
Zpravodaj Československého sdružení uživatelů TeXu

Ondřej Sojka; Petr Sojka; Jakub Máca
A Roadmap for Universal Syllabic Segmentation

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 33 (2023), No. 3-4, 125–138

Persistent URL: http://dml.cz/dmlcz/151995

Terms of use:
© Československé sdružení uživatelů TeXu, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/151995
http://dml.cz

A Roadmap for Universal Syllabic Segmentation
Ondřej Sojka, Petr Sojka, Jakub Máca

Space- and time-effective segmentation (word hyphenation) of natural languages
remains at the core of every document rendering system, be it TEX, web browser,
or mobile operating system. In most languages, segmentation mimicking syllabic
pronunciation is a pragmatic preference today.

As language switching is often not marked in rendered texts, the typeset-
ting engine needs universal syllabic segmentation. In this article, we show the
feasibility of this idea by offering a prototype solution to two main problems:
A) Using Patgen to generate patterns for several languages at once; and
B) lack of Unicode support in tools like Patgen or TEX (patterns in UTF-16

encoding) is missing.
For A), we have applied it to generating universal syllabic patterns from

wordlists of nine syllabic, as opposed to etymology-based, languages (namely,
Czech, Slovak, Georgian, Greek, Polish, Russian, Turkish, Turkmen, and Ukraini-
an). For B), we have created a version of Patgen that uses the Judy array data
structure and compared its effectiveness with the trie implementation.

With the data from these nine languages, we show that:
A) developing universal, up-to-date, high-coverage, and highly generalized

universal syllabic segmentation patterns is possible, with a high impact on
virtually all typesetting engines, including web page renderers; and

B) bringing wide character support into the hyphenation part of the TEX suite
of programs is possible by using Judy arrays.

Keywords: syllabification, hyphenation, universal syllabic patterns preparation

1. Motivation

Justified alignment achieved with a quality hyphenation algorithm is both opti-
cally pleasing and saves time to read, in addition to saving trees. Only quality
hyphenation allows interword spaces to be as uniform as possible, close to Guten-
berg’s ideal of spaces of fixed width. A high coverage, space- and time-effective
hyphenation (segmentation) algorithm of all natural languages is badly needed1

This is an updated and enriched version of the paper [1] published in the TUG 2023
proceedings issue of the TUGboat journal.

1https://bugzilla.mozilla.org/show_bug.cgi?id=672320

doi: 10.5300/2023-3-4/125 125

https://en.wikipedia.org/wiki/Judy_array
https://bugzilla.mozilla.org/show_bug.cgi?id=672320

as it remains at the core of every document rendering system, be it TEX, web
browsers supporting HTML with CSS 3, or an operating system providing text
rendering for mobile applications.

In most languages, segmentation mimicking syllabic pronunciation is prag-
matically preferred today. As language switching is often not marked in texts,
and cannot be safely guessed from the words themselves, language-agnostic ortho-
graphic syllabification, is needed. We call this task universal syllabic segmentation,
or in short, the syllabification problem.

The syllabification problem has been tackled by several finite state [2] or, more
recently, machine learning techniques [3, 4, 5, 6]. Bartlett et al. [3] uses structured
support vector machines (SVM) to solve syllabification as a tagging problem.
Krantz et al. [7] leverage modern neural network techniques with long short-term
memory (LSTM) cells, a convolutional component, and a conditional random field
(CRF) output layer, and demonstrated cross-linguistic generalizability, syllabifying
English, Dutch, Italian, French, Manipuri, and Basque datasets together.

From an orthographic viewpoint (hyphenation), universal language solutions
today should reflect the Unicode standard [8]. Internal support for full (multibyte)
Unicode, a must in today’s operating systems and applications, is missing in the
TEX family of programs, e.g. in Patgen and TEX itself. The internal processing is
thus limited by the internal one-byte representation of language characters and
is hardwired into the optimized code of these programs. Therefore, processing
CJK (Chinese, Japanese, Korean) languages or sets of languages whose character
representations need multibyte handling is close to impossible. Special “hacks”
are needed for character and font encodings both on the input side (package
inputenc) and output side (packages fontenc or fontspec) are not backed by
internal wide character support.

Since both TEX and Patgen have hardwired 8-bit character representations, to
develop practically useable universal syllabic hyphenation, one needs to overcome
these constraints.

In this paper we a) constructively show the feasibility of preparation of
universal syllabic patterns, b) demonstrate a version of Patgen with wide character
support, and c) discuss further steps to do in the TEX program suite to make
language hyphenation Unicode-compliant.

