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A NEW METHOD BASED ON LEAST-SQUARES SUPPORT
VECTOR REGRESSION FOR SOLVING OPTIMAL
CONTROL PROBLEMS

Mitra Bolhassani, Hassan Dana Mazraeh, Kourosh Parand

In this paper, a new application of the Least Squares Support Vector Regression (LS-SVR)
with Legendre basis functions as mapping functions to a higher dimensional future space is
considered for solving optimal control problems. At the final stage of LS-SVR, an optimization
problem is formulated and solved using Maple optimization packages. The accuracy of the
method are illustrated through numerical examples, including nonlinear optimal control prob-
lems. The results demonstrate that the proposed method is capable of solving optimal control
problems with high accuracy.

Keywords: Least squares support vector machines, Optimal control problems, Legendre
orthogonal polynomials, Regression, Artificial intelligence

Classification: 68T20, 49Mxx

1. INTRODUCTION

The field of optimal control focuses on efficiently managing dynamic systems over a
specified duration, aiming to minimize a designated performance measure while satisfy-
ing additional constraints. These problems involve two key variables: the state variable,
which describes the system’s behavior at each stage, and the control variable, which
indicates the system’s evolution from one stage to the next. Optimal control problems
manifest as mathematical models in various domains, including industrial applications
[1, 10], health sciences [14], and aerospace sciences [7]. Due to the often unattainable
nature of analytical solutions for these problems, seeking approximate solutions is a
pragmatic approach.

The field of numerical methods has garnered significant interest among researchers in
mathematical sciences, leading to the development of various computational techniques
and efficient algorithms for solving optimal control problems. Providing effective nu-
merical methods for these problems is of paramount importance. Numerical methods
used to solve optimal control problems can be classified into two categories: direct and
indirect methods [2].

Indirect methods involve deriving solutions using necessary optimality conditions
from the calculus of variations and Pontryagin’s maximum principle [3, 18]. These con-
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ditions form a Hamiltonian boundary value problem (HBVP), which can be solved using
numerical methods. A primary advantage of these methods is the high confidence in the
numerical solutions obtained, as they satisfy the first-order necessary conditions. How-
ever, there are several disadvantages: obtaining the first-order conditions analytically
is often challenging, and they require a highly accurate initial guess for the unknown
boundary conditions due to their small convergence radius.

In contrast, direct methods discretize the optimal control problem, converting it into
a nonlinear programming problem. Their advantages include the absence of the need to
find first-order necessary conditions and a much larger convergence radius. These meth-
ods rely on robust theories such as approximation, control, and optimization theories.
They often use orthogonal functions to approximate solutions and can be categorized
into methods that parameterize control variables and those that parameterize both state
and control variables. Only control variables are discretized in the former, and the re-
sulting equations are solved using numerical integration. In the latter, both state and
control variables are discretized simultaneously, resulting in a set of algebraic constraints
[3, 22, 26].

In recent decades, spectral methods—techniques that parameterize both state and
control variables—have attracted significant attention. For example, Parand et al. used
the collocation method with various approaches to solving nonlinear optimal control
problems involving the classical diffusion equation, inequality-constrained optimal con-
trol problems of arbitrary order, and nonlinear 2D optimal control problems [9, 15, 19].
Similarly, Razzaghi et al. employed the collocation method to address linear quadratic
optimal control problems and control of linear systems [5, 20]. They have also used
various methods to solve diverse optimal control problems, including fractional optimal
control [29, 30, 31, 32, 33, 34, 35].

Recently, support vector machine (SVM) techniques have achieved notable success in
tackling various problems. Initially introduced by Cortes and Vapnik for binary classifi-
cation [4], SVMs transform classification problems into quadratic programming problems
with inequality constraints, ensuring a unique solution under specific conditions. The
LS-SVM method, proposed by Suykens et al. [24], attains a globally optimal value by
solving a system of linear equations derived from equality constraints, offering significant
computational efficiency compared to traditional SVMs.

Two years later, Suykens et al. [38] introduced the use of least squares support
vector machines (LS-SVM) for the optimal control of nonlinear systems. The present
study introduces a novel method using LS-SVR with Legendre basis functions for solving
optimal control problems.

