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Abstract. We study the dependence of the Banach-Mazur distance between two subspaces
of vector-valued continuous functions on the scattered structure of their boundaries. In the
spirit of a result of Y.Gordon (1970), we show that the constant 2 appearing in the Amir-
Cambern theorem may be replaced by 3 for some class of subspaces. We achieve this by
showing that the Banach-Mazur distance of two function spaces is at least 3, if the height of
the set of weak peak points of one of the spaces differs from the height of a closed boundary
of the second space. Next we show that this estimate can be improved if the considered
heights are finite and significantly different. As a corollary, we obtain new results even for
the case of C(K,E) spaces.

Keywords: function space; vector-valued Amir-Cambern theorem; scattered space;
Banach-Mazur distance; closed boundary
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1. Introduction

For a locally compact (Hausdorff) spaceK and a real Banach space E, let C0(K,E)

denote the space of all continuous E-valued functions vanishing at infinity endowed

with the sup-norm

‖f‖sup = sup
x∈K

‖f(x)‖, f ∈ C0(K,E).

If K is compact, then this space will be denoted by C(K,E). We write C0(K)

for C0(K,R) and C(K) for C(K,R). All unexplained notions and definitions are

contained in the next section.
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We start with the following generalization of the well-known Banach-Stone the-

orem given independently by Amir (see [1]) and Cambern, see [2]. They showed

that compact spaces K1 and K2 are homeomorphic if there exists an isomorphism

T : C(K1) → C(K2) with ‖T ‖‖T−1‖ < 2. Moreover, Amir conjectured that the num-

ber 2 may be replaced by 3. Cohen in [12] showed that this conjecture is not true

in general. However, in [16], Gordon proved that it is true in the class of countable

compact spaces: If K1, K2 are nonhomeomorphic countable compact spaces and

T : C(K1) → C(K2) is an isomorphism, then ‖T ‖‖T−1‖ > 3.

The result of Gordon was extended in [6], Theorem 1.5, where the authors

show that if E is a Banach space having nontrivial cotype, and such that for

every n ∈ N, En contains no subspace isomorphic to En+1, then countable

compact spaces K1 and K2 are homeomorphic provided there exists an isomor-

phism T : C(K1, E) → C(K2, E) with ‖T ‖‖T−1‖ < 3. It is clear that every finite-

dimensional Banach space satisfies the above condition, and the authors also show

in [6], Remark 4.1 that there exist many infinite-dimensional Banach spaces that

satisfy it. Later, the result has been further extended to the case when the Banach

space E does not contain an isomorphic copy of c0, see [15], Theorem 1.9 and

Corollary 4.1.

Starting in [11], and continuing in [13], [18] and [22], the theorem of Amir and

Cambern was extended to the context of subspaces. The final result for subspaces of

scalar functions (see [22], Theorem 1.1) reads as follows. For i = 1, 2, letHi ⊆ C0(Ki)

be closed subspaces such that all points in their Choquet boundaries are weak peak

points. If there exists an isomorphism T : H1 → H2 with ‖T ‖‖T−1‖ < 2, then their

Choquet boundaries ChHi
Ki are homeomorphic (we recall that x ∈ Ki is a weak

peak point (with respect to Hi) if for a given ε ∈ (0, 1) and a neighborhood U of x

there exists a function h ∈ BHi
such that h(x) > 1− ε and |h| < ε on ChHi

Ki \ U).

A vector-valued extension of this result was given in [21].

For a closed subspace H of C(K,E) we denote by WH the set of weak peak points

of K with respect to H (for the definition, which is similar to the one for scalar

subspaces, see next section), and we consider the set

ΩH = {y ∈ K, ∃ g ∈ H : g(y) 6= 0}.

The notion of the set ΩH will be useful, as, among other things, it will allow us to

work efficiently at the same with functions defined on compact spaces as well as on

locally compact spaces. We also note that since ΩH is an open set in K, if F
(α)∩ΩH

is finite for a subset F of K and an ordinal α, then F (α+1) ∩ ΩH is empty. A set

B ⊆ K is a boundary for H if for each h ∈ H, ‖h‖ = sup
x∈B

‖h(x)‖.
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In view of the above results for subspaces, it seems natural to be looking for an

extension of the result of Gordon to this context. We obtain such an extension as

a corollary of the following theorem that is inspired by [6], Theorem 2.1 and [15],

Theorem 1.7. Also note that a similar result has been proved in [10], Theorem 4 for

the case when H1 is an extremely regular subalgebra of C0(K1) and H2 = C0(K2, E)

(we recall that a subspace H ⊆ C0(K) is extremely regular if for each x ∈ K, U open

neighbourhood of x and ε > 0 there exists a function h ∈ BH such that h(x) = 1

and |h| < ε on K \ U).

Theorem 1.1. For i = 1, 2, let Hi be a closed subspace of C(Ki, Ei), where Ki

is a compact Hausdorff space and Ei is a Banach space. Let E2 not contain an

isomorphic copy of c0, and let B be a closed boundary for H2. Suppose that there

exists an into isomorphism T : H1 → H2 with ‖T ‖‖T−1‖ < 3. Then:

(a) If α is an ordinal such that W
(α)
H1
is nonempty, then so is B(α) ∩ ΩH2 .

(b) If α is an ordinal such that B(α) ∩ ΩH2 is finite, then so is W
(α)
H1
.

(c) Let α be an ordinal such that B(α) ∩ ΩH2 is finite. Then Em
2 contains an

isomorphic copy of En
1 , where |W

(α)
H1

| = n, |B(α) ∩ ΩH2 | = m. In particular, if

E1 = E2 is a finite-dimensional space, then n 6 m.

(d) Let H1 contain the constant functions. Then for an ordinal α such that

B(α) ∩ ΩH2 is infinite it holds that |W
(α)
H1

| 6 |B(α) ∩ ΩH2 |.

We point out that in Theorem 1.1, the assumption of weak peak points is imposed

only on one of the two considered function spaces. This may be surprising, as

it is known that the Amir-Cambern theorem for subspaces fails completely if the

Choquet boundary of at least one of the two function spaces does not consist of

weak peak points. Indeed, in [17], Hess shows that for each ε > 0 there exists

a space H2 ⊆ C([0, ω]) with ChH2K2 = [0, ω) such that there exists an isomorphism

T : H1 = C([0, ω]) → H2 with ‖T ‖‖T−1‖ < 1+ ε. Here, of course, the space H2 does

not satisfy the assumption of weak peak points. The reason why this example does

not contradict Theorem 1.1 is that in this case ΩH2 = [0, ω], and the smallest closed

boundary for H2 is B = ChH2K2 = [0, ω], thus

WH1 = [0, ω] = B ∩ΩH2 .

Theorem 1.1 shows that if the topological differences of the set of weak peak points

of one space and a boundary of the other space are more significant than in this case,

then such a thing is no longer possible. This example also shows that in Theorem 1.1,

we cannot omit the assumption that the boundary is closed.
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The following theorem extends [6], Theorem 1.5.

Theorem 1.2. For i = 1, 2, let Ki be a compact Hausdorff space, Ei be a Ba-

nach space not containing an isomorphic copy of c0, and Hi be a closed subspace

of C(Ki, Ei) such that ChHi
Ki is closed and countable, and consists of weak peak

points. Let for each natural number m < n, Em
1 not contain an isomorphic copy

of En
2 , and E

m
2 not contain an isomorphic copy of E

n
1 . If there exists an isomorphism

T : H1 → H2 with ‖T ‖‖T−1‖ < 3, then ChH1K1 is homeomorphic to ChH2K2.

P r o o f. Since ChH1K1 and ChH2K2 are countable compact Hausdorff spaces,

there exist nonzero ordinals α, β and m,n ∈ N such that ChH1K1 is homeomorphic

to [1, ωαm] and ChH2K2 is homeomorphic to [1, ω
βn], see [23], Proposition 8.6.5. By

using Theorem 1.1 (a) with WH1 = ChH1K1, B = ChH2K2 ⊆ ΩH2 , we obtain that

α 6 β. Thus, α = β by symmetry. By using (c) of Theorem 1.1 twice it follows that

also m is equal to n, which concludes the proof. �

If H is an extremely regular subspace of C(K), then it is clear that each point of K

is a weak peak point with respect to H, and thus ChHK = K, see [21], Lemma 2.5.

Thus, extremely regular spaces serve as a simple example of spaces that have closed

boundaries consisting of weak peak points.

It is natural to ask whether the assumption that the boundaries are closed is nec-

essary in Theorem 1.2 (we remind the reader that in the case of the Amir-Cambern

theorem for subspaces, no topological assumptions need to be imposed on the bound-

aries, see [21], Theorem 1.1 or [22], Theorem 1.1). In Section 3, we present a simple

example showing that Theorem 1.2 does not hold without the assumption of closed

Choquet boundaries, see Example 3.2.