The paper is structured as follows. In Section 2 we define the terminology
and describe the language data we have used in our experiments. Section 3
reminds the reader about the principles of the hyphenation algorithm in TEX
and of Patgen-based pattern generation and pattern representation possibilities.
Section 4 evaluates the experiments with universal pattern generation. In Section 5
we elaborate on possible routes towards wide character support in the typesetting
engines and Patgen. As usual, we sum up and conclude in the final Section 6.

126

“The concept of the syllable is cross-linguistic, though formal definitions
are rarely agreed upon, even within a language. In response, data-driven

syllabification methods have been developed to learn from syllabified examples. . . .
Syllabification can be considered a sequence labeling task where each label delineates

the existence or absence of a syllable boundary.” [7]
2. Syllabification

Human beings convey meaning by pronouncing words as sequences of phonemes.
Phonology studies the structure of phonemes we are able to pronounce as sylla-
bles [9]. Etymologically, a syllable is an Anglo-Norman variation of Old French
sillabe, from Latin syllaba, from Greek (syllabē), “that which is held together; a
syllable, several sounds or letters taken together” to make a single sound. [10]

When we delineate boundaries in the orthographic representation of words,
we speak about hyphenation of words as sequences of characters.

2.1. Hyphenation as syllabification
There are subtle differences between syllabification and hyphenation, though.
Let us take the Czech word sestra. The Czech language authorities [11] allow
hyphenations as se-s-t-ra, while agreeing that there are only two syllables based
on Consonant and Vowel sequencing: either se-stra (CV-CCCV), or ses-tra
(CVC-CCV), or sest-ra (CVCC-CV). As with hyphenation, defining segments for
syllabification is full of exceptions. The Czech sentence Strč prst skrz krk or word
scvrnkls (CCCCCCCC) contain consonants-only syllables.

There are also rare cases where word segmentation should differ in different
contexts. It may be necessary within one language (different hyphenation re-cord
and rec-ord depending on its part of speech), or between different languages. When
developing universal syllabic patterns, these theoretically possible segmentations
should not be allowed in the input hyphenated wordlist used for training. But
this should not matter, as e.g. Liang’s hyphen.tex patterns do not cover more
than 10% of positions [12] and few complain about this coverage.

2.2. Data preparation
To show the feasibility of universal pattern generation, we have collected wordlists
for a dozen languages, as shown in Table 1. The chosen languages a) have a wide
diversity in alphabets and syllables and b) have existing hyphenation patterns
as an approximation for syllable segments. The wordlists were collected from
public sources or provided for our research as stratified dictionaries from TenTen
corpora [15] by Lexical Computing. We used wordlists sorted by frequency and cut
at below 5% of word occurrences, to eliminate typos appearing in documents. Each
tenth word was taken into a wordlist—a stratified sampling technique inspired by

127

Table 1: Language resources and patterns used in pattern development exper-
iments. All data was converted to UTF-8 and contains lowercase alphabetic
characters only. Alphabet size (# chars) counts characters appearing in the lan-
guage wordlist collected. Languages were chosen for diversity of size of patterns
and syllables.

Language #words #chars #patterns #syllables source, alphabet
Czech+Slovak (cz+sk)606,499 47 8,231 2,288,413 [13], Latin
Georgian (ka) 50,644 33 2,110 224,799 [14], Georgian
Greek (el-monoton) 10,432 48 1,208 37,736 [14], Greek
Panjabi (pa) 892 52 60 2,579 [14], Gurmukhi
Polish (pl) 20,490 34 4,053 65,510 [14], Latin
Russian (ru) 19,698 33 4,808 75,532 [14], Cyrillic
Tamil (ta) 46,526 48 71 209,380 [14], Tamil
Telugu (te) 28,849 66 72 125,508 [14], Telugu
Thai (th) 757 64 4,342 1,185 [14], Thai
Turkish (tr) 24,634 32 597 103,989 [14], Latin
Turkmen (tk) 9,262 30 2,371 33,080 [14], Latin
Ukrainian (ua) 17,007 33 1,990 65,099 [14], Cyrillic

Knuth [16] that was already used successfully in pattern generation [17]. Wordlists
were hyphenated by legacy patterns, mostly taken from [14].

Alphabet analysis and statistics are shown in Table 2. The total number of
letters appearing in all languages exceeds 245, the maximum number of letters
that current Patgen can support. This is why wide-character representation
(Unicode UTF-16) support in Patgen (and then in the hyphenator library in a
typesetting engine) would be needed to extend our generation to more languages.