While the foundational work by Suykens et al. (2001) demonstrated the effective-
ness of LS-SVM for N-stage optimal control, our approach significantly extends this
framework in several key aspects. Firstly, this approach employs a training technique
called collocation least squares support vector regression (CLS-SVR). We use Legendre
polynomials as the network’s mapping functions for our computations, resulting in an
optimization problem that can be reduced to solving a set of algebraic equations. By
employing Legendre polynomials as basis functions, our method leverages their orthogo-
nality and boundedness properties, which enhance computational accuracy and manage
error propagation effectively. This choice contrasts with the standard polynomial basis
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used in the LS-SVM framework by Suykens et al., offering a substantial improvement in
precision and computational cost.

Secondly, we employed Maple’s Optimization Package to solve the optimization prob-
lem related to the LS-SVR model. This integration signifies a significant advancement
over the nonlinear programming techniques used in the prior methods.

Thirdly, the proposed LS-SVR method is being used for the first time to solve nonlin-
ear optimal control problems and nonlinear two-dimensional fractional optimal control
problems. The presented examples demonstrate the high accuracy of this method.

Finally, we selected two distinct values for the γ1 and γ2 parameters in the LS-SVR
model, with one for the coefficient of

∑
i = 1Ne2i and another for the coefficient of JN .

Therefore, the optimization cost function is as follows:

min
α,β,e

1

2

(
M1∑
i=0

αi
2 +

M2∑
i=0

βi
2

)
+

γ1
2

k∑
i=1

e2i + γ2JN .

It is important to note that, according to our experiments, the best results are ob-
tained in some problems when γ1 = γ2. According to our findings, this assumption
improves the accuracy of solutions. In contrast, previous works by other researchers
only used a single parameter γ1.

This method has been used in many applications, including the approximation of
ordinary differential equations, partial differential equations, and integral equations.
For example, refer to the articles by Parand et al. in this field [12, 16, 17].

The structure of the remaining sections in this paper is as follows. In Section 2,
we introduce the necessary preliminaries and notations related to polynomial spaces,
along with an overview of least squares support vector regression. Section 3 presents the
formulation of least squares support vector regression method specifically designed for
solving optimal control problems, detailing the approach and methodology employed.
In the final section, we conduct several numerical experiments to assess the accuracy of
the proposed method.

2. PRELIMINARIES

Considering that concepts such as Legendre polynomials and least squares support vector
regression are needed in the following sections, we will examine these concepts in this
section.

2.1. Legendre polynomials

The Legendre polynomials, represented as Pn(x), are a set of orthogonal polynomials,
with n denoting the polynomial order and x representing the variable. The order n
corresponds to the degree of the polynomial [23]. They exhibit orthogonality over the
range [-1, 1], where the weight function is defined as ω(x) = 1. The following recursive
relation generates the basis functions:

Pn+1(x) =
(2n+ 1)

(n+ 1)
xPn(x)−

n

(n+ 1)
Pn−1(x), n ⩾ 1, (1)
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P0(x) = 1, P1(x) = x. (2)

These polynomials are derived as the solution of the Sturm-Liouville differential equa-
tion:

d

dx

(
(1− x2)

dPn(x)

dx

)
+ n(n+ 1)Pn(x) = 0. (3)

These properties exhibit both symmetry and boundedness:

Pn(−x) = (−1)nPn(x), n ⩾ 0, (4)

|Pn(x)| ⩽ 1, ∀x ∈ [−1, 1]. (5)

The utilization of equality (4) helps in minimizing computational expenses, while
inequality (5) serves to manage error propagation. The roots of Legendre polynomials
are used in the Gauss-quadrature rules. Imagine we want to approximate the integral
of the function f(x) as follow :

∫ 1

−1

f(x) dx ≈
N∑
i=1

ωif(xi). (6)

With xi representing the zeros of the Legendre polynomials and ωi as the coefficients,
we have:

ωi =
2

(1− x2
i )[P

′
N+1(xi)]

2 , 0 ⩽ i ⩽ N. (7)

2.2. LS-SVR formulations

Considering a training dataset comprised of pairs {xi, yi}ni=1, where xi ∈ Rm and yi ∈ R.
Suykens presented the LS-SVR model in the following manner [25]:

y(x) = wTφ(x) + b, (8)

which is the weights w = [w1, . . . , wm]T , the basis functions φ(x) = [φ1(x), . . . , φm(x)]T

and the bias b. The appropriate values for w and b in this equation are found by solving
the following optimization problem:

min
w,b,e
J (w, e) =

1

2
wTw + γ

1

2

N∑
k=1

e2k (9)

subject to yk = wTφ(xk) + b+ ek, k = 1, . . . , n.

