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Mal’tsev–Neumann products of semi-simple classes of rings

Barry James Gardner

Abstract. Malt’tsev–Neumann products of semi-simple classes of associative rings
are studied and some conditions which ensure that such a product is again a semi-
simple class are obtained. It is shown that both products, S1 ◦ S2 and S2 ◦ S1

of semi-simple classes S1 and S2 are semi-simple classes if and only if they are
equal.
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1. Introduction

A Mal’tsev–Neumann product X ◦ Y of classes X ,Y of rings is the class of

rings A which have an ideal I ∈ X with A/I ∈ Y. The concept was introduced

about the same time by A. I. Mal’tsev in [4] for general algebras, where the role of

ideals is played by congruence classes which are subalgebras, and in H. Neumann’s

book [5] for groups. In [4] there was some concentration on varieties and quasiva-

rieties, while [5] was concerned with varieties of groups. Subsequently products

have been studied in various contexts; a good survey is given in the introduction

to [6].

It seems natural to ask when a Mal’tsev–Neumann product of radical classes

(or semi-simple classes) is again a radical class (semi-simple class, respectively).

In [2] we examined the former question with some emphasis on elementary radical

classes. One quite general result was that for radical classes R1 and R2, R1 ◦R2

and R2 ◦ R1 are both radical classes if and only if R1 ◦ R2 = R2 ◦ R1.

Here we investigate the question for semi-simple classes. We fare a bit better

than in [2] with examples. Thus if S2 is the semi-simple class corresponding to

a hereditary radical class, then S1 ◦S2 is a semi-simple class for every semi-simple

class S1, though the hereditary condition is not necessary. Hence if S1 and S2

both correspond to hereditary radicals, then both their products are semi-simple

classes. As with radical classes this means that the products must coincide. The
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behaviour relating to products of the semi-simple classes corresponding to special

radicals is completely described.

All rings throughout are associative, and we are dealing with rings, not rings

with identity. Two results from radical theory for associative rings that are cru-

cially involved in our proofs are the following.

(1) A nonempty class of rings is a semi-simple class if and only if it is isomor-

phically closed, hereditary and closed under subdirect products and extensions.

(2) Absolute direct summand (ADS) condition (Anderson, Divinsky and Suliń-

ski condition). For every radical class R, if I ⊳ A then R(I) ⊳ A.

In some contexts, e.g., alternative rings, groups and modules, (1) and (2) are

valid and so many of our results carry over with only cosmetic changes. In other

settings, though, (1) and/or (2) may fail, notoriously in the class of all (not

necessarily associative) rings.

We use the terms “radical class” and “radical” as synonyms, but mostly use the

former. For unexplained notation and terminology pertaining to radical theory

see [3]. For terms from abelian group theory see [1].

2. Results

Throughout this paper, S1 and S2 always denote semi-simple classes,R1 andR2,

respectively, the corresponding radical classes, though distinctive notation will be

used for specific radical and semi-simple classes. The first, simple result will be

indispensible for some of our proofs.

Proposition 2.1. For semi-simple classes S1 and S2, the following conditions

are equivalent for a ring A

(i) A ∈ S1 ◦ S2.

(ii) R2(A) ∈ S1.

(iii) A has an ideal J such that J ∈ S1, A/J ∈ S2 and J ⊳ R for every ring R

for which A ⊳ R.

Proof: (i) ⇒ (ii) If I ⊳ A, I ∈ S1 and A/I ∈ S2, then R2(A) ⊆ I as A/I is

R2-semi-simple. Thus R2(A) ∈ S1.

(ii) ⇒ (iii) A/R2(A) ∈ S2 and the other requirement follows from the (ADS)

condition.

Clearly (iii) ⇒ (i). �

A Mal’tsev–Neumann product of semi-simple classes always satisfies some of

the requirements for a semi-simple class.
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Proposition 2.2. For all semi-simple classes S1 and S2, the product S1 ◦ S2 is

(i) hereditary and

(ii) closed under subdirect products.

Proof: (i) If A ⊳ B ∈ S1 ◦ S2 let I be an ideal of B with I ∈ S1 and B/I ∈ S2.

Then I ∩ A ⊳ A and I ∩ A ⊳ I ∈ S1 so I ∩ A ∈ S1. Also A/I ∩ A ∼= (A + I)/I⊳

B/I ∈ S2, so A/I ∩ A ∈ S2.

(ii) If A is a subdirect product of rings A/Kλ ∈ S1 ◦ S2 with
⋂

Kλ = 0

for each λ let Iλ be an ideal of A containing Kλ such that Iλ/Kλ ∈ S1 and

A/Iλ ∼= (A/Kλ)/(Iλ/Kλ) ∈ S2. Let I =
⋂
Iλ. Then

I/I ∩Kλ
∼= (I +Kλ)/Kλ ⊳ Iλ/Kλ ∈ S1.