3. Pattern development

The idea of squeezing the hyphenated wordlist into the set of patterns was
originated in the dissertation of Frank Liang [12], supervised by Donald Knuth.
For the automated generation of patterns from a wordlist, Liang wrote the Patgen
program. Patgen was one of the very first programs that harnessed the power
of data with supervised machine learning. Programmed originally to support
English and ASCII, it was later extended to be usable for 8-bit characters and
for wordlists that contain at most 245 characters [18]. It is capable of efficient
lossy or lossless compression of hyphenated dictionaries, with several orders of

128

magnitude compression ratio. Generated patterns have minimal length, e.g., the
shortest context possible, which results in their generalization properties.

In general, exact lossless pattern minimization is non-polynomial by reduc-
tion to the minimum set cover problem [19]. For Czech, exact lossless pattern
generation is feasible [20], while reaching 100% coverage and simultaneously no
errors. Strict pattern minimality (size) is not an issue nowadays.

This idea and its realization is a programming pearl. Motivated by space
and time constraints, instead of the classical solution of dictionary problem in
the logarithmic time of dictionary size, the word hyphenation is computed from
patterns in constant time, where the constant is given by word length.

Space needed for patterns in the packed trie data structure is typically in
tens of kB, which is several orders of magnitude smaller than the wordlist size.
With fine-tuned parameters of pattern generation in the so-called levels, one can
prepare patterns with zero errors and almost full coverage of hyphenation points
from the input dictionary.

For practical use, patterns are collected in the repository maintained by the
TEX community [14]. It is no surprise that most if not all leading typesetting
engines deploy this “competing pattern engineering technology” [21].

Table 2: Language alphabet overlaps. Cells contain a number of lowercase
letters that overlap between languages. In total, 13 languages contain in total
412 different lowercase letters, more than Patgen is capable of digesting.

Language cz+sk ka el pa pl ru ta te th tr tk ua
Czech+Slovak (cz+sk) 47 0 0 0 26 0 0 0 0 25 28 0
Georgian (ka) 0 33 0 0 0 0 0 0 0 0 0 0
Greek (el-monoton) 0 0 48 0 0 0 0 0 0 0 0 0
Panjabi (pa) 0 0 0 52 0 0 0 0 0 0 0 0
Polish (pl) 26 0 0 0 34 0 0 0 0 23 22 0
Russian (ru) 0 0 0 0 0 33 0 0 0 0 0 29
Tamil (ta) 0 0 0 0 0 0 48 0 0 0 0 0
Telugu (te) 0 0 0 0 0 0 0 66 0 0 0 0
Thai (th) 0 0 0 0 0 0 0 0 64 0 0 0
Turkish (tr) 25 0 0 0 23 0 0 0 0 32 25 0
Turkmen (tk) 28 0 0 0 22 0 0 0 0 25 30 0
Ukrainian (ua) 0 0 0 0 0 29 0 0 0 0 0 33

129

h y p h e n a t i o n
p1 1n a
p1 1t i o n
p2 n2a t
p2 2i o
p2 h e2n
p3 h y3p h
p4 h e n a4
p5 h e n5a t

h0y3p0h0e2n5a4t2i0o0n

hy-phen-ation → 2 6
. . . → . . .
. . . → . . .
key → data
Solution to the dictionary problem:
For key part (the word) to store
the data part (its division)

Figure 1: Eight patterns “compete” how to hyphenate hyphenation. Winners are
patterns hy3ph and hen5at generated at the highest covering level (odd numbers)
generation. The level hierarchy allows for storing exceptions, exceptions to
exceptions, exceptions to exceptions to exceptions, . . . , with character contexts
as parameters. [12]

3.1. Patterns
The patterns “compete” with each other whether to split the word at a position,
given varying characters in both side contexts; see Figure 1.

We have shown how effective and powerful the technique is, and that its power
depends on the parameters of pattern generation [20]. The key is the proper setting
of Patgen parameters for pattern generation. The idea of universal segmentation
with Patgen has been proposed already in [22]. There, we demonstrated the
techniques for the development of two languages together, Czech and Slovak, and
developed a joint wordlist and patterns [13].

We wanted to extend the technique to other Slavic and syllabic languages.
The bottleneck for adding new languages was Patgen and TEX’s constraint of
one-byte character support only for storing patterns in tries. We thought of using
a modern data structure that would allow wide character trie representation.
That was the task for a bachelor’s thesis: use a Judy array [23].

3.2. Judy arrays
The Judy array, also known as simply Judy, is a data structure that implements
a sparse dynamic array, allowing for versatile applications such as dynamically
sized arrays and associative arrays. Judy is internally implemented as a tree
structure, where every internal node has 256 ancestor nodes. The most interesting
thing about this structure is that it tries to be as memory-efficient as possible
by effectively using the available cache, avoiding unnecessary access to the main
memory. As a result, Judy is both fast and memory-efficient.