In this equation, γ represents the Tikhonov regularization parameter, ei ∈ R denotes
the error at the ith training point, ω ∈ Rm denotes the weight vector, and b ∈ R is the
bias term [24]. Using Lagrange multiplier method, we will have the following form:
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L(w, b, e;α) = J (w, e)−
n∑

k=1

αk

{
wTφ (xk) + b+ ek − yk

}
, (10)

where αk represents the Lagrange multipliers. The solution involves maximizing α while
simultaneously minimizing w, b, and e, leading to the identification of the saddle point
in the Lagrangian function. Subsequently, by applying the Karush-Kuhn-Tucker (KKT)
conditions, the unknown variables can be determined by solving the following linear
system [21]:

[
0 1n

T

1n Ω+ γ−1I

] [
b
α

]
=

[
0
y

]
, (11)

where I denotes the identity matrix, Ωij = φ(xi)
Tφ(xj) for i, j = 1, . . . , n, y =

[y1, . . . , yn]
T , 1n = [1, . . . , 1]T and α = [α1, . . . , αn]

T .

3. LS-SVR FOR OPTIMAL CONTROL PROBLEMS

Let’s take into account the following system of nonlinear differential equations that
characterizes a process taking place over a specified time interval [ta, tb]:

dX(τ)

dt
= f(τ,X(τ), U(τ)), (12)

The initial conditions for the system are given as follows:

X (ta) = x0, X (tb) = x1. (13)

The system is characterized by the state variable X(·) : [ta, tb]→ R, the control variable
U(·) : [ta, tb] → R, and a real-valued continuously differentiable function f(.). The
objective of the optimal control problem is to determine the control variable U(·) that
guides the system described by equation (12) from an initial position X (ta) = x0 to
a desired position X (tb) = x1 within the time interval (tb − ta), while optimizing a
performance index J , given by:

min J [X,U ] =

∫ tb

ta

L(τ,X(τ), U(τ)) dτ. (14)

Assuming the existence of permissible controls passing through (ta, x0) and (tb, x1),
our objective within this control set is to find the control variable that minimizes J and
designate it as the optimal control. If ta ̸= −1 or tb ̸= 1, we introduce the transformation
using Legendre polynomials:

τ =
tb − ta

2
t+

tb + ta
2

. (15)

The variable transformation results in t being in the interval [−1, 1], which corre-
sponds to τ being in the range [ta, tb].
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By utilizing Equation (15), we can express the optimal control problem stated in
Equations (12) – (14) as follows:

dx(t)

dt
= f

(
tb − ta

2
t+

tb + ta
2

, x(t), u(t)

)
(16)

and the trajectory x(t) that corresponds to the specified initial conditions:

x(−1) = x0, x(1) = x1, (17)

minimizes:

min J [x, u] =
tb − ta

2

∫ 1

−1

L

(
tb − ta

2
t+

tb + ta
2

, x(t), u(t)

)
dt. (18)

We express the approximate solution x(t) and u(t) of Equation (14) by expanding it
in terms of Legendre polynomials, using unknown coefficients. The coefficients are then
determined through LS-SVR procedure. We now seek Nth-degree Legendre interpolating
polynomials to x(t) and u(t)

xN (t) :=

M1∑
i=0

αiPi(t), uN (t) :=

M2∑
i=0

βiPi(t). (19)

Here, Pi represents the Legendre polynomial of degree i as defined in equation (2), and
M1,M2 denotes the number of basis functions. It is important to mention that we
exclude the bias term b because the first Legendre polynomial, as defined in formula (2),
serves the same purpose. We next approximate problem (18) by the following one:

JN =
tb − ta

2

∫ 1

−1

L

(
tb − ta

2
t+

tb + ta
2

, xN (t), uN (t)

)
dt, (20)

Valuation of dynamical system in zeros of Legendre polynomial:{
dx(ih)

dt
= el|h = 0.1, i = 0, . . . , N, l = 1, . . . , k

}
∪ {xN (ta)− x0 = ez|z = k + 1, . . . , 2k}
∪ {xN (tb)− x1 = es|s = 2k, . . . , 3k}.

(21)

Here k is the cardinality of the training. To obtain the unknown coefficients of equation
(19) within the network and apply the LS-SVR model to solve nonlinear optimal control
problems, it is necessary to modify the general form of LS-SVR to incorporate the specific
form of the problem and its constraints. This is done in an equivalent formulation of the
standard LS-SVR problem (9). we consider the following form of optimization problem
associated with (12) – (14):
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min
α,β,e

1

2

(
M1∑
i=0

αi
2 +

M2∑
i=0

βi
2

)
+

γ1
2

k∑
i=1

e2i + γ2JN

s.t.
dx(ih)

dt
= el,

xN (ta)− x0 = ez,

xN (tb)− x1 = es,

(22)

where the regularization parameters γ1 and γ2 are the regularization parameters for the
error.