Next we turn our attention to isomorphisms that are not necessarily bounded

by the number 3. It is well known that if two C(K) spaces are isomorphic, then the

underlying compact spaces have the same cardinality, see [9] for the case of scalar

functions and [15] for an analogous result for vector-valued functions. Generaliza-

tions of those results to the context of subspaces were given in [21] and [22].

Also, it is known that isomorphisms between C(K) spaces are somehow connected

with the scattered structures of the underlying compact spaces. Indeed, it was

proved in [3], Theorem 1.4, as a consequence of the techniques developed in [15],

that if E is a Banach space not containing an isomorphic copy of c0, K2 is a scattered

locally compact space and C0(K1) embeds isomorphically into C0(K2, E), then K1 is

also scattered.

Moreover, there have been proven estimates of the Banach-Mazur distance of C(K)

spaces from C0(Γ, E) spaces, where Γ is a discrete set, and from C(F ), where F is

a compact space of height 2 (in particular for F = [0, ω]), based on the height of
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the compact space K. It was proved in [8], Theorem 1.2 that if K is a compact

space with K(n) 6= ∅ for some n ∈ N, F is a compact space with F (2) = ∅ and there

exists an isomorphism T : C(K) → C(F ), then ‖T ‖‖T−1‖ > 2n − 1. Moreover, if

|K(n)| > |F (1)|, then ‖T ‖‖T−1‖ > 2n+1. In [4], Theorem 1.1 it has been showed that

if Γ is an infinite discrete space, E is a Banach space not containing an isomorphic

copy of c0 and T : C(K) → C0(Γ, E) is an into isomorphism, then for each n ∈ N, if

K(n) 6= ∅, then ‖T ‖‖T−1‖ > 2n+ 1. Similar results for isomorphisms with range in

C0(Γ, E) spaces were proven before in [5] and [7]. In the following theorem, which

generalizes the above results, we show that the estimate 3 for the Banach-Mazur

distance of two function spaces obtained in Theorem 1.1 may be improved if the

heights of the set of weak peak points and of the closed boundary are finite and

significantly different.

Theorem 1.3. For i = 1, 2, let Ki be a compact space, Ei be a Banach space

and Hi be a closed subspace of C(Ki, Ei). Let E2 not contain an isomorphic copy

of c0, B be a closed boundary for H2 and T : H1 → H2 be an into isomorphism.

Let l, k ∈ N, l > k. Let one of the following conditions hold.

(i) W
(l)
H1
is nonempty and B(k) ∩ ΩH2 is empty.

(ii) W
(l)
H1
is infinite and B(k) ∩ ΩH2 is finite.

(iii) W
(l)
H1
and B(k) ∩ ΩH2 are both finite, and Em

2 does not contain an isomorphic

copy of En
1 , where |W

(l)
H1

| = n, |B(k) ∩ ΩH2 | = m.

Then ‖T ‖‖T−1‖ > max{3, (2l+ 2− k)/k}.

We show that the lower bounds that we obtain here are the same as in [4] and [8].

Thus, let K1 be a compact space with K
(n)
1 nonempty and H1 = C(K1). Then

WH1 = K1 by the Urysohn Lemma. If H2 = C(F ), where F (2) = ∅, then let B = F .

Since K(n−1) is infinite and B(1) is finite, from (ii) with l = n−1 and k = 1 we obtain

the same lower bound as in [8], Theorem 1.2. From (iii) with E1 = E2 = R, l = n

and k = 1, we also obtain the same bound in the case when |K(n)| > |F (1)|. Next,

let H2 = C0(Γ, E), where Γ is a discrete space. Let K2 = Γ ∪ {α} be the one-point

compactification of Γ. Then we may put B = K2, k = 1, l = n, and then B(1)∩ΩH2 =

{α} ∩ ΩH2 = ∅, and from (i) we obtain the same estimate as in [4], Theorem 1.1.

From the fact that the term (2l+ 2− k)/k appearing in Theorem 1.3 can happen

to be arbitrary close to 1, in contrast with the number 3, it is clear that this estimate

is in general far from being optimal. Nevertheless, the estimate might be reasonable

in cases when k is substantially smaller than n. For k = 1 it is optimal, since the

number is attained e.g. for H1 = C([0, ωn], E), H2 = C0(ω,E), where E is a Banach

space not containing a copy of c0, see [4], Theorem 1.2. Moreover, Theorem 1.3 has

the following simple, but interesting consequence.
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Corollary 1.4. For i = 1, 2, let Ki be a compact space, Ei be a Banach space

and Hi be a closed subspace of C(Ki, Ei). Let E2 not contain an isomorphic copy

of c0, B be a closed boundary forH2, and suppose thatH1 is isomorphic to a subspace

of H2. Then if B(k) ∩ ΩH2 is empty for some k ∈ N, ht(WH1) is finite.

P r o o f. Let T : H1 → H2 be an into isomorphism. Then by Theorem 1.3, W
(l)
H1

is empty for

l >
‖T ‖‖T−1‖k + k − 2

2
.

Thus, ht(WH1) is finite. �

Notice that all the above results hold automatically also for subspaces H ⊆

C0(K,E), where K is locally compact. Indeed, by [21], Lemma 2.10, if J = K ∪ {α}

is the one-point compactification of K, then H is isometric to a subspace H̃ of J ,

defined by

H̃ = {h ∈ C(J,E) : h|K ∈ H and h(α) = 0}.

Moreover, ChHK is homeomorphic to ChH̃J and a point x ∈ ChHK is a weak peak

point with respect to H if and only if it is a weak peak point with respect to H̃.

Also, it is clear that if B is a closed boundary for H, then B̃ = B ∪ {α} is a closed

boundary for H̃, and B̃ ∩ ΩH̃ = (B ∪ {α}) ∩ ΩH̃ = B ∩ ΩH. Thus, the results valid

for H̃ apply also on H.

Next, we point out what the above results give for the case of C(K,E) spaces.

Corollary 1.5. Let K1, K2 be infinite compact spaces, E1, E2 be Banach

spaces, E2 not containing an isomorphic copy of c0.

(i) If l, k ∈ N, l > k, ht(K1) = l, ht(K2) = k, and there exists an into isomorphism

T : C(K1, E1) → C(K2, E2), then

‖T ‖‖T−1‖ > max
{
3,

2l− k − 1

k − 1

}
.

(ii) If C(K1, E1) embeds isomorphically into C(K2, E2) and ht(K2) is finite, then

ht(K1) is finite.

P r o o f. By the Urysohn Lemma, it is clear that each point of K1 is a weak

peak point with respect to C(K1, E1), and consequently, ChH1K1 = K1, see [21],

Lemma 2.5. We denote B = K2. Since K
(k−1)
2 is finite and K

(l−2)
1 is infinite, with

the use of Theorem 1.3 (ii) we obtain the estimates in statement (i) (the bound 3

was known before, see [6], Theorem 2.1). Statement (ii) follows in the same way

as Corollary 1.4. �
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2. Auxiliary results

This section contains the unexplained definitions and notations, as well as several

simple results that will be frequently used later.

To start with, the cardinality of a set M is denoted by |M |. Next, the derivative

of a topological space S is defined recursively as follows. The set S(1) is the set of

accumulation points of S, and for an ordinal α > 1, let S(α) = (Sβ)(1) if α = β + 1,

and S(α) =
⋂

β<α

S(β) if α is a limit ordinal. Moreover, let S(0) = S. The topological

space S is called scattered if there exists an ordinal α such that S(α) is empty, and

minimal such α is called the height of S and is denoted by ht(S). Thus, if K is

a scattered compact space, then ht(K) is a successor ordinal, K(ht(K)−1) is finite,

and K(α) is infinite for each ordinal α < ht(K) − 1. All topological spaces are

assumed to be Hausdorff.

All Banach spaces are tacitly assumed to be real and of dimension at least 1. If E

is a Banach space, then E∗ stands for its dual space. We denote by BE and SE

the unit ball and sphere in E, respectively, and we write 〈·, ·〉 : E∗ × E → R for

the duality mapping. All isomorphisms between Banach spaces are assumed to be

surjective, otherwise they are referred to as into isomorphisms. The Banach-Mazur

distance of Banach spaces E1, E2 is defined to be the infimum of ‖T ‖‖T
−1‖ over the

set of all isomorphisms T : E1 → E2 and is denoted by dBM (E1, E2).

Let K be a locally compact space and E be a Banach space. For h ∈ C0(K,E) and

e∗ ∈ E∗, e∗(h) is the element of C0(K) defined by e∗(h)(x) = 〈e∗, h(x)〉 for x ∈ K.