130

The feasibility of utilizing the Judy structure for storing hyphenation patterns
is demonstrated in the thesis [23]. In Chapter 4, it is shown that Judy has
the potential to be faster and more memory-efficient compared to the original
trie when working with patterns. Further, Chapter 5 explores the potential
integration of Judy into Patgen and the consequent impact on Patgen’s generation
process. The results from this chapter indicate that rewriting Patgen with Judy
is possible but would require an almost complete overhaul of Patgen’s code and
algorithms. This redevelopment would yield a Patgen version capable of handling
input of any kind, enabling the generation of patterns composed of arbitrary
alphabets. However, it is important to note that the generation process would be
approximately four times slower than the current implementation. This is due to
the hiding of access to the inner nodes of stored tries in Judy. As this access is
not needed in TEX for the hyphenation of individual words, using some variant
of Judy in a TEX successor would make hyphenation faster.

Table 3: Different word hyphenation overlaps. Cells contain a number of the same
words that are segmented differently between languages. Differences are caused
typically by suboptimal coverage patterns used to hyphenate the wordlist (vi-
bram vs. vib-ram, up-gra-de vs. upg-ra-de). We remove the differently hyphenated
words when joining wordlists for the final syllabic generation.

Language cz+sk ka el pa pl ru ta te th tr tk ua
Czech+Slovak (cz+sk) 9 0 0 0 388 0 0 0 0 640 69 0
Georgian (ka) 0 0 0 0 0 0 0 0 0 0 0 0
Greek (el-monoton) 0 0 0 0 0 0 0 0 0 0 0 0
Panjabi (pa) 0 0 0 0 0 0 0 0 0 0 0 0
Polish (pl) 388 0 0 0 0 0 0 0 0 187 9 0
Russian (ru) 0 0 0 0 0 0 0 0 0 0 0 125
Tamil (ta) 0 0 0 0 0 0 0 0 0 0 0 0
Telugu (te) 0 0 0 0 0 0 0 0 0 0 0 0
Thai (th) 0 0 0 0 0 0 0 0 0 0 0 0
Turkish (tr) 640 0 0 0 187 0 0 0 0 0 80 0
Turkmen (tk) 69 0 0 0 9 0 0 0 0 80 0 0
Ukrainian (ua) 0 0 0 0 0 125 0 0 0 0 0 0

3.3. Universal pattern generation
To pursue the idea of universal syllabic pattern generation, we have checked
whether the legacy patterns hyphenate the same valid word in different languages
differently. The result with a short discussion is in Table 3. The expectation

131

Table 4: Statistics from the generation of universal patterns for cz+sk, ka, el, pl, ru,
tr, tk, ua with custom parameters and \lefthyphenmin=2, \righthyphenmin=2.
Generation took 33.23 seconds, 11,238 patterns, 77 kB.

Level Patterns Good Bad Missed Lengths Params
1 2,407 2,066,410 280,020 70,588 1 3 1 3 12
2 2,375 2,025,245 8,866 111,753 2 4 1 1 5
3 4,626 2,118,063 19,213 18,935 3 6 1 2 4
4 2,993 2,117,739 5,920 19,259 3 7 1 4 2

Table 5: Statistics from the generation of universal patterns for cz+sk, ka, el,
pl, ru, tr, tk, ua with correct optimized parameters and \lefthyphenmin=2,
\righthyphenmin=2. Generation took 35.43 seconds, 29,742 patterns, 219 kB.

Level Patterns Good Bad Missed Lengths Params
1 7,188 2,049,375 164,224 87,623 1 3 1 5 1
2 4,108 2,042,249 14,094 94,749 1 3 1 5 1
3 15,010 2,134,692 20,544 2,306 2 6 1 3 1
4 6,920 2,133,458 815 3,540 2 7 1 3 1

Table 6: Statistics from the generation of universal patterns for cz+sk, ka,
el, pl, ru, tr, tk, ua with size optimized parameters and \lefthyphenmin=2,
\righthyphenmin=2. Generation took 29.75 seconds, 14,321 patterns, 101 kB.

Level Patterns Good Bad Missed Lengths Params
1 1,201 2,092,928 598,321 44,070 1 3 1 2 20
2 2,695 1,736,372 5,274 400,626 2 4 2 1 8
3 4,835 2,102,803 20,094 34,195 3 5 1 4 7
4 6,508 2,099,607 210 37,391 4 7 3 2 1

that syllable-forming principles are universal, as phonology theory suggests, is
confirmed. The errors we have found were due to the difference between hyphen-
ation and syllabification caused by inconsistent markup rather than a principled
difference in word morphology, e.g. a compound word segmented in one language,
and given as a single word in the other.2

2Compound words can evolve in perception into single words even within one language.
Examples are the evolution of e-mail into email or roz-um into syllabic ro-zum in Czech.