4. NUMERICAL ANALYSIS

In this section, we present the numerical outcomes by applying our method to the given
examples using Maple software on a Windows operating system. We utilized a Core i5
processor, setting the precision to 60 digits. The mean absolute error (MAE) is reported
for comparing the difference between the exact solutions and LS-SVR approximate solu-
tions in the following tables, corresponding to each example. To report the MAE for the
first three examples, we provide two tables. The first table for the first three examples
presents the MAE for different values of M1,M2, with a fixed value of γ1, γ2 = 1014. The
second table for the first three examples reports the MAE different values of γ1,γ2 while
M1,M2 are set to 20. In each figure, we compare the exact solution and LS-SVR approx-
imate solution for M1,M2 = 20 and γ1, γ2 = 1014. In each of the last three examples,
we included a table that displays the MAE for different values of γ1,γ2. Additionally,
the values of M1 and M2 are considered constant for these examples.

Before presenting the experimental results for the problem under consideration, we
provide an algorithmic view of the entire procedure and explain how the constraints are
constructed in this study. Additionally, the complete code in Maple for the final example,
which is a two-dimensional fractional order problem, is included in Appendix A.

Example 1: We examine the first optimal control problem, which includes state X(t)
and control U(t) variables as follows:

min J [X,U ] =

∫ 1

0

(U2(t) +X2(t)) dt, t ∈ [0, 1],

the dynamic system of this problem is as follows:

U(t) =
dX(t)

dt
,

under the following boundary conditions:

X(0) = 0, X(1) =
1

2
.
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Algorithm 1 Pseudocode of the whole procedures and constraints construction

Require: Some packages such as the Optimization package.
1: Set the parameters such as γ1, γ2, and an interval [a, b].
2: Set the degree N used to form the unknown function based on the Legendre poly-

nomials.
3: Shifted interval ← 2x−a−b

b−a .
4: Calculate the training points. The training points are a set of the roots of the first

N + 1 Legendre polynomials in the Shifted interval.
5: If it exists, define the exact solution for comparison purposes.
6: Define the unknown function based on the Legendre polynomials of degree N .
7: Define the function J according to the optimal control problem at hand.
8: Define condition functions based on the conditions of the optimal control under

consideration.
9: Create an empty set of constraints: constraints← {}.

10: Set the counter variable k: k ← 1. This counter holds the number of constraints
created.

11: for each conditionj(·) do
12: for each i in training points do
13: constraints← constraints ∪ {conditionj(i) = e[k]}.
14: k ← k + 1.
15: end for
16: end for
17: Set the cost function of the LS-SVR model:

cost← 1

2
wTw +

γ1
2

k∑
i=0

e[i]2 + γ2J.

18: Solve the optimization problem (cost, constraints) obtained from the primal form
of the LS-SVR model.
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The analytical solution is given by [6]:

X(t) =
e(et − e−t)

2(e2 − 1)
,

U(t) =
e(et + e−t)

2(e2 − 1)
.

The MAE is reported in Table 1 for different values of M1,M2 with a fixed value of
γ1, γ2 = 1014. By increasing the values of M1,M2 the error decreased so that the
lowest error was obtained in M1,M2 = 20 and γ1, γ2 = 1014. Furthermore, the MAE is
reported in Table 2 for different values of γ1, γ2 with a fixed value of M1,M2 = 20. By
increasing the value of γ1, γ2 the error decreased so that the lowest error was obtained
in M1,M2 = 20 and γ1, γ2 = 1014.

Figure 1 illustrate the exact and approximated state variable, X(t) and also the exact
and approximated control variable, U(t).

M1=M2 MAE for X(t) MAE for U(t)
5 5.27× 10−8 1.58× 10−6

10 1.38× 10−15 1.03× 10−13

15 5.17× 10−17 2.01× 10−16

20 2.25× 10−19 3.78× 10−18

Tab. 1: Mean absolute error between the exact and approximated X(t) and U(t) for
different values of M1,M2 and a fixed γ1, γ2 = 1014.