Next, for a function f ∈ C0(K) and e ∈ E, the function f⊗e ∈ C0(K,E) is defined by

(f ⊗ e)(x) = f(x)e, x ∈ K.

If H is a closed subspace of C0(K,E), then its canonical scalar function space

A ⊆ C0(K) is defined as the closed linear span of the set

{e∗(h) : e∗ ∈ E∗, h ∈ H} ⊆ C0(K).

Moreover, let AE stand for the subspace of A consisting of all functions h from A

satisfying that h ⊗ e ∈ H for each e ∈ E. The Choquet boundary ChHK of H is

defined as the Choquet boundary of A, that is, ChHK is the set of those points

x ∈ K such that the functional

i(x) : h 7→ h(x), h ∈ A

is an extreme point of BA∗ . It follows by [14], Theorem 2.3.8 and [21], Lemma 2.1

that the Choquet boundary is a boundary for H, that is,

‖h‖ = sup
x∈ChHK

‖h(x)‖, h ∈ H.

373



Thus, a canonical example of a closed boundary for H is the closure ChHK of the

Choquet boundary of H. Moreover, the following strict maximum principle holds.

If h is a function from A and C ∈ R, then h < C on K provided h < C on ChHK,

see [19], Proposition 3.87. Also, it is easy to see that the Choquet boundary ChHK

is a subset of ΩH. Indeed, the space A is nontrivial by our assumption, and hence 0

is not an extreme point of BA∗ .

In this paper, we use a slightly stronger definition of weak peak points for vector-

valued subspaces than in [21]. Here we say that a point x ∈ K is a weak peak point

(with respect to H) if for each neighbourhood U of x and ε ∈ (0, 1) there exists

a function h ∈ AE such that

0 6 h 6 1, h(x) > 1− ε and h < ε on ChHK \ U.

Thus, if H = C(K,E), then AE = A = C(K), and each point of K is a weak peak

point. If X is a compact convex set in a locally convex space and H = A(X,E), the

space of affine E-valued continuous functions on X , then AE = A = A(X,R), and

a point x ∈ X is a weak peak point with respect to H if and only if it is a weak peak

point in the classical sense. We also note that the set WH of weak peak points of H

is a subset of the Choquet boundary of H, see [21], Lemma 2.5.

For the proof of the following Lemma, we recall that a series
∞∑
i=1

ei in a Banach

space E is weakly unconditionally Cauchy if
∞∑
i=1

|〈e∗, ei〉| < ∞ for each e∗ ∈ E∗.

Lemma 2.1. Let for i = 1, 2,Ki be a compact space, Ei be a Banach space andHi

be a closed subspace of C(Ki, Ei). Let A1 be the scalar function space associated

to H1, let T : H1 → H2 be an into isomorphism, and fix a nonzero vector e ∈ E1.

Suppose that {fi} is a sequence in A1 satisfying that hi = fi ⊗ e ∈ H1 for each

i ∈ N. Suppose that there exists a constant C ∈ R satisfying that for each n ∈ N

and α1, . . . , αn ∈ SR it holds that

∥∥∥∥
n∑

i=1

αihi

∥∥∥∥ < C.

Moreover, let y ∈ K2 and ε > 0 satisfy that ‖Thi(y)‖ > ε for each i ∈ N. Then E2

contains an isomorphic copy of c0.

P r o o f. We consider the evaluation mapping ϕ : K2 × E∗
2 → H∗

2 defined as

〈ϕ(y, e∗), g〉 = 〈e∗, g(y)〉, g ∈ H2, y ∈ K2, e∗ ∈ E∗
2 .

By the classical characterization of the Banach spaces containing c0, see [20], The-

orem 6.7, it is enough to show that the series
∞∑
i=1

Thi(y) is weakly unconditionally
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Cauchy in E2. Thus, fix e∗ ∈ SE∗
2
, and let T ∗ be the adjoint of T . Fix n ∈ N, and

let α1, . . . , αn ∈ SR satisfy

|〈T ∗ϕ(y, e∗), hi〉| = αi〈T
∗ϕ(y, e∗), hi〉, i = 1, . . . , n.

Then we have

n∑

i=1

|〈e∗, Thi(y)〉| =
n∑

i=1

|〈ϕ(y, e∗), Thi〉| =
n∑

i=1

|〈T ∗ϕ(y, e∗), hi〉|

=

n∑

i=1

αi〈T
∗ϕ(y, e∗), hi〉 =

〈
T ∗ϕ(y, e∗),

n∑

i=1

αihi

〉

6 ‖T ∗ϕ(y, e∗)‖

∥∥∥∥
n∑

i=1

αihi

∥∥∥∥ 6 ‖T ∗‖‖e∗‖

∥∥∥∥
n∑

i=1

αihi

∥∥∥∥ < C‖T ∗‖.

Thus also
∞∑
i=1

|〈e∗, Thi(y)〉| 6 C‖T ∗‖ < ∞, which finishes the proof. �

We also prove the following two simple observations, as we will be using them

repeatedly later on.

Lemma 2.2. Let K be a compact space, E be a Banach space and H be a closed

subspace of C(K,E). Let n ∈ N, C ∈ R, {αi}ni=1 be positive numbers, {Ui}ni=1 be

pairwise disjoint nonempty open sets in K, and let functions {hi}ni=1 ⊆ H satisfy

that for each i = 1 . . . , n, ‖hi‖ 6 C on K and ‖hi‖ < αi on ChHK \ Ui. Then

∥∥∥∥
n∑

i=1

hi

∥∥∥∥ 6 C +

n∑

i=1

αi.

P r o o f. If x ∈ Ui0 ∩ ChHK for some i0 ∈ {1, . . . , n}, then since the sets Ui are

pairwise disjoint, ∥∥∥∥
n∑

i=1

hi(x)

∥∥∥∥ 6

n∑

i=1

‖hi(x)‖ 6 C +
∑

i6=i0

αi.

If x ∈ ChHK \
n⋃

i=1

Ui, then

∥∥∥∥
n∑

i=1

hi(x)

∥∥∥∥ 6

n∑

i=1

‖hi(x)‖ 6

n∑

i=1

αi.

Thus,
∥∥∥

n∑
i=1

hi(x)
∥∥∥ 6 C +

n∑
i=1

αi for x ∈ ChHK, and hence
∥∥∥

n∑
i=1

hi(x)
∥∥∥ 6 C +

n∑
i=1

αi

for x ∈ K. �
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Lemma 2.3. Let K be a compact space, A ⊆ C(K) be a closed subspace,

0 < ε < 1, and functions h, g ∈ A satisfy that 0 6 g 6 1, 0 6 h 6 1 on K,

h > 1− ε on an open set U and g < ε on ChAK \ U . Then g < h+ ε on K.

P r o o f. If x ∈ ChAK ∩ U , then

g(x) 6 1 = 1− ε+ ε < h(x) + ε.

On the other hand, if x ∈ ChAK \ U , then

g(x) < ε 6 h(x) + ε.

Thus g − h < ε on ChAK, and hence g − h < ε on K. �

3. Isomorphisms with bound 3

Throughout this section, let for i = 1, 2, Ki be a compact space, Ei be a Banach

space and Hi be a closed subspace of C(Ki, Ei). Let A1 be the scalar function space

associated to H1 and B be a closed boundary for H2. For g ∈ H2 and ε > 0 we

denote

R(g, ε) = {y ∈ K2 : ‖g(y)‖ > ε}.

Notice that from the definition it is clear that for each function g∈H2,R(g, ε) ⊆ ΩH2 .

Next, inspired by [6], we define certain sets F , Λ, which we use for the proof of The-

orem 1.1. For 0 < ε < 1, functions f1, . . . , fn ∈ AE1
1 and points z1, . . . , zn ∈ ChH1K1

we denote

F((fi, zi)
n
i=1, ε) = {(g1, . . . , gn) ∈ (AE1

1 )n : 0 6 gi 6 1, gi(zi) > 1− ε,

gi < fi + ε for i = 1, . . . , n}.

Suppose moreover that T : H1 → H2 is an into isomorphim, e1, . . . , en ∈ E1 are

nonzero vectors with max
i=1,...,n

‖ei‖ = 1, U1, . . . , Un are pairwise disjoint nonempty

open sets in K1, and let h1, . . . , hn be functions in AE1

1 satisfying that

0 6 hi 6 1, ‖hi‖ > 1− ε and hi < ε on ChH1K1 \ Ui, i = 1, . . . , n.