132

Table 7: Comparison of the efficiency of different approaches to pattern generation
of Czechoslovak and of universal patterns. Note that the size of universal patterns
grows sublinearly with the number of languages. The generalization ability of
universal patterns is only slightly worse than that of Czechoslovak ones. The
experience from the development of Czechoslovak patterns shows that performance
could be improved by consistent markup of wordlist data.

Wordlist Parameters Good Bad Missed Size Patterns
Czechoslovak custom 99.87% 0.03% 0.13% 32 kB 5,907
Czechoslovak correctopt 99.99% 0.00% 0.01% 45 kB 8,231
Czechoslovak sizeopt 99.67% 0.00% 0.33% 40 kB 7,417
Universal custom 99.10% 0.28% 0.90% 77 kB 11,238
Universal correctopt 99.83% 0.04% 0.17% 219 kB 29,742
Universal sizeopt 98.25% 0.01% 1.75% 101 kB 14,321

Table 8: Results of 10-fold cross-validation (learning on 90%, and testing on
remaining 10%). Generalization properties (performance on words not seen during
training) are compared with Czechoslovak patterns. By adding 7 languages, the
generalization abilities of universal patterns are only slightly worse.

Wordlist Parameters Good Bad Missed
Czechoslovak custom 99.85% 0.22% 0.15%
Czechoslovak correctopt 99.95% 0.15% 0.05%
Czechoslovak sizeopt 99.58% 0.18% 0.42%
Universal custom 99.04% 1.07% 0.96%
Universal correctopt 99.37% 1.30% 0.63%
Universal sizeopt 98.42% 0.95% 1.56%

We removed all colliding words when joining wordlists into the wordlist
universal pattern generation. As mentioned earlier, we collected words for nine
languages (cz, sk, ka, el, pl, ru, tr, tk, ua).

We generated universal patterns with the same three sets of Patgen parameters
(custom, correct optimized, and size optimized) as when generating Czechoslovak
patterns. The results are shown in Tables 4 (custom), 5 (correct optimized) and 6
(size optimized). The results are comparable with generation for two languages
and confirm the feasibility of universal pattern development.

We did not pursue 100% coverage at all costs because the source data is noisy,
and we do not want the patterns to learn all the typos and inconsistencies. Also,
the size of the new languages was rather small, compared to Czechoslovak.

133

4. Evaluation

We evaluated the quality of developed patterns by two metrics. Coverage of
hyphenation points in the training wordlist tells how the patterns correctly
predicted hyphenation points used in training. Generalization means how the
patterns behave on unseen data, on words not available in the data used during
Patgen training. The methodology is the same as we used in the development of
Czechoslovak patterns [13].

In Table 7, we compare the efficiency of different approaches to hyphenating
2 languages and 9 languages from one pattern set. We see that the performance of
universal patterns is comparable in size and quality to double- or single-language
ones—there is only a negligible difference. Table 8 shows that generalization
qualities, given the small input size wordlists, are very good, and comparable to
the fine-tuned Czechoslovak results. Investing in the purification and consistency
of input wordlists (as we did for Czech and Slovak) would result in near-perfect
syllabic patterns with almost 100% coverage and no errors.

5. Future work

A natural further step is to merge further languages where the syllabic principle
is used for hyphenation. For that, one would need a version of Patgen we
provisionally call UniPatgen. This version would support Unicode not only in I/O
but also internally as a wide character (UTF-16) character encoded in the pattern
representation in either a packed trie or Judy array. This would allow merging
more languages without increasing the computational complexity of hyphenation,
and only a sublinear increase of pattern size. We believe that coverage may
differ from 100% only by words that should be hyphenated differently in different
languages—our estimate is in small, single-digit percents, while, as mentioned
above, the widely-used hyphen.tex patterns do not cover 10+%!

Another possible extension in pattern development is the support of a specific
hyphenation penalty for compound word borders. This extension, discussed
already 30 years ago [17], would generate patterns first for compound words, and
only after fixing them continue with pattern generation for all other hyphenation
points. The TEX engine would then set the hyphenation penalties depending
on level ranges in patterns found for the hyphenated word. This extension is
orthogonal with support for universal patterns but might require increasing the
maximal number of levels allowed in patterns to two digits.

There are several open questions for the TEX development community:
1. Should the universal syllabic patterns ever be developed?

134

2. If so, should the needed internal wide character representations be added
to the TEX suite of programs? That is, to TEX-based engines not yet
supporting it3 and Patgen or UniPatgen.