γ1=γ2 MAE for X(t) MAE for U(t)
105 5.31× 10−8 2.37× 10−7

108 2.51× 10−13 5.71× 10−12

1011 5.11× 10−18 2.13× 10−17

1014 2.25× 10−19 3.78× 10−18

Tab. 2: Mean absolute error between the exact and approximated X(t) and U(t) for
different values of γ1, γ2 and a fixed M1,M2 = 20.

Fig. 1: The left figure presents the exact and approximated state variables X(t), while
the right figure presents the exact and approximated state variables U(t).
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Example 2: We will investigate another problem which is as follows:

min J [X,U ] =
1

2

∫ 1

0

(2X2(t) + U2(t)) dt, t ∈ [0, 1],

under the dynamic system:

dX(t)

dt
= U(t)− 1

2
X(t),

and boundary conditions:

X(0) = 1.

The analytical solution is as follows [11]:

X(t) =
1

2 + e−3
[2e−

3
2 t + e−3+ 3

2 t], 0 ⩽ t ⩽ 1,

U(t) =
−2

2 + e−3
[e−

3
2 t − e−3+ 3

2 t], 0 ⩽ t ⩽ 1.

The MAE is reported in Table 3 for different values of M1,M2 with a fixed value
of γ1, γ2 = 1014. By increasing the values ofM1,M2 the error decreased so that the
lowest error was obtained in M1,M2 = 20 and γ1, γ2 = 1014. Furthermore, the MAE is
reported in Table 4 for different values of γ1, γ2, with a fixed value of M1,M2 = 20 . By
increasing the value of γ1, γ2, the error decreased so that the lowest error was obtained
in M1,M2 = 20 and γ1, γ2 = 1014.

Figure 2 show the exact and approximated state variable, X(t) and also the exact
and approximated control variable, U(t).

M1=M2 MAE for X(t) MAE for U(t)
5 1.16× 10−6 2.04× 10−5

10 1.17× 10−13 1.01× 10−11

15 5.23× 10−17 2.16× 10−16

20 5.21× 10−17 2.11× 10−16

Tab. 3: Mean absolute error between the exact and approximated X(t) and U(t) for
different values of M1,M2 and a fixed γ1, γ2 = 1014.
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γ1=γ2 MAE for X(t) MAE for U(t)
105 5.07× 10−7 2.07× 10−6

108 5.03× 10−10 2.01× 10−9

1011 5.12× 10−13 2.11× 10−12

1014 5.21× 10−17 2.11× 10−16

Tab. 4: Mean absolute error between the exact and approximated X(t) and U(t) for
different values of γ1, γ2 and a fixed M1,M2 = 20.

Fig. 2: The left figure presents the exact and approximated state variables X(t), while
the right figure presents the exact and approximated state variables U(t).

Example 3: In the following example [13], the objective is to minimize:

min J [X,U ] =

∫ 1

0

(X(t)− 1

2
U2(t)) dt, t ∈ [0, 1],

with the dynamic system:

dX(t)

dt
= U(t)−X(t),

with boundary conditions:

X(0) = 0, X(1) =
1

2

(
1− 1

e

)2

,

and the analytical solution is:

X(t) = 1− 1

2
et−1 +

(
1

2e
− 1

)
e−t,

U(t) = 1− et−1.

The MAE is reported in Table 5 for different values of M1,M2 with a fixed value
of γ1, γ2 = 1014. By increasing the value of M1,M2 the error decreased so that the



524 M. BOLHASSANI, H. DANA MAZRAEH, K. PARAND

lowest error was obtained in M1,M2 = 20 and γ1, γ2 = 1014. Furthermore, the MAE is
reported in Table 6 for different values of γ1, γ2 with a fixed value of M1,M2 = 20. By
increasing the value of γ1, γ2, the error decreased so that the lowest error was obtained
in M1,M2 = 20 and γ1, γ2 = 1014.

Figure 3 illustrate the exact and approximated state variable, X(t) and also the exact
and approximated control variable, U(t).

M1=M2 MAE for X(t) MAE for U(t)
5 7.41× 10−7 1.41× 10−6

10 2.61× 10−15 3.03× 10−13

15 1.71× 10−16 3.01× 10−15

20 2.55× 10−18 1.43× 10−17

Tab. 5: Mean absolute error between the exact and approximated X(t) and U(t) for
different values of M1,M2 and a fixed γ1, γ2 = 1014.