Then for points x1, . . . , xn ∈ ChH1K1 satisfying that hi(xi) > 1 − ε for each

i = 1, . . . , n, we denote

Λ(T,(hi,ei)ni=1,ε)
((xi)

n
i=1) = B ∩

⋂

(g1,...,gn)∈F((hi,xi)ni=1,ε)

R

(
T

( n∑

i=1

gi ⊗ ei

)
, ε

)
.
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Notice that the set F((hi, xi)
n
i=1, ε) is nonempty as it contains (h1, . . . , hn). The

following technical Lemma, describing the properties of the above defined set Λ,

contains the main part of the proof of Theorem 1.1.

Lemma 3.1. Let E2 not contain an isomorphic copy of c0. Let n ∈ N, and

suppose that there exists an into isomorphism T : H1 → H2 with ‖T ‖ < 3 and

‖T−1‖ = 1. Fix

0 < ε <
3− ‖T ‖

‖T ‖(7n+ 2) + 3n+ 2
.

Moreover, let e1, . . . , en ∈ E1 be nonzero vectors with max
i=1,...,n

‖ei‖ = 1, U1, . . . , Un

be pairwise disjoint nonempty open subsets of K1, and let h1, . . . , hn be functions

in AE1
1 satisfying that

0 6 hi 6 1, ‖hi‖ > 1− ε and hi < ε on ChH1K1 \ Ui, i = 1, . . . , n.

Then:

(a) If for i = 1, . . . , n, {xk
i }k∈N ⊆ WH1 are infinite sequences of pairwise distinct

points satisfying that

hi(x
k
i ) > 1− ε, i = 1, . . . , n, k ∈ N,

then the intersection
⋂
k∈N

Λ(T,(hi,ei)ni=1,ε)
((xk

i )
n
i=1) is empty.

(b) If x1, . . . , xn ∈ W
(α)
H1
for an ordinal α are points satisfying that

hi(xi) > 1− ε, i = 1, . . . , n,

then Λ(T,(hi,ei)ni=1,ε)
((xi)

n
i=1) ∩ B(α) 6= ∅.

P r o o f. For the proof of (a), suppose that for i = 1, . . . , n there exist such

sequences {xk
i }k∈N and y ∈

⋂
k∈N

Λ(T,(hi,ei)ni=1,ε)
((xk

i )
n
i=1). Passing to subsequences

and using the continuity of the functions hi, we may assume that there exist pairwise

disjoint open sets {V k
i }k∈N, i = 1, . . . , n, each containing xk

i , and such that hi > 1−ε

on V k
i . For each i and k, since xk

i is a weak peak point, we may find a function

gki ∈ AE1
1 satisfying that

0 6 gki 6 1, gki (x
k
i ) > 1−

ε

2k
and gki <

ε

2k
on ChH1K1 \ V

k
i .

Notice that for each i = 1, . . . , n, since the sets {V k
i }k∈N are pairwise disjoint, for

each m ∈ N and α1, . . . , αm ∈ SR it holds that
∥∥∥

m∑
k=1

αkg
k
i

∥∥∥ 6 1 + ε by Lemma 2.2.
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Also, for each i, k, we have gki < hi + ε (see Lemma 2.3), thus for each k ∈ N it

holds that (gk1 , . . . , g
k
n) ∈ F((hi, x

k
i )

n
i=1, ε). Hence,

∥∥∥T
( n∑
i=1

(gki ⊗ ei)
)
(y)

∥∥∥ > ε by the

definition of Λ(T,(hi,ei)ni=1,ε)
((xk

i )
n
i=1).

Consequently, for each k ∈ N there exists i ∈ {1, . . . , n} such that

‖T (gki ⊗ ei)(y)‖ >
ε

n
.

Thus, there exists i0 ∈ {1, . . . , n} such that the set

N =
{
k ∈ N : ‖T (gki0 ⊗ ei0)(y)‖ >

ε

n

}

is infinite. But since E2 does not contain a copy of c0, the sequence {gki0}k∈N

contradicts Lemma 2.1, which finishes the proof of (a).

For the proof of (b) we proceed by transfinite induction. For α = 0 we want to

prove that Λ(T,(hi,ei)ni=1,ε)
((xi)

n
i=1) is nonempty set for each point x1, . . . , xn ∈ WH1

satisfying hi(xi) > 1 − ε for every i = 1, . . . , n. Let us notice that the set

Λ(T,(hi,ei)ni=1,ε)
((xi)

n
i=1) is compact as it is an intersection of closed subsets of B.

Thus, it is enough to show that the collection of sets

{
y ∈ B :

∥∥∥∥T
( n∑

i=1

gi ⊗ ei

)
(y)

∥∥∥∥ > ε

}
, (gi)

n
i=1 ∈ F((hi, xi)

n
i=1, ε)

has the finite intersection property. So, let functions gki ∈ AE1
1 , i = 1, . . . , n,

k = 1, . . . , p satisfy

0 6 gki 6 1, gki (xi) > 1− ε and gki < hi + ε.

By the continuity of the functions gki , for each i = 1, . . . , n there exists an open set

Vi ⊆ Ui containing xi and such that g
k
i > 1− ε on Vi for each k = 1, . . . , p. Since xi

is a weak peak point, there exists a function fi ∈ AE1
1 satisfying that

0 6 fi 6 1, fi(xi) > 1− ε and fi < ε on ChH1K1 \ Vi.

Then fi < gki + ε for each i and k by Lemma 2.3.

Next, fix i0 ∈ {1, . . . , n} satisfying that ‖ei0‖ = 1. We have

‖((2fi0 + hi0)⊗ ei0)(xi0 )‖ = |2fi0(xi0 ) + hi0(xi0 )|‖ei0‖ > 3− 3ε,

and for i 6= i0,

‖((2fi + hi)⊗ ei)(xi0 )‖ = |2fi(xi0 ) + hi(xi0)|‖ei‖ < 3ε.

378



Consequently and since ‖T−1‖ = 1, we have

∥∥∥∥T
( n∑

i=1

(2fi + hi)⊗ ei

)∥∥∥∥ >

∥∥∥∥
n∑

i=1

(2fi + hi)⊗ ei

∥∥∥∥ >

∥∥∥∥
( n∑

i=1

(2fi + hi)⊗ ei

)
(xi0 )

∥∥∥∥

> ‖((2fi0 + hi0)⊗ ei0)(xi0 )‖ −
∑

i6=i0

‖((2fi + hi)⊗ ei)(xi0 )‖

> 3− 3ε− (n− 1)3ε.

Hence, there exists a point y ∈ B satisfying that

∥∥∥∥T
( n∑

i=1

(2fi + hi)⊗ ei

)
(y)

∥∥∥∥ > 3− 3nε.

Now, to finish the proof for α = 0 we need to show that for each k = 1, . . . , p,∥∥∥T
( n∑
i=1

gki ⊗ ei

)
(y)

∥∥∥ > ε. Thus, fix k ∈ {1, . . . , p}. Then for each i = 1, . . . , n, since

gki < hi + ε and fi < gki + ε, we have

−1− ε 6 −gki − ε 6 2fi − gki − ε 6 2fi + hi − 2gki 6 hi + 2ε 6 1 + 2ε.

Thus, ‖(2fi + hi − 2gki )⊗ ei‖ 6 1 + 2ε.

Moreover, for each i = 1, . . . , n we have gki < hi + ε < 2ε on ChH1K1 \ Ui, and

fi < ε on ChH1K1 \ Vi ⊇ ChH1K1 \ Ui. Consequently, since the sets Ui are pairwise

disjoint and for each i = 1, . . . , n we have |2fi + hi − 2gki | < 7ε on ChH1K1 \ Ui, by

Lemma 2.2 it follows that

∥∥∥∥
n∑

i=1

(2fi + hi − 2gki )⊗ ei

∥∥∥∥ 6 1 + 2ε+ 7nε.

It follows that if
∥∥∥T

( n∑
i=1

gki ⊗ ei

)
(y)

∥∥∥ < ε, we would have

‖T ‖(1 + 2ε+ 7nε) >

∥∥∥∥T
( n∑

i=1

(2fi + hi − 2gki )⊗ ei

)∥∥∥∥

>

∥∥∥∥T
( n∑

i=1

(2fi + hi − 2gki )⊗ ei

)
(y)

∥∥∥∥

>

∥∥∥∥T
( n∑

i=1

(2fi + hi)⊗ ei

)
(y)

∥∥∥∥− 2

∥∥∥∥T
( n∑

i=1

gki ⊗ ei

)
(y)

∥∥∥∥

> 3− 3nε− 2ε.