3. If not, should it be handled by external segmenters on TEX’s input, based
on Patgen’s proposed successor, UniPatgen?

4. If UniPatgen was developed, should it be added to the distribution, together
with Unicode patterns included and supported in repositories like [14]?

5. Should UniPatgen, and LuaTEX, add a dependency on a Judy library, or
should a more conservative solution be sought and implemented? With
a conservative solution, which data structure to use for storing patterns?
Should the memory be allocated dynamically, to overcome the abundant
explosion of format size that stores the patterns, as output by iniTEX?

6. Should UniPatgen (and TEX engines) additionally and orthogonally support
patterns and a different hyphenation penalty for compound word borders,
currently available in e.g. the German wordlist [24]?

We would appreciate qualified opinions on these decisions being sent to authors.

“All we are saying, give patterns a chance.”
Our paraphrase of John Lennon’s protest song refrain6. Conclusion

Preparation of language-agnostic, i.e. universal, syllabic segmentation patterns
could be done! We have demonstrated this possibility by generating patterns
based on the wordlists of nine languages with current Patgen. They have superb
generalization qualities, high coverage of hyphenation points (more than most
legacy patterns), and virtually no errors. Their use could have a high impact on
virtually all typesetting engines including web page renderers.

Supporting wide characters in Patgen is a critical requirement for adding
more languages. We have shown that bringing wide character support into the
hyphenation part of the TEX suite of programs is possible by using the Judy
array. It will allow generating and deploying patterns for the whole Unicode
character set. We have discussed a possible roadmap to make this a reality in
typesetting engines including TEX successors.

Acknowledgments
We are indebted to Don Knuth for questioning the common properties of Czech
and Slovak hyphenation during our presentation of [20] at TUG 2019, which has
led us in this research direction. We also thank everyone on whose shoulders
we build our work, e.g. for wordlists by Lexical Computing, and to all who
commented on our work at TUG 2021 [13] and TUG 2023. We thank CSTUG for
TUG travel support.

3https://cs.overleaf.com/learn/latex/TeX_primitives_listed_by_TeX_engine

135

https://en.wikipedia.org/wiki/Wide_character
https://en.wikipedia.org/wiki/Judy_array
https://en.wikipedia.org/wiki/Judy_array
https://cs.overleaf.com/learn/latex/TeX_primitives_listed_by_TeX_engine

References

1. SOJKA, Ondřej; SOJKA, Petr; MÁCA, Jakub. A roadmap for universal syl-
labic segmentation. TUGboat. 2023, vol. 44, no. 2. issn 0896-3207. Dostupné
také z: https://doi.org/10.47397/tb/44-2/tb137sojka-syllabic.

2. HARALAMBOUS, Yannis. New hyphenation techniques in Ω2. TUGboat.
2006, vol. 27, no. 1, s. 98–103. Dostupné také z: https : / / tug . org /
TUGboat/tb27-1/tb86haralambous-hyph.pdf.

3. BARTLETT, Susan; KONDRAK, Grzegorz; CHERRY, Colin. Automatic
Syllabification with Structured SVMs for Letter-to-Phoneme Conversion. In:
Proceedings of ACL-08: HLT. Columbus, Ohio: Assoc. for Computational
Linguistics, 2008, s. 568–576. Dostupné také z: https://aclweb.org/
anthology/P08-1065.

4. MARCHAND, Yannick; ADSETT, Connie R.; DAMPER, Robert I. Au-
tomatic Syllabification in English: A Comparison of Different Algorithms.
Language and Speech. 2009, vol. 52, no. 1, s. 1–27. Dostupné z doi: 10.
1177/0023830908099881.

5. SHAO, Yan; HARDMEIER, Christian; NIVRE, Joakim. Universal Word
Segmentation: Implementation and Interpretation. Transactions of the As-
sociation for Computational Linguistics. 2018, vol. 6, s. 421–435. Dostupné
z doi: 10.1162/tacl_a_00033.

6. TROGKANIS, Nikolaos; ELKAN, Charles. Conditional Random Fields
for Word Hyphenation. In: Proceedings of the 48th Annual Meeting of the
ACL. Uppsala, Sweden: ACL, 2010, s. 366–374. Dostupné také z: https:
//aclweb.org/anthology/P10-1038.

7. KRANTZ, Jacob; DULIN, Maxwell; PALMA, Paul De. Language-
Agnostic Syllabification with Neural Sequence Labeling. CoRR. 2019,
vol. abs/1909.13362. Dostupné také z: https://arxiv.org/abs/1909.
13362.

8. THE UNICODE CONSORTIUM. The Unicode Standard: Worldwide Char-
acter Encoding. Version 15.1. Mountain View, CA, USA: Unicode, Inc.,
2023. isbn 978-1-936213-32-0. Dostupné také z: https://unicode.org/
versions/Unicode15.1.0.