γ1=γ2 MAE for X(t) MAE for U(t)
105 3.23× 10−7 3.81× 10−8

108 1.81× 10−14 4.01× 10−11

1011 1.01× 10−17 4.32× 10−16

1014 2.55× 10−18 1.43× 10−17

Tab. 6: Mean absolute error between the exact and approximated X(t) and U(t) for
different values of γ1, γ2 and a fixed M1,M2 = 20.

Fig. 3: The left figure presents the exact and approximated state variables X(t), while
the right figure presents the exact and approximated state variables U(t).

In the first three examples increasing the values ofM1,M2 and γ1, γ2 caused a decrease
in mean absolute error. In act, the best error was obtained in M1,M2 = 20 and γ1γ2 =
1014. It is worth mentioning that further increase in M1,M2 and γ1, γ2 more than
M1,M2 = 20 and γ1, γ2 = 1014 do not improve the accuracy considerably.
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Example 4: Take into account the subsequent nonlinear optimal control problem

min J [X,U ] =

∫ 1

0

(U2(t) +X6(t)) dt, t ∈ [0, 1],

subject to

dX(t)

dt
= X(t) + 2U2(t), X(0) = 1.

The analytical solution is given by [36]:

X(t) = et.

The MAE is reported in Table 7 for different values of γ1 and γ2, with a fixed values of
M1 = 2,M2 = 4. The rationale behind reporting γ2 for 100 and 101 is that the other
values for this parameter did not significantly improve the accuracy. Furthermore, γ1 has
been reported for values from 104 to 108. As evident from Table 7, the best results are
obtained when γ1 is set to 108 and γ2 is 101. Figure 4 show the exact and approximated
state variable, X(t), and also presents the absolute error between the exact and the
approximated X(t).

γ1 γ2 MAE for X(t)
104 100 3.7× 10−2

105 101 3.1× 10−2

105 100 3.6× 10−3

106 101 3.1× 10−3

106 100 3.4× 10−4

107 101 3.1× 10−4

107 100 3.3× 10−5

108 101 3.1× 10−5

Tab. 7: Mean absolute error between the exact and approximated X(t) and U(t) for
different values of γ1, γ2 and a fixed M1 = 2,M2 = 4.

Fig. 4: The left figure presents the exact and approximated state variables X(t), while
the right figure presents the absolute error between the exact and the approximated
X(t).
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Example 5: Consider the following nonlinear optimal control problem

min J [X,U ] =

∫ 1

0

(U2(t) +X2(t)) dt, t ∈ [0, 1],

subject to

dX(t)

dt
= −X2(t)− tU2(t), X(0) = 2.

The analytical solution is given by [36]:

X(t) =
1

(t+ 1/2)
.

The MAE in the example is reported in Table 8 for different values of γ1 and γ2, with
a fixed values of M1 = 12,M2 = 12. The rationale behind reporting γ2 for 100 and 101

is that the other values for this parameter did not significantly improve the accuracy.
Furthermore, γ1 has been reported for values from 101 to 106. As evident from Table 8,
the best results are obtained when γ1 is set to 106 and γ2 is 100. Figure 5 show the exact
and approximated state variable, X(t), and also presents the absolute error between the
exact and the approximated X(t).

γ1 γ2 MAE for X(t)
101 100 3.7× 10−2

102 101 2.1× 10−2

102 100 3.8× 10−3

103 101 2.2× 10−3

103 100 4.7× 10−4

104 101 2.2× 10−4

104 100 2.8× 10−5

105 101 2.1× 10−5

106 101 1.2× 10−5

105 100 2.1× 10−6

106 100 1.3× 10−6

Tab. 8: Mean absolute error between the exact and approximated X(t) and U(t) for
different values of γ1, γ2 and a fixed M1 = 12,M2 = 12.

Example 6: Consider the following nonlinear 2d fractional optimal control problem

min J [U, Y ] =

∫ 1

0

∫ 1

0

[(
U(x, t)− t4 sin(x)

)2
+
(
Y (x, t)− t3 cos(x)

)2]
dxdt,

subject to the nonlinear fractional dynamical system
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Fig. 5: The left figure presents the exact and approximated state variables X(t), while
the right figure presents the absolute error between the exact and the approximated
X(t).

D0.5U(x, t) = cos(U(x, t)) + 2 sin(x)Ux(x, t) + Uxx(x, t) + 6 sin(x)Y (x, t)

−
(
cos(t4 sin(x)) + t3 (t sin(2x)− t sin(x) + 3 sin(2x))

)
+

Γ(5) sin(x) t3.5

Γ(4.5)
,

and the Goursat-Darboux conditions

U(x, 0) = 0, U(0, t) = 0.