This contradicts the choice of ε and finishes the proof for α = 0.
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Now we assume that statement (b) holds for an ordinal α > 0 and let x1, . . . , xn ∈

W
(α+1)
H1

be points satisfying that hi(xi) > 1−ε for i = 1, . . . , n. Then for i = 1, . . . , n,

there exists a net {xi
λi
}λi∈Λi

of points in W
(α)
H1

∩ Ui, distinct from xi, converging

to xi, and satisfying that hi(x
i
λi
) > 1 − ε for each λi. By the assumption, for each

(λ1, . . . , λn) ∈ Λ1 × . . .× Λn there exists a point

y(λi)ni=1
∈ Λ(T,(hi,ei)ni=1,ε)

((xi
λi
)ni=1) ∩ B(α).

Then we may consider {y(λi)ni=1
} as a net in B(α) with the ordering given by (λi)

n
i=1 6

(λ̃i)
n
i=1 if λi 6 λ̃i for each i = 1, . . . , n. Since B(α) is compact, passing to a subnet we

may assume that the net {y(λi)ni=1
} converges to a point y ∈ B(α). We want to show

that y ∈ B(α+1). Assuming the contrary, the net {y(λi)ni=1
} is essentially constant,

thus there exist λ1, . . . , λn such that y = y(λ̃i)ni=1
for each (λ̃i)

n
i=1 > (λi)

n
i=1. But

then for each (λ̃i)
n
i=1 > (λi)

n
i=1 we have

y = y(λ̃i)ni=1
∈ Λ(T,(hi,ei)ni=1,ε)

((xi

λ̃i
)ni=1),

which contradicts (a). Thus, y ∈ B(α+1).

It remains to show that y ∈ Λ(T,(hi,ei)ni=1,ε)
((xi)

n
i=1). Thus, we choose arbitrary

(g1, . . . , gn) ∈ F((hi, xi)
n
i=1, ε). Then for each i = 1, . . . , n, gi(xi) > 1 − ε by the

definition, thus there exists λi such that gi(x
i

λ̃i

) > 1−ε for each λ̃i > λi. This means

that

(gi)
n
i=1 ∈ F((hi, x

i

λ̃i
)ni=1, ε)

for (λ̃i)
n
i=1 > (λi)

n
i=1. Thus, for (λ̃i)

n
i=1 > (λi)

n
i=1 we have

∥∥∥∥T
( n∑

i=1

gi ⊗ ei

)
(y(λ̃i)ni=1

)

∥∥∥∥ > ε.

Consequently, ∥∥∥∥T
( n∑

i=1

gi ⊗ ei

)
(y)

∥∥∥∥ > ε

by continuity. This means that y ∈ Λ(T,(hi,ei)ni=1,ε)
((xi)

n
i=1).

Finally, we assume that α is a limit ordinal and that (b) holds for each ordinal

β < α. If x1, . . . , xn ∈ W
(α)
H1
, hi(xi) > 1 − ε for each i, then x1, . . . , xn ∈ W

(β)
H1

for each β < α. Hence, Λ(T,(hi,ei)ni=1,ε)
(xi)

n
i=1 ∩ B(β) 6= ∅ for each such β by the

assumption. Thus

Λ(T,(hi,ei)ni=1,ε)
((xi)

n
i=1) ∩ B(α) =

⋂

β<α

Λ(T,(hi,ei)ni=1,ε)
((xi)

n
i=1) ∩ B(β)

is nonempty, as it is a nonincreasing intersection of compact sets. The proof is

finished. �
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Now we are ready to prove Theorem 1.1.

P r o o f of Theorem 1.1. Without loss of generality we may assume that ‖T ‖ < 3

and ‖T−1‖ = 1, otherwise we would multiply T by a suitable constant. Let A1 be

the scalar function space associated to H1.

(a) Pick x ∈ W
(α)
H1
and

0 < ε <
3− ‖T ‖

9‖T ‖+ 5
,

and let e ∈ E1 be an arbitrary vector of norm 1. Since x is a weak peak point, there

exists a function h ∈ H1 satisfying that 0 6 h 6 1 and h(x) > 1 − ε. Then by

Lemma 3.1 (b), the set

ΩH2 ∩ B(α) ⊇ Λ(T,(h,e),ε)(x) ∩ B(α)

is nonempty.

(b) Let α be an ordinal such that B(α) ∩ ΩH2 is finite. We assume that W
(α)
H1

is infinite and seek a contradiction. Then there exist pairwise disjoint open sets

{Um}m∈N in K1 and points {xm}m∈N ⊆ W
(α)
H1
such that xm ∈ Um for each m ∈ N.

Fix e ∈ SE1 ,

0 < ε <
3− ‖T ‖

9‖T ‖+ 5
,

and find functions {gm}m∈N from AE1
1 satisfying that for each m ∈ N,

0 6 gm 6 1, gm(xm) > 1−
ε

2m
and gm <

ε

2m
on ChH1K1 \ Um.

Then by Lemmas 2.1 and 2.2, for each y ∈ K2 there are at most finitely many

functions gm such that ‖T (gm ⊗ e)(y)‖ > ε. Thus, there exists an index m0 ∈ N

satisfying that ‖T (gm0 ⊗ e)(y)‖ < ε for each y from the finite set B(α) ∩ ΩH2 . This

means that

Λ(T,(gm0 ,e),ε)
(xm0) ∩ B(α) ∩ ΩH2 = Λ(T,(gm0 ,e),ε)

(xm0 ) ∩ B(α)

is empty. But this contradicts Lemma 3.1 (b), which shows that W
(α)
H1
is finite.

(c) If α is an ordinal such that B(α)∩ΩH2 is finite, then we know by (b) thatW
(α)
H1
is

also finite. Thus, suppose that W
(α)
H1

= {x1, . . . , xn} and B(α) ∩ΩH2 = {y1, . . . , ym}.

We find pairwise disjoint open sets U1, . . . , Un such that xi ∈ Ui for each i = 1, . . . , n.

Fix

< ε <
3− ‖T ‖

‖T ‖(7n+ 2) + 3n+ 2

and let h1, . . . , hn be functions in H1 satisfying that

0 6 hi 6 1, hi(xi) > 1− ε and hi < ε on ChH1K1 \ Ui.
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We define an operator S : (En
1 , ‖·‖max) → C(B(α) ∩ ΩH2 , E2) ≃ (Em

2 , ‖·‖max) as

S(e1, . . . , en) = T

( n∑

i=1

hi ⊗ ei

)∣∣∣∣
(B(α)∩ΩH2)

.

Then S is clearly linear.

Moreover, let e1, . . . , en ∈ E1 be nonzero vectors with max
i=1,...,n

‖ei‖ = 1. Then

‖S(e1, . . . , em)‖max 6

∥∥∥∥T
( n∑

i=1

hi ⊗ ei

)∥∥∥∥ 6 ‖T ‖

∥∥∥∥
n∑

i=1

hi ⊗ ei

∥∥∥∥ 6 ‖T ‖(1 + nε)

by Lemma 2.2. At the same time, by Lemma 3.1 (b), there exists a point y ∈ B(α)

such that
∥∥∥T

( n∑
i=1

hi ⊗ ei

)
(y)

∥∥∥ > ε. It follows that ε 6 ‖S‖ 6 ‖T ‖(1 + nε), and

hence S is an isomorphism from En
1 into E

m
2 .

(d) Let h ∈ H1 be the constant function 1,

0 < ε <
3− ‖T ‖

9‖T ‖+ 5
,

and let e ∈ SE1 . Then again by Lemma 3.1 (b), for each x0 ∈ W
(α)
H1
there exists

y ∈ Λ(T,(h,e),ε)(x0) ∩ B(α) ⊆ ΩH2 ∩B(α). Moreover, by Lemma 3.1 (a), each y ∈ B(α)

belongs to at most finitely many sets Λ(T,(h,e),ε)(x), where x ∈ W
(α)
H1
. Thus, if

B(α) ∩ ΩH2 is infinite, then

|W
(α)
H1

| 6 |ω||B(α) ∩ ΩH2 | = |B(α) ∩ ΩH2 |.

�

To finish this section we now show that we cannot omit the assumption that the

boundaries are closed in Theorem 1.2.

Example 3.2. Let K1 = [1, ω2], K2 = [1, ω] and

H1 = {f ∈ C([1, ω2]) : f(ω2) = 0}, H2 = C([1, ω]).

Then each point of the countable Choquet boundaries of H1 and H2 is a weak peak

point, but dB(H1,H2) = 2.

P r o o f. It is clear that WH1 = [1, ω2). Thus, ChH1K1 ⊇ WH1 = [1, ω2). Since

zero is not an extreme point of BH∗
1
, we have ChH1K1 = WH1 = [1, ω2). Moreover, it

is clear thatWH2 = ChH2K2 = [1, ω]. Thus, dBM (H1,H2) > 2 by [22], Theorem 1.1.