9. MADDIESON, Ian. Syllable Structure. In: DRYER, Matthew S.; HASPEL-
MATH, Martin (eds.). The World Atlas of Language Structures Online.
Leipzig: Max Planck Institute for Evolutionary Anthropology, 2013. Do-
stupné také z: https://wals.info/chapter/12.

10. Online Etymology Dictionary. "syllable" [online]. [N.d.]. [cit. 2023-07-23].
Dostupné z: https://www.etymonline.com/word/syllable.

11. Internetová jazyková příručka (Internet Language Reference Book) [online].
2023. [cit. 2023-07-06]. Dostupné z: https://prirucka.ujc.cas.cz/?id=
135.

136

https://doi.org/10.47397/tb/44-2/tb137sojka-syllabic
https://tug.org/TUGboat/tb27-1/tb86haralambous-hyph.pdf
https://tug.org/TUGboat/tb27-1/tb86haralambous-hyph.pdf
https://aclweb.org/anthology/P08-1065
https://aclweb.org/anthology/P08-1065
https://doi.org/10.1177/0023830908099881
https://doi.org/10.1177/0023830908099881
https://doi.org/10.1162/tacl_a_00033
https://aclweb.org/anthology/P10-1038
https://aclweb.org/anthology/P10-1038
https://arxiv.org/abs/1909.13362
https://arxiv.org/abs/1909.13362
https://unicode.org/versions/Unicode15.1.0
https://unicode.org/versions/Unicode15.1.0
https://wals.info/chapter/12
https://www.etymonline.com/word/syllable
https://prirucka.ujc.cas.cz/?id=135
https://prirucka.ujc.cas.cz/?id=135

12. LIANG, Franklin M. Word Hy-phen-a-tion by Com-put-er. 1983. Dostupné
také z: https://tug.org/docs/liang/liang- thesis.pdf. Dis. pr.
Stanford University.

13. SOJKA, Petr; SOJKA, Ondřej. New Czechoslovak Hyphenation Patterns,
Word Lists, and Workflow. TUGboat. 2021, vol. 42, no. 2. issn 0896-3207.
Dostupné také z: https://doi.org/10.47397/tb/42-2/tb131sojka-
czech.

14. ROSENDAHL, Arthur; MIKLAVEC, Mojca. TEX hyphenation patterns.
TUG, 2023. Dostupné také z: http://hyphenation.org/tex. Accessed
2023-07-05.

15. JAKUBÍČEK, Miloš; KILGARRIFF, Adam; KOVÁŘ, Vojtěch; RYCHLÝ,
Pavel; SUCHOMEL, Vít. The TenTen Corpus Family. In: Proc. of the 7th
International Corpus Linguistics Conference (CL). Lancaster, 2013, s. 125–
127.

16. KNUTH, Donald E. 3 : 16 Bible Texts Illuminated. A-R Editions, Inc., 1991.
isbn 0-89579-252-4.

17. SOJKA, Petr; ŠEVEČEK, Pavel. Hyphenation in TEX—Quo Vadis? TUG-
boat. 1995, vol. 16, no. 3, 280–289. Dostupné také z: https://tug.org/
TUGboat/tb16-3/tb48soj1.pdf.

18. LIANG, Franklin M.; BREITENLOHNER, Peter. PATtern GENeration Pro-
gram for the TEX82 Hyphenator [Electronic documentation of PATGEN
program version 2.4 on CTAN. https://ctan.org/pkg/patgen]. 1999.

19. SOJKA, Petr. Competing Patterns in Language Engineering and Com-
puter Typesetting. 2005. Dostupné také z: https : / / researchgate .
net / publication / 265246931 _ Competing _ Patterns _ in _ Language _
Engineering_and_Computer_Typesetting/. Dis. pr. Faculty of Infor-
matics.

20. SOJKA, Petr; SOJKA, Ondřej. The Unreasonable Effectiveness of Pattern
Generation. TUGboat. 2019, vol. 40, no. 2, s. 187–193. Dostupné také z:
https://tug.org/TUGboat/tb40-2/tb125sojka-patgen.pdf.

21. SOJKA, Petr. Competing Patterns for Language Engineering. In: SOJKA,
Petr; KOPEČEK, Ivan; PALA, Karel (eds.). Proceedings of the Third
International Workshop on Text, Speech and Dialogue—TSD 2000. Brno,
Czech Republic: Springer-Verlag, 2000, s. 157–162. LNAI 1902. Dostupné z
doi: 10.1007/3-540-45323-7_27.

