f, z0) > n. This and the fact

that σ2(f, z0) 6 n yield σ2(f, z0) = n.

Subcase 1.2. δ2 < 0. From (3.1)–(3.3), (3.7), (3.22) and (1.4), for all z satisfying

|z0 − z| = r /∈ E1 ∪ E4, r → 0 and arg(z0 − z) = θ ∈ [θr − γ, θr + γ] \ (H1 ∪ H2),

we obtain

(3.24) exp
{

(1− ε)
δ1
rn

}

6 B2r
s exp

{ 1

rσ+ε

}[Tz0(αr, f)

r

]2k

,
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where B2 > 0 is a constant. From (3.24), we get σ2(f, z0) > n. This and the fact

that σ2(f, z0) 6 n yield σ2(f, z0) = n.

Case 2. δ1 < 0. From (3.1), (3.2), (3.9), (3.22) and (1.4), for all z satisfying

|z0 − z| = r /∈ E1 ∪ E4, r → 0 and arg(z0 − z) = θ ∈ [θr − γ, θr + γ] \ (H1 ∪ H2),

we have

(3.25) 1 6 B3r
k exp

{ 1

rσ+ε
v
}

exp
{

(1 + ε)
δ1
rn

}[Tz0(αr, f)

r

]2k

,

where B3 > 0 is a constant. From (3.25), we get σ2(f, z0) > n. This and the fact

that σ2(f, z0) 6 n yield σ2(f, z0) = n.

(ii) Suppose that aj (j = 0, . . . , k− 1) satisfy the hypotheses of Theorem 1.5. For

any given θ ∈ [θr − γ, θr + γ] \ (H3 ∪ H4), where H3 and H4 are defined above, we

have δas
(θ) 6= 0, δal

(θ) 6= 0 and δas
(θ) > δal

(θ) or δas
(θ) < δal

(θ).

Set c1 = δas
(θ) and c2 = δal

(θ).

Case 1. c1 > c2. Here we also divide our proof in three subcases.

Subcase 1.1 c1 > c2 > 0. From (3.1), (3.2), (3.12), (3.13), (3.22) and (1.4), for all z

satisfying |z0−z| = r /∈ E1∪E4, r → 0 and arg(z0−z) = θ ∈ [θr−γ, θr+γ]\(H3∪H4),

we obtain

(3.26) exp
{

(1− ε)
c1
rn

}

6 B4r
s exp

{ 1

rσ+ε

}

exp
{

(1 + ε)
c3
rn

}[Tz0(αr, f)

r

]2k

,

where B4 > 0 is a constant. Hence by (3.26), we get σ2(f, z0) > n. This and the

fact that σ2(f, z0) 6 n yield σ2(f, z0) = n.

Subcase 1.2. c1 > 0 > c2. From (3.1), (3.2), (3.12), (3.15), (3.22) and (1.4), for

all z satisfying |z0 − z| = r /∈ E1 ∪E4, r → 0 and arg(z0 − z) = θ ∈ [θr − γ, θr + γ] \

(H3 ∪H4), we obtain

(3.27) exp
{

(1− ε)
c1
rn

}

6 B5r
s exp

{ 1

rσ+ε

}

exp
{

(1 + ε)
γ1c3
rn

}[Tz0(αr, f)

r

]2k

,

where B5 > 0 is a constant. From (3.27), we get σ2(f, z0) > n. This and the fact

that σ2(f, z0) 6 n yield σ2(f, z0) = n.

Subcase 1.3. 0 > c1 > c2. From (3.1), (3.2), (3.17), (3.18), (3.22) and (1.4), for

all z satisfying |z0 − z| = r /∈ E1 ∪E4, r → 0 and arg(z0 − z) = θ ∈ [θr − γ, θr + γ] \

(H3 ∪H4), we obtain

(3.28) 1 6 B6r
k exp

{ 1

rσ+ε

}

exp
{

(1 + ε)
γ2c1
rn

}[Tz0(αr, f)

r

]2k

,

where B6 > 0 is a constant. From (3.28), we get σ2(f, z0) > n. This and the fact

that σ2(f, z0) 6 n yield σ2(f, z0) = n. �
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