Now
⋂
(I∩Kλ) ⊆

⋂
Kλ = 0, so I is a subdirect product of the rings I/I∩Kλ ∈ S1

whence I ∈ S1.

Also A/I = A/
⋂
Iλ and

⋂
(Iλ/I) = 0 so A/I is a subdirect product of the

rings (A/I)/(Iλ/I) ∼= A/Iλ ∈ S2. Thus A ∈ S1 ◦ S2. �

Corollary 2.3. S1 ◦ S2 is a semi-simple class if and only if it is closed under

extensions.

Proposition 2.4. If S1 ◦ S2 is a semi-simple class, then S2 ◦ S1 ⊆ S1 ◦ S2.

Proof: S2 and S1 ⊆ S1 ◦ S2 and the latter is closed under extensions. �

The following result mirrors Theorem 2.3 of [2].

Theorem 2.5. Let S1,S2 be semi-simple classes. Then S1 ◦ S2 and S2 ◦ S1 are

both semi-simple classes if and only if they are equal.

Proof: First suppose that S1 ◦S2 = S2 ◦S1. If A⊳B with A,B/A ∈ S1 ◦S2, then

A has an ideal I ∈ S1 with A/I ∈ S2 and B has an ideal J containing A with

J/A ∈ S1 and B/J ∼= (B/A)/(J/A) ∈ S2. By Proposition 2.1 it can be assumed

that I ⊳ J and I ⊳ B. Since A/I ∈ S2 and J/A ∈ S1 the exact sequence

0 → A/I → J/I → J/A → 0

shows that J/I ∈ S2 ◦ S1 = S1 ◦ S2. Hence J has an ideal K containing I such

that K/I ∈ S1 and J/K ∼= (J/I)/(K/I) ∈ S2.

We can assume that K/I ⊳ B/I (by Proposition 2.1) whence K ⊳ B. Since I

and K/I ∈ S1, so also is K ∈ S1. Moreover, J/K ∈ S2 and B/J ∈ S2, so from

the exact sequence

0 → J/K → B/K → B/J → 0
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we see that B/K ∈ S2. But then B ∈ S1 ◦S2 as required, and S1 ◦S2 is therefore

closed under extensions and hence a semi-simple class.

The converse follows from Proposition 2.4. �

This is all well and good, but as yet we have given no examples of products

of semi-simple classes which are themselves semi-simple classes. The next result

provides a plentiful supply of such examples.

Theorem 2.6. If the radical class R2 corresponding to S2 is hereditary, then

S1 ◦ S2 is a semi-simple class.

Proof: Let A be an ideal of a ring C with A and C/A ∈ S1 ◦ S2. Then R2(A)

and R2(C/A) are in S1 by Proposition 2.1. Now R2(A) ⊳ C so R2(a) ⊳R2(C)

and

R2(C)/R2(A) = R2(C)/(A ∩R2(C)) ∼= (R2(C) +A)/A ⊳ C/A

and R2(C)/R2(A) ∈ R2 so (R2(C) + A)/A ⊳ R2(C/A) ∈ S1, consequently

R2(C)/R2(A) ∈ S1. But also R2(A) ∈ S1 and thus C ∈ S1 ◦ S2. By Corol-

lary 2.3, S1 ◦ S2 is a semi-simple class. �

Corollary 2.7. If R1 and R2 are both hereditary then S1 ◦ S2 and S2 ◦ S1 are

both semi-simple classes and hence equal.

Example 2.8. If R2 is not hereditary then S1 ◦ S2 need not be a semi-simple

class.

Let B denote the prime (Baer) radical class and E the radical class of all

idempotent rings, and let S(B), S(E), respectively, denote their corresponding

semi-simple classes. Then B is hereditary, so S(E) ◦ S(B) is a semi-simple class.

If S(B)◦S(E) were a semi-simple class, we should have S(B)◦S(E) = S(E)◦S(B).

For a prime p, let Z(p)0 ∗ Z(p) denote the standard unital extension obtained by

the adjunction to the zeroring Z(p)0 on the cyclic group of order p of the identity

of the field Z(p). Then Z(p)0 ∗ Z(p) is in the semi-simple class S(E) ◦ S(B). But

Z(p)0 ∗ Z(p) has no nonzero semiprime ideals and is idempotent, so it is not in

S(B) ◦ S(E).

Example 2.9. Nevertheless, R2 need not be hereditary for S1 ◦ S2 to be a semi-

simple class.