The analytical optimal solution of this example is ⟨U(x, t), Y (x, t)⟩ = ⟨t4 sin(x), t3 cos(x)⟩
[37]. In this example, U(x, t) is the state variable, and Y (x, t) is the control variable.
The MAE is reported in Table 9 for different values of γ1 and γ2, with a fixed values of
M1,M2,M2,M2 = 4. The rationale behind reporting γ1 for 100 and 101 is that the other
values for this parameter did not significantly improve the accuracy. Furthermore, γ2 has
been reported for values from 102 to 107. As evident from Table 9, the best results are
obtained when γ1 is set to 100 and γ2 is 107. Figure 6 shows the approximated U(x, t),
exact U(x, t), both approximated and exact U(x, t), and the absolute error between them
are presented. Similarly, figures related to the approximated Y (x, t), exact Y (x, t), both
approximated and exact Y (x, t), and the absolute error between them are also presented.

5. CONCLUSIONS

This paper introduces a numerical algorithm utilizing least squares support vector regres-
sion for solving optimal control problems using machine learning. The method proposed
in this study, called CLS-SVR, utilizes the Legendre orthogonal polynomials as the map-
ping functions to a higher dimensional future space for optimal control problems. This
method was implemented for several nonlinear optimal control examples and a nonlinear
2d fractional optimal control problem. Some of the primary advantages of the proposed
method include sparsity, well-conditioned generated matrices, rapid convergence, and
low computational cost. The numerical findings showed that the suggested method is
highly effective in resolving these problems. As future studies, researchers can employ
this method to solve various optimal control problems, including fractional optimal con-
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Fig. 6: Figures related to the approximated U(x, t), exact U(x, t), both approximated
and exact U(x, t), and the absolute error between them are presented. Similarly, figures
related to the approximated Y (x, t), exact Y (x, t), both approximated and exact Y (x, t),
and the absolute error between them are also presented.
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γ1 γ2 MAE for U(x, t) MAE for Y (x, t)
100 103 7.75× 10−2 1.2× 10−2

100 102 1.33× 10−2 1.14× 10−2

101 102 1.4× 10−2 6.4× 10−3

101 103 1.2× 10−2 3.77× 10−3

101 104 7.3× 10−3 3.2× 10−3

100 104 2.62× 10−3 8.86× 10−4

101 105 2.1× 10−3 8.2× 10−4

100 105 6.4× 10−4 1.54× 10−4

101 106 6.2× 10−4 1.1× 10−4

100 106 8.54× 10−5 1.82× 10−5

101 107 8.2× 10−5 1.2× 10−5

100 107 8.88× 10−6 1.86× 10−6

Tab. 9: Mean absolute error between the exact and approximated U(x, t) and Y (x, t)
for different values of γ1, γ2 and a fixed M1,M2,M2,M2 = 4.

trol. Furthermore, the hyper-parameters tune, which was done manually in this paper,
could be done by some search algorithms such as meta-heuristic algorithms.

(Received February 5, 2024)
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APPENDIX A

1 restart:

2 with(orthopoly):

3 with(Optimization):

4 with(Student[NumericalAnalysis ]):

5 Digits := 20:

6 a, b := 0, 1:

7 mygamma1 := 10^0:

8 mygamma2 := 10^7:

9 Numbers := 5:

10 N1 := Numbers - 1:

11 N2 := Numbers - 1:

12 N3 := Numbers - 1:

13 N4 := Numbers - 1:

14 shift := (2*x - a - b)/(b - a):

15 train := fsolve(P(Numbers , shift)):

16 u_exact := (x, t) -> t^4* sin(x):

17 y_exact := (x, t) -> t^3* cos(x):

18 y := unapply(sum(sum(w[z, zz]*P(z, 2*x - 1)*P(zz, 2*

t - 1), zz = 0,\ldots ,N2), z = 0,\ldots , N1), x,

t):

19 u := unapply(sum(sum(v[z, zz]*P(z, 2*x - 1)*P(zz, 2*

t - 1), zz = 0,\ldots ,N4), z = 0,\ldots ,N3), x, t

):

20 J := 1/2* int((u(x, t) - t^4*sin(x))^2 + (y(x, t) - t

^3* cos(x))^2, x = a,\ldots ,b, t = a,\ldots ,b):

21 condition1 := unapply(fracdiff(u(x, t), t, 0.5) -

cos(u(x, t)) - 2*sin(x)*diff(u(x, t), x) - diff(u

(x, t), xx) - 6*sin(x)*y(x, t) + cos(t^4*sin(x))