On the other hand, we define a mapping T : H1 → H2 by

Tf(1) = f(1), T f(2m) = f(m) + f(ω +m), m ∈ N,

T f(2m+ 1) = f(m)− f(ω +m), m ∈ N, T f(ω) = f(ω).
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Then it is easy to check that T is an isomorphism from H1 onto H2 with S = T−1

given by

Sf(1) = f(1) Sf(m) =
f(2m) + f(2m+ 1)

2
, m ∈ N,

Sf(ω) = f(ω), Sf(ω +m) =
f(2m)− f(2m+ 1)

2
, m ∈ N.

Moreover, it is easy to see that ‖T ‖ = 2 and ‖S‖ = 1, which finishes the proof. �

4. Isomorphisms between spaces with boundaries of finite height

In this section, for i = 1, 2, let Ki be a compact space, Ei be a Banach space

and Hi be a closed subspace of C(Ki, Ei). Let E2 not contain an isomorphic copy

of c0, let A1 be the scalar function space associated to H1, B be a closed boundary

for H2 and T : H1 → H2 be an into isomorphism. In this setting, we prove three

auxiliary results, which we then use for the proof of Theorem 1.3.

Lemma 4.1. Let 0 < ε < 1, ζ > 0, e be a nonzero vector in E1, {Un} be

a sequence of pairwise disjoint open subsets of K1 and let {hn} be the sequence of

functions in BA1 satisfying that for each n ∈ N, hn ⊗ e ∈ H1 and |hn| < ε/2n on

ChH1K1 \Un. Let G be a finite subset of K2. Then there exists an m ∈ N such that

R(T (hm ⊗ e), ζ) ∩G = ∅.

P r o o f. We assume that this is not true and seek a contradiction. Let G =

{y1, . . . , yk}, and we denote

Λi = {n ∈ N : ‖T (hn ⊗ e)(yi)‖ > ζ}, i = 1, . . . , k.

With the assumption, the union
k⋃

i=1

Λi contains all natural numbers. Thus, we can fix

an index i0 such that the set Λi0 is infinite. Since the sets Un are pairwise disjoint,

by Lemma 2.2 for each n ∈ N and α1, . . . , αn ∈ SR it holds that

∥∥∥∥
n∑

i=1

αihi(x)

∥∥∥∥ 6 1 + ε.

But since E2 does not contain an isomorphic copy of c0, the sequence {hn}n∈Λi0

contradicts Lemma 2.1. The proof is finished. �

The following Lemma, which is motivated by [4], Proposition 2.3, is a key ingre-

dient, which makes use of the assumption that the considered heights are finite.
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Lemma 4.2. Let n, k, l ∈ N, k 6 l, B(k) ∩ ΩH2 be finite, and let x1, . . . , xn be

distinct points inW
(l)
H1
. Let e1, . . . , en be nonzero vectors in E1 with max

j=1,...,n
‖ei‖ = 1,

and U1, . . . , Un be pairwise disjoint open sets such that xj ∈ Uj for each j = 1, . . . , n.

Suppose that for a given 0 < ε < 1, there exist functions h1, . . . , hn ∈ AE1
1 satisfying

that for each j = 1, . . . , n,

0 6 hj 6 1, hj(xj) > 1− ε, hj < ε on ChH1K1 \ Uj ,

and such that the set R
( n∑
j=1

T (hj ⊗ ej), ε
)
∩ B(k) is empty.

Then there exist functions (hi
1)

l
i=0, . . . , (h

i
n)

l
i=0 in AE1

1 satisfying that for each

j = 1, . . . , n and i = 0, . . . , l,

0 6 hi
j 6 1, hi

j < ε on ChH1K1 \ Uj, hi
j < hi+1

j + ε,

hi
j(x

i
j) > 1− ε for some xi

j ∈ W
(i)
H1
and such that for every y ∈ B, the set

{
i ∈ {0, . . . , l} : y ∈ R

( n∑

j=1

T (hi
j ⊗ ej), ε

)}

has cardinality at most k.

P r o o f. The lemma will be proved once we verify that the following claim is true.

Claim 4.3. For each i = l, l − 1, . . . , 0 there exist functions

{hl
1, . . . , h

l
n}, {h

l−1
1 , . . . , hl−1

n }, . . . , {hi
1, . . . , h

i
n}

in AE1
1 and points

{xl
1, . . . , x

l
n}, {x

l−1
1 , . . . , xl−1

n }, . . . , {xi
1, . . . , x

i
n}

satisfying that for each j = 1, . . . , n and m = i, . . . , l,

0 6 hm
j 6 1, hm

j < ε on ChH1K1 \Uj, h
m
j < hm+1

j +ε, hm
j (xm

j ) > 1−ε, xm
j ∈ W

(m)
H1

,

and such that

(4.1)

l−i⋃

s=0

{
B(max{k−s,0}) ∩

⋃

i6r1<...<rs+16l

⋂

p∈{r1,...,rs+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)}
= ∅.

Indeed, assume first that Claim 4.3 holds. This in particular for i = 0 and s = k

means that

∅ = B ∩
⋃

06r1<...<rk+16l

⋂

p∈{r1,...,rk+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)
.
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This means that for each 0 6 r1 < . . . < rk+1 6 l, the intersection

B ∩
⋂

p∈{r1,...,rk+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)

is empty, which we wanted to prove.

P r o o f of Claim 4.3. We proceed by reverse induction for i = l, l− 1, . . . , 0. For

the case i = l, it is enough to denote hl
j = hj and xl

j = xj for j = 1, . . . , n, since

then (4.1) holds due to the assumption that R
( n∑
j=1

T (hj ⊗ ej), ε
)
∩ B(k) is empty.

Thus, suppose that 0 6 i < l, and that we have found the functions

{hl
1, . . . , h

l
n}, {h

l−1
1 , . . . , hl−1

n }, . . . , {hi+1
1 , . . . , hi+1

n }

in AE1
1 and points

{xl
1, . . . , x

l
n}, {x

l−1
1 , . . . , xl−1

n }, . . . , {xi+1
1 , . . . , xi+1

n }

such that (4.1) holds for i+ 1, and satisfying all the other above conditions. Hence,

we know that the set

l−i−1⋃

s=0

{
B(max{k−s,0}) ∩

⋃

i+16r1<...<rs+16l

⋂

p∈{r1,...,rs+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)}

is empty. Since for each s = 0, . . . , l − i− 1, the set

⋃

i+16r1<...<rs+16l

⋂

p∈{r1,...,rs+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)

is compact, the set

B(max{k−s−1,0}) ∩
⋃

i+16r1<...<rs+16l

⋂

p∈{r1,...,rs+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)

is finite.

The set B(k) ∩ ΩH2 is also finite by the assumption, hence so is the set

G = (B(k) ∩ ΩH2)

∪
l−i−1⋃

s=0

{
B(max{k−s−1,0}) ∩

⋃

i+16r1<...<rs+16l

⋂

p∈{r1,...,rs+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)}
.
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Next, for each j = 1, . . . n, by the continuity of the function hi+1
j we find an

open set V ⊆ Uj containing xi+1
j , and such that hi+1

j > 1 − ε on V . Next, since

xi+1
j ∈ W

(i+1)
H1

, we may find a sequence of points {zmj }m∈N ⊆ W
(i)
H1
distinct from xi+1

j ,

together with their pairwise disjoint open neighborhoods {Um
j }m∈N, all contained

in V . Since each point zmj is a weak peak point, we may find a function gmj ∈ AE1
1

satisfying that

0 6 gmj 6 1, gmj (zmj ) > 1−
ε

2m
and gmj <

ε

2m
on ChH1K1 \ U

m
j .