Let i be the radical class of boolean rings and D the A-radical class of divisible

rings, i.e. rings with divisible additive groups, S(i) and S(D), respectively, their

associated semi-simple classes. (It would be unwise to call the rings in S(D)

reduced because of an established meaning of that word in ring theory.) Since i

is hereditary, S(D) ◦S(i) is a semi-simple class. In fact for every ring A we have

2i(A) = 0, so i(A) ∈ S(D), whence S(D) ◦ S(i) is the class of all rings. We
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shall show that S(i) ◦ S(D) is also the class of all rings. Since S(i) and S(D) ⊆

S(i) ◦ S(D) we consider an arbitrary ring A with i(A) 6= 0. For convenience let

I = i(A). Likewise we can assume D(A/I) 6= 0 and let D/I = D(A/I).

We need to consider additive groups for a moment: let R+ denote the additive

group of a ring R. Now

Ext((D/I)+, I+) = Ext(2(D/I)+, I+) = 2Ext((D/I)+, I+) = 0,

as 2I = 0, see [1], pages 266–267, Lemma 3.1 and (C), so that D+ = I+ ⊕ E,

where E is a group isomorphic to (D/I)+. But then E is the maximum divisible

subgroup of D+, so E = D(D)+. Moreover I = i(D), so the group direct sum

D+ = I+ ⊕ E is “really” a ring direct sum D = i(D) ⊕D(D).

Now I ∈ S(D),

I ∼= I/I ∩ D(D) ∼= (I +D(D))/D(D)

and

A/I ⊕D(D) ∼= (A/I)/((I +D(D)/I) = (A/I)/(D/I) = (A/I)/D(A/I) ∈ S(D).

Hence from the exact sequence

0 → (I +D(D))/D(D) → A/D(D) → A/(I +D(D)) → 0

we deduce that A/D(D) ∈ S(D). (Note that A/D(D) exists by (ADS).)

Since D(D) ∈ S(i) we see that A is in S(i) ◦ S(D).

We can completely describe the behaviour of semi-simple classes of special

radicals with respect to Mal’tsev–Neumann products. For this we make use of

the following result which generalizes a theorem of R. L. Snider in [7]. Recall that

an ideal I of a ring A is essential if it has nonzero intersection with every nonzero

ideal of A, and A is then said to be an essential extension of I. We write I ⊳• A

to denote this situation.

Theorem 2.10. Let X be a class of semiprime rings closed under essential ex-

tensions, Y a class of rings. If A is an ideal of a ring B, A is a subdirect product

of rings in X and B/A is a subdirect product of rings in Y, then B is a subdirect

product of rings in X ∪ Y.

Proof: Let A have ideals Iλ such that each A/Iλ ∈ X and
⋂
Iλ = 0, and let

B/A have ideals Jµ/A such that each (B/A)/(Jµ/A) ∈ Y and
⋂
Jµ/A = 0 (so

that each Jµ ⊳ B, each B/Jµ ∈ Y and
⋂
Jµ = A).

Then Iλ ⊳A ⊳B and A/Iλ is semiprime, so Iλ ⊳B (e.g. by the Andrunakievich

lemma) for each λ. For each λ let Nλ/Iλ ⊳ B/Iλ be maximal with respect to
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having zero intersection with A/Iλ. Then Nλ ∩ A = Iλ for each λ. Now

A/Iλ ∼= (A/Iλ)/(A/Iλ) ∩ (N/Iλ) ∼= (A/Iλ +Nλ/Iλ)/(Nλ/Iλ)

⊳• (B/Iλ)/(Nλ/Iλ) ∼= B/Nλ.

Hence B/Nλ ∈ X for all λ. Now

⋂
Nλ ∩

⋂
Jµ =

⋂
Nλ ∩ A =

⋂
(Nλ ∩ A) =

⋂
Iλ = 0.

This shows thatB is a subdirect product of the B/Nλ ∈ X and the B/Jµ ∈ Y. �

In Snider’s theorem, X is a class of prime rings with identity. This is a special

case of Theorem 2.10 since rings with identity have no proper essential extensions.

Now for special radicals.

Theorem 2.11. Let R1 and R2 be special radical classes with semi-simple

classes S1 and S2, respectively, and for i = 1, 2 let Ci be a special class of

prime rings with upper radical class Ri. Then S1 ◦ S2 is the semi-simple class

corresponding to the upper radical class defined by C1 ∪ C2, which is special.

Proof: Special radicals are hereditary, so by Theorems 2.5 and 2.6, S1 ◦ S2

(= S2 ◦ S1) is a semi-simple class. Since special classes are closed under essential

extensions, Theorem 2.10 says that every ring in S1 ◦ S2 is a subdirect product

of rings in the special class C1 ∪ C2. But C1 and C2 ⊆ S1 ∪ S2 ⊆ S1 ◦ S2, so all

subdirect products of rings from C1 ∪ C2 are in S1 ◦ S2. �

Theorem 2.10 might suggest that if S1 is the semi-simple class of a special

radical, then S1 ◦ S2 is a semi-simple class for every semi-simple class S2. This is

not so. See Example 2.8: B is special.
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