22. SOJKA, Petr; SOJKA, Ondřej. Towards Universal Hyphenation Patterns.
In: HORÁK, Aleš; RYCHLÝ, Pavel; RAMBOUSEK, Adam (eds.). Pro-
ceedings of Recent Advances in Slavonic Natural Language Processing—
RASLAN 2019. Karlova Studánka, Czech Republic: Tribun EU, 2019, 63–68.
Dostupné také z: https://nlp.fi.muni.cz/raslan/2019/paper13-
sojka.pdf. https://is.muni.cz/publication/1585259/?lang=en.

137

https://tug.org/docs/liang/liang-thesis.pdf
https://doi.org/10.47397/tb/42-2/tb131sojka-czech
https://doi.org/10.47397/tb/42-2/tb131sojka-czech
http://hyphenation.org/tex
https://tug.org/TUGboat/tb16-3/tb48soj1.pdf
https://tug.org/TUGboat/tb16-3/tb48soj1.pdf
https://ctan.org/pkg/patgen
https://researchgate.net/publication/265246931_Competing_Patterns_in_Language_Engineering_and_Computer_Typesetting/
https://researchgate.net/publication/265246931_Competing_Patterns_in_Language_Engineering_and_Computer_Typesetting/
https://researchgate.net/publication/265246931_Competing_Patterns_in_Language_Engineering_and_Computer_Typesetting/
https://tug.org/TUGboat/tb40-2/tb125sojka-patgen.pdf
https://doi.org/10.1007/3-540-45323-7_27
https://nlp.fi.muni.cz/raslan/2019/paper13-sojka.pdf
https://nlp.fi.muni.cz/raslan/2019/paper13-sojka.pdf
https://is.muni.cz/publication/1585259/?lang=en

23. MÁCA, Jakub. Judy. Brno, Czech Republic, 2023. Dostupné také z: https:
//is.muni.cz/th/kru3j. Bachelor Thesis supervised by Petr Sojka and
defended at Masaryk University, Faculty of Informatics.

24. LEMBERG, Werner. A database of German words with hyphenation infor-
mation. 2023. Dostupné také z: https://repo.or.cz/wortliste.git.

Plán pro univerzální slabičnou segmentaci

Prostorově a časově efektivní segmentace (dělení slov) přirozených jazyků zůstává
jádrem každého sázecího systému, ať už jde o TEX, webový prohlížeč nebo mobilní
operační systém. Ve většině jazyků je dnes pragmaticky preferováno slabičné dělení
reflektující výslovnost při čtení.

Vzhledem k tomu, že přepínání jazyků často není v textech označeno, rendero-
vací stroj (webový prohlížeč či TEX) potřebuje univerzální slabikovou segmentaci.
V předloženém článku ukazujeme proveditelnost této myšlenky tím, že nabízíme
prototypové řešení dvou hlavních problémů:
A) použití Patgenu ke generování vzorů pro několik jazyků najednou; a
B) neexistence podpory Unicode v nástrojích jako Patgen nebo TEX (vzory

v kódování UTF-16).
Pro A) jsme ke generování univerzálních slabičných vzorů použili seznamy

slov devíti slabičných jazyků (čeština, slovenština, gruzínština, řečtina, polština,
ruština, turečtina, turkmenština a ukrajinština). Pro B) jsme vytvořili verzi
Patgen, která používá datovou strukturu Judy array, a porovnali její efektivitu
s implementací trie.

S údaji z těchto devíti jazyků ukazujeme, že:
A) vyvinutí univerzálních, obecných slabičných vzorů s vysokým pokrytím je

možné, a to s velkým dopadem na prakticky všechny sázecí stroje včetně
webových prohlížečů; a

B) podpora Unicode znaků ve vzorech dělení slov v programech TEX a Patgen je
možná pomocí Judy array.

Klíčová slova: slabikování, dělení slov, příprava univerzálních slabičných vzorů

Ondřej Sojka, Fakulta informatiky Masarykovy univerzity, Brno, ČR
454904 (at) mail dot muni dot cz, ORCID 0000-0003-2048-9977
Petr Sojka, Fakulta informatiky Masarykovy univerzity, Brno, ČR

sojka (at) fi dot muni dot cz, ORCID 0000-0002-5768-4007
Jakub Máca, Fakulta informatiky Masarykovy univerzity, Brno, ČR

514024 (at) mail dot muni dot cz, ORCID 0009-0008-1583-3183

138

https://is.muni.cz/th/kru3j
https://is.muni.cz/th/kru3j
https://repo.or.cz/wortliste.git
https://en.wikipedia.org/wiki/Judy_array
https://orcid.org/0000-0003-2048-9977
https://orcid.org/0000-0002-5768-4007
https://orcid.org/0009-0008-1583-3183