Then for each m ∈ N, gmj 6 hi+1
j + ε by Lemma 2.3. Using Lemma 4.1 for

each j = 1, . . . , n we find an index mj such that the function g
mj

j satisfies that

R(T (g
mj

j ⊗ ej , ε/n) ∩G is empty, and we denote hi
j = g

mj

j and xi
j = z

mj

j . Thus, for

y ∈ G it holds that

∥∥∥∥
n∑

j=1

T (hi
j ⊗ ej)(y)

∥∥∥∥ 6

n∑

j=1

‖T (hi
j ⊗ ej)(y)‖ < n

ε

n
= ε,

and hence R
( n∑
j=1

T (hi
j ⊗ ej), ε

)
∩G is empty. Consequently,

∅ = R

( n∑

j=1

T (hi
j ⊗ ej), ε

)
∩G = R

( n∑

j=1

T (hi
j ⊗ ej), ε

)
∩

(
(B(k) ∩ ΩH2)

∪
l−i−1⋃

s=0

{
B(max{k−s−1,0}) ∩

⋃

i+16r1<...<rs+16l

⋂

p∈{r1,...,rs+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)})

=

(
R

( n∑

j=1

T (hi
j ⊗ ej), ε

)
∩ B(k)

)
∪

l−i−1⋃

s=0

{
B(max{k−s−1,0})

∩
⋃

i+16r1<...<rs+16l

⋂

p∈{r1,...,rs+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)
∩R

( n∑

j=1

T (hi
j ⊗ ej), ε

)}

=

(
R

( n∑

j=1

T (hi
j ⊗ ej), ε

)
∩ B(k)

)

∪
l−i−1⋃

s=0

{
B(max{k−s−1,0}) ∩

⋃

i=r1<...<rs+26l

⋂

p∈{r1,...,rs+2}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)}

=

l−i−1⋃

s=−1

{
B(max{k−s−1,0}) ∩

⋃

i=r1<...<rs+26l

⋂

p∈{r1,...,rs+2}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)}

=

l−i⋃

s=0

{
B(max{k−s,0}) ∩

⋃

i=r1<...<rs+16l

⋂

p∈{r1,...,rs+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)}
.
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Thus, recalling the inductive assumption we conclude that the set

l−i⋃

s=0

{
B(max{k−s,0}) ∩

⋃

i6r1<...<rs+16l

⋂

p∈{r1,...,rs+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)}

=

l−i⋃

s=0

{
B(max{k−s,0}) ∩

⋃

i=r1<...<rs+16l

⋂

p∈{r1,...,rs+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)}

∪
l−i−1⋃

s=0

{
B(max{k−s,0}) ∩

⋃

i+16r1<...<rs+16l

⋂

p∈{r1,...,rs+1}

R

( n∑

j=1

T (hp
j ⊗ ej), ε

)}

is empty. This finishes the induction step and the proof. �

Next, similarly as in Section 3 we define certain sets G, Θ, which we use for the

proof of Theorem 1.3. For s,m ∈ N, m < s, ε > 0 and functions h1, . . . , hs ∈ AE1
1

we denote

G(h1, . . . , hs,m, ε) = {(g1, . . . , gm) ∈ (AE1
1 )m, ∀ i = 1, . . . ,m : 0 6 gi 6 1,

gi > hi − ε and gi 6 hs−m+i + ε}.

Next, for m,n, s ∈ N, m < s, ε > 0, vectors e1, . . . , en ∈ E1 and functions

(hr
1)

s
r=1, . . . , (h

r
n)

s
r=1 from AE1

1 we denote

Θ(T, (hr
1)

s
r=1, . . . , (h

r
n)

s
r=1, (ej)

n
j=1,m, ε)

=
⋂{

R

(
T

( n∑

j=1

m∑

i=1

gij ⊗ ej

)
, ε

)
: ∀ j = 1, . . . n, (g1j , . . . , g

m
j ) ∈ G(h1

j , . . . , h
s
j ,m, ε)

}
.

Notice that if functions (hr
1)

s
r=1, . . . , (h

r
n)

s
r=1 from AE1

1 satisfy that for each j =

1, . . . , n and r = 1, . . . , s, 0 6 hr
j 6 1 and hr

j < hr+1
j +ε for r < s, then for ε̃ > (s−1)ε

it holds that hr
j 6 ht

j + ε̃ for each r, t ∈ {1, . . . , s}, r < t. Consequently, for each

j = 1, . . . , n and m 6 s, the set G(h1
j , . . . , h

s
j ,m, ε̃) is nonempty. Indeed, for each m,

indices r1, . . . , rm ∈ {1, . . . , s},

(4.2) (hr1
j , . . . , hrm

j ) ∈ G(h1
j , . . . , h

s
j ,m, ε̃).

Thus, the set of functions defining

Θ(T, (hr
1)

s
r=1, . . . , (h

r
n)

s
r=1, (ej)

n
j=1,m, ε̃) is also nonempty.

The following Lemma, which is another crucial ingredient for the proof of Theo-

rem 1.3, is inspired by [4], Lemma 2.1.
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Lemma 4.4. Let n,m, s ∈ N, m < s, ‖T−1‖ = 1, ‖T ‖ < (s+m)/(s−m).

Choose ε ∈ (0, 1) satisfying

ε <
s+m− ‖T ‖(s−m)

‖T ‖(2m+ n(s+ 5m)) + n(s+m) + 2

and let nonzero vectors e1, . . . , en ∈ E1 satisfy that max
i=1,...,n

‖ei‖ = 1. Let U1, . . . , Un

be pairwise disjoint open sets in K1, and functions (h
r
1)

s
r=1, . . . , (h

r
n)

s
r=1 from AE1

1

satisfy for each r = 1, . . . , s and j = 1, . . . , n,

0 6 hr
j 6 1, hr

j < ε on ChH1K1 \ Uj , and for r < s, hr
j 6 hr+1

j +
ε

s
.

Choose j0 ∈ {1, . . . , n} satisfying that ‖ej0‖ = 1. If ‖h1
j0
‖ > 1− ε/s, then

Θ(T, (hr
1)

s
r=1, . . . , (h

r
n)

s
r=1, (ej)

n
j=1,m, ε) ∩ B

is nonempty.

P r o o f. With the assumptions, there exists a point x0 ∈ ChH1K1 satisfying that

hr
j0
(x0) > 1− (s− 1)

ε

s
> 1− ε, r = 1, . . . , s.

For j 6= j0 and r = 1, . . . , s we have hr
j(x0) < ε by disjointness of the sets U1, . . . , Un.

Consequently, since ‖T−1‖ = 1, we have

∥∥∥∥T
( n∑

j=1

(
2

m∑

r=1

hr
j +

s∑

r=m+1

hr
j

)
⊗ ej

)∥∥∥∥

>

∥∥∥∥
n∑

j=1

(
2

m∑

r=1

hr
j +

s∑

r=m+1

hr
j

)
⊗ ej)

∥∥∥∥

>

∥∥∥∥
( n∑

j=1

(
2

m∑

r=1

hr
j +

s∑

r=m+1

hr
j

)
⊗ ej

)
(x0)

∥∥∥∥

>

∥∥∥∥
((

2
m∑

r=1

hr
j0
+

s∑

r=m+1

hr
j0

)
⊗ ej0

)
(x0)

∥∥∥∥

−

∥∥∥∥
(∑

j 6=j0

(2

m∑

r=1

hr
j +

s∑

r=m+1

hr
j)⊗ ej

)
(x0)

∥∥∥∥

> (2m+ s−m)(1− ε)− (n− 1)(2m+ s−m)ε

= (s+m)(1− nε).
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Thus, there exists a point y ∈ B such that

∥∥∥∥T
( n∑

j=1

(
2

m∑

r=1

hr
j +

s∑

r=m+1

hr
j

)
⊗ ej

)
(y)

∥∥∥∥ > (s+m)(1− nε).

We claim that y ∈ Θ(T, (hr
1)

s
r=1, . . . , (h

r
n)

s
r=1, (ej)

n
j=1,m, ε). Thus, we choose ar-

bitrary functions (gr1)
m
r=1, . . . , (g

r
n)

m
r=1 in AE1

1 satisfying that for each j = 1, . . . n,

(g1j , . . . , g
m
j ) ∈ G(h1

j , . . . , h
s
j ,m, ε) (we know from (4.2) that the set of such functions

is nonempty). Fix j ∈ {1, . . . , n}. By definition of the set G(h1
j , . . . , h

s
j ,m, ε) we have

(4.3)

( m∑

i=1

hi
j

)
−mε 6

m∑

i=1

gij

and

(4.4)

m∑

i=1

gij 6

( s∑

i=s−m+1

hi
j

)
+mε.

Consequently,

−(s−m)− 2mε 6 −

( s∑

i=m+1

hi
j

)
− 2mε 6

(
2

s−m∑

i=1

hi
j −

s∑

i=m+1

hi
j

)
− 2mε

(4.4)

6 2

s−m∑

i=1

hi
j + 2

s∑

i=s−m+1

hi
j − 2

m∑

i=1

gij −
s∑

i=m+1

hi
j

= 2

s∑

i=1

hi
j − 2

m∑

i=1

gij −
s∑

i=m+1

hi
j = 2

m∑

i=1

hi
j +

s∑

i=m+1

hi
j − 2

m∑

i=1

gij

(4.3)

6

( s∑

i=m+1

hi
j

)
+ 2mε 6 s−m+ 2mε.

Thus ∥∥∥∥
(
2

m∑

i=1

hi
j +

s∑

i=m+1

hi
j − 2

m∑

i=1

gij

)
⊗ ej

∥∥∥∥ 6 s−m+ 2mε.