+ t^3*(t*sin(2*x) - t*sin(x) + 3*sin(2*x)) -

GAMMA (5)*sin(x)*t^3.5/ GAMMA (4.5) , x, t):

22 condition2 := unapply(u(x, 0), x):

23 condition3 := unapply(u(0, t), t):

24 constraints := {}:

25 k := 1:

26 for i in train do

27 for j in train do

28 constraints := constraints union {condition1(i, j) =

e[k]}:

29 k := k + 1:

30 end do:

31 end do:

32 for i in train do
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33 constraints := constraints union {condition2(i) = e[

k]}:

34 k := k + 1:

35 constraints := constraints union {condition3(i) = e[

k]}:

36 k := k + 1:

37 end do:

38 cost := 1/2*( sum(sum(w[c1 , c2]^2, c2 = 0,\ldots ,N2),

c1 = 0,\ldots ,N1) + sum(sum(v[c3 , c4]^2, c4 =

0,\ldots ,N4), c3 = 0,\ldots ,N3)) + mygamma1 /2* sum

(e[c5]^2, c5 = 1,\ldots ,k - 1) + mygamma2*J:

39 result := NLPSolve(cost , constraints):

40 assign(result [2]):

41 # Visualization and calculating the mean absolute

error ‘

42 plot3d(u(x, t), x = 0,\ldots ,1, t = 0,\ldots ,1,

labels = ["x", "t", "Approximated u(x,t)"],

labeldirections = [horizontal , horizontal ,

vertical], axesfont = [Times , Normal , 15],

labelfont = [Times , Normal , 20]);

43 plot3d(u_exact(x, t), x = 0,\ldots ,1, t = 0,\ldots

,1, labels = ["x", "t", "Exact u(x,t)"],

labeldirections = [horizontal , horizontal ,

vertical], axesfont = [Times , Normal , 15],

labelfont = [Times , Normal , 20]);

44 plot3d ([u(x, t), u_exact(x, t)], x = 0,\ldots ,1, t =

0,\ldots ,1, labels = ["x", "t", "Approximated

and exact u(x,t)"], labeldirections = [horizontal

, horizontal , vertical], axesfont = [Times ,

Normal , 15], labelfont = [Times , Normal , 20]);

45 plot3d(abs(u(x, t) - u_exact(x, t)), x = 0,\ldots ,1,

t = 0,\ldots ,1, labels = ["x", "t", "Absolute

error between the exact and the approximated u(x,

t)"], labeldirections = [horizontal , horizontal ,

vertical], axesfont = [Times , Normal , 15],

labelfont = [Times , Normal , 12]);

46 plot3d(y(x, t), x = 0,\ldots ,1, t = 0,\ldots ,1,

labels = ["x", "t", "Approximated y(x,t)"],

labeldirections = [horizontal , horizontal ,

vertical], axesfont = [Times , Normal , 15],

labelfont = [Times , Normal , 20]);

47 plot3d(y_exact(x, t), x = 0,\ldots ,1, t = 0,\ldots

,1, labels = ["x", "t", "Exact y(x,t)"],

labeldirections = [horizontal , horizontal ,

vertical], axesfont = [Times , Normal , 15],
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labelfont = [Times , Normal , 20]);

48 plot3d ([y(x, t), y_exact(x, t)], x = 0,\ldots ,1, t =

0 ,\ldots ,1, labels = ["x", "t", "Approximated

and exact y(x,t)"], labeldirections = [horizontal

, horizontal , vertical], axesfont = [Times ,

Normal , 15], labelfont = [Times , Normal , 20]);

49 plot3d(abs(y(x, t) - y_exact(x, t)), x = 0,\ldots ,1,

t = 0,\ldots ,1, labels = ["x", "t", "Absolute

error between the exact and the approximated y(x,

t)"], labeldirections = [horizontal , horizontal ,

vertical], axesfont = [Times , Normal , 15],

labelfont = [Times , Normal , 12]);

50 E1 := 0:

51 E2 := 0:

52 for i in train do

53 for j in train do

54 E1 := E1 + abs(u(i, j) - u_exact(i, j)); E2 := E2 +

abs(y(i, j) - y_exact(i, j)):

55 end do:

56 end do:

57 MAE_u := evalf(E1/( Numbers*Numbers));

58 MAE_y := evalf(E2/( Numbers*Numbers));

Listing 1: Maple Code of Example 6