Next, notice that for j ∈ {1, . . . , n}, i ∈ {1, . . . ,m} and x ∈ ChH1K1 \ Uj we have

gij(x) 6 hs−m+i
j (x) + ε < 2ε, hence

∥∥∥∥
((

2

m∑

i=1

hi
j +

s∑

i=m+1

hi
j − 2

m∑

i=1

gij

)
⊗ ej

)
(x)

∥∥∥∥ < 2mε+(s−m)ε+4mε= (s+5m)ε.

Thus by Lemma 2.2 we have

∥∥∥∥
n∑

j=1

(
2

m∑

i=1

hi
j +

s∑

i=m+1

hi
j − 2

m∑

i=1

gij

)
⊗ ej

∥∥∥∥ 6 s−m+ 2mε+ n(s+ 5m)ε.
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Now we claim that
∥∥∥T

( n∑
j=1

m∑
i=1

gij ⊗ ej

)
(y)

∥∥∥ > ε. Indeed, otherwise we would have

‖T ‖(s−m+ 2mε+ n(s+ 5m)ε)

>

∥∥∥∥T
( n∑

j=1

(
2

m∑

i=1

hi
j +

s∑

i=m+1

hi
j − 2

m∑

i=1

gij

)
⊗ ej

)∥∥∥∥

>

∥∥∥∥T
( n∑

j=1

(
2

m∑

i=1

hi
j +

s∑

i=m+1

hi
j − 2

m∑

i=1

gij

)
⊗ ej

)
(y)

∥∥∥∥

>

∥∥∥∥T
( n∑

j=1

(
2

m∑

i=1

hi
j +

s∑

i=m+1

hi
j

)
⊗ ej

)
(y)

∥∥∥∥− 2

∥∥∥∥T
( n∑

j=1

m∑

i=1

gij ⊗ ej

)
(y)

∥∥∥∥

> (s+m)(1 − nε)− 2ε,

contradicting the choice of ε. Thus y ∈ Θ(T, (hr
1)

s
r=1, . . . , (h

r
n)

s
r=1, (ej)

n
j=1,m, ε), and

we are done. �

Now we are ready to prove Theorem 1.3.

P r o o f of Theorem 1.3. We only need to prove that ‖T ‖‖T−1‖ > (2l + 2− k)/k

since the bound 3 follows from statements (a), (b) and (c) of Theorem 1.1. Let A1

be the canonical scalar function space associated to H1.

Claim 4.5. There exists n ∈ N such that for each ζ > 0 there exist distinct points

(xj)
n
j=1 ∈ W

(l)
H1
, vectors e1, . . . , en in E1 with max

j=1,...,n
‖ei‖ = 1, U1, . . . , Un pairwise

disjoint open sets such that xj ∈ Uj for each j = 1, . . . , n, and functions hj ∈ AE1
1

satisfying that for each j = 1, . . . , n,

0 6 hj 6 1, hj(xj) > 1− ζ, hj < ζ on ChH1K1 \ Uj

and such that the set R
( n∑
j=1

T (hj ⊗ ej), ζ
)
∩ B(k) is empty.

Suppose first that Claim 4.5 holds, and assume for a contradiction that the iso-

morphism T satisfies that ‖T−1‖ = 1 and ‖T ‖ < (2l+ 2− k)/k. Choose

ε <
2l+ 2− k − ‖T ‖k

‖T ‖(2l+ 2− 2k + n(6l+ 6− 5k)) + n(2l+ 2− k) + 2
and ζ =

ε

l + 1
.

Then we use Claim 4.5 to find an appropriate n ∈ N and all the other above

objects for this ζ. Next, since in all cases (i), (ii) and (iii), the set B(k) ∩ ΩH2 is

finite, we can use Lemma 4.2 to find functions (hr
1)

l
r=0, . . . , (h

r
n)

l
r=0 ∈ AE1

1 satisfying

that for each j = 1, . . . , n and i = 0, . . . , l,

0 6 hi
j 6 1, hi

j < ζ on ChH1K1 \ U
i
j , hi

j < hi+1
j + ζ,
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hi
j(x

i
j) > 1− ζ for some xi

j ∈ W
(i)
H1
and such that for every y ∈ B,

(4.5)

∣∣∣∣
{
i ∈ {0, . . . , l} : y ∈ R

( n∑

j=1

T (hi
j ⊗ ej), ζ

)}∣∣∣∣ 6 k.

Next, since ζ = ε/(l+ 1), we can use Lemma 4.4 for s = l + 1 and m = l − k + 1 to

obtain a point

y ∈ Θ(T, (hr
1)

l
r=0, . . . , (h

r
n)

l
r=0, (ej)

n
j=1, l − k + 1, ε) ∩ B.

By (4.5), there are at most k indices i from the set {0, . . . , l} satisfying that∥∥∥
n∑

j=1

T (hi
j ⊗ ej)(y)

∥∥∥ > ζ. Thus, we can fix i1, . . . , il−k+1 ∈ {0, . . . , l} such that for

each p = 1, . . . , l − k + 1 it holds that
∥∥∥

n∑
j=1

T (h
ip
j ⊗ ej)(y)

∥∥∥ < ζ. But then, since

ζ = ε/(l + 1),

(hi1
j , . . . , h

il−k+1

j ) ∈ G(h0
j , . . . , h

l
j , l − k + 1, ε)

for each j = 1, . . . , n, see (4.2).

Thus, by the definition of Θ(T, (hr
1)

l
r=0, . . . , (h

r
n)

l
r=0, (ej)

n
j=1,m, ε) we know that

∥∥∥∥T
( n∑

j=1

l−k+1∑

p=1

h
ip
j ⊗ ej

)
(y)

∥∥∥∥ > ε.

Consequently, we have

ε 6

∥∥∥∥T
( n∑

j=1

l−k+1∑

p=1

h
ip
j ⊗ ej

)
(y)

∥∥∥∥ 6

l−k+1∑

p=1

∥∥∥∥T
( n∑

j=1

h
ip
j ⊗ ej

)
(y)

∥∥∥∥ < (l − k + 1)ζ < ε.

This contradiction shows that ‖T ‖‖T−1‖ > (2l + 2− k)/k. Thus, to finish the proof

it is enough to prove the above Claim 4.5.

P r o o f of Claim 4.5. In case (i), we put n = 1. Since W
(l)
H1
is nonempty, we

can take an arbitrary point x1 ∈ W
(l)
H1
and vector e1 ∈ SE1 , and then, since the

set B(k) ∩ ΩH2 is empty, the function h1 exists simply by the definition of a weak

peak point.

For case (ii), we again put n = 1, and we pick an arbitrary e1 ∈ SE1 . Since W
(l)
H1

is infinite, there exist pairwise disjoint open sets {Um}m∈N and points {zm}m∈N ⊆

W
(l)
H1
such that zm ∈ Um for each m ∈ N. For a given ζ > 0 we find functions

{gm}m∈N ⊆ AE1
1 such that for each m ∈ N,

0 6 gm 6 1, gm(zm) > 1−
ζ

2m
and gm <

ζ

2m
on ChH1K1 \ Um.

Now, since B(k) ∩ΩH2 is finite, it is enough to use Lemma 4.1 to obtain the function

h1 = gm and the point x1 = zm for a suitable m ∈ N.
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Finally, for case (iii) we suppose that W
(l)
H1

= {x1, . . . , xn} and B(k) ∩ ΩH2 =

{y1, . . . , ym}. Given ζ > 0, we find pairwise disjoint open sets U1, . . . , Un such that

xj ∈ Uj for each j = 1, . . . , n, and functions h1, . . . , hn in AE1
1 satisfying that

0 6 hj 6 1, hj(xj) > 1− ζ and hj < ζ on ChH1K1 \ U
l
j , j = 1, . . . , n.

As in the proof of Theorem 1.1 (c), we define a linear operator S : (En
1 , ‖·‖max) →

C(B(k) ∩ ΩH2 , E2) ≃ (Em
2 , ‖·‖max) as

S(e1, . . . , en) = T

( n∑

i=1

hi ⊗ ei

)∣∣∣∣
(B(k)∩ΩH2)

.

Then as in the proof of Theorem 1.1 (c), S is bounded. Since by our assumption Em
2

does not contain an isomorphic copy of En
1 , it follows that S

−1 is not bounded.

Consequently, there exist nonzero vectors e1, . . . , en ∈ E1 with max
i=1,...,n

‖ei‖ = 1 such

that
∥∥∥T

( n∑
i=1

hi ⊗ ei

)∣∣∣
(B(k)∩ΩH2)

∥∥∥ < ζ, and those are the vectors we were looking for.

The proof is finished. �
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