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Abstract. This paper is an erratum of H.Mühle: Distributive lattices have the intersec-
tion property, Math. Bohem. (2021). Meet-distributive lattices form an intriguing class of
lattices, because they are precisely the lattices obtainable from a closure operator with the
so-called anti-exchange property. Moreover, meet-distributive lattices are join semidistribu-
tive. Therefore, they admit two natural secondary structures: the core label order is an
alternative order on the lattice elements and the canonical join complex is the flag simplicial
complex on the canonical join representations. In this article we present a characterization
of finite meet-distributive lattices in terms of the core label order and the canonical join
complex, and we show that the core label order of a finite meet-distributive lattice is always
a meet-semilattice.
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core label order; intersection property
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1. Introduction

A lattice L is join semidistributive if every element admits a canonical expression

as a join of join-irreducible elements, see [18], [19]. Consequently, the word problem

can be solved efficiently in these lattices. The set of canonical join representations of

a lattice forms a simplicial complex (see [16], Proposition 2.2), the canonical join

complex of L. If L is join semidistributive, then the faces of the canonical join com-

plex are naturally indexed by the elements of L.

Moreover, when L is join semidistributive, canonical join representations can be

computed easily with the help of a certain edge-labeling which is determined by
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a perspectivity relation (see [4]). This labeling is essentially unique and can be

used to define an alternative partial order on L, the core label order. Ordering the

elements of L by this order yields the core label poset CLO(L).

This order first appeared in Reading’s research on congruence-uniform lattices of

regions of real hyperplane arrangements. We have investigated this order abstractly

for congruence-uniform lattices in [11]. For some special cases the core label order

was studied combinatorially in [3], [5], [9], [10], [13], [14], [15].

An interesting subclass of join-semidistributive lattices are meet-distributive lat-

tices, which have the property that every interval [x, y]—where x is the meet of the

elements covered by y—is isomorphic to a Boolean lattice (see [6], [7]). It turns out

that we can use the core label order and the canonical join complex to characterize

meet-distributive lattices.

Theorem 1.1. A finite join-semidistributive lattice L is meet-distributive if

and only if the core label poset CLO(L) is the face poset of the canonical join

complex of L.

We want to point out that we can also use the core label order to characterize

finite Boolean lattices. They are precisely the join-semidistributive lattices that are

isomorphic to their own core label order, see [11], Theorem 1.5. Consequently, the

canonical join complex of a finite Boolean lattice is a simplex.

In [17], Problem 9.5, N.Reading asked under what conditions the core label or-

der is again a lattice. In [11], Section 4.2 we found one such property, which we

call the intersection property. This property can be used to characterize the join-

semidistributive lattices whose core label orders are meet-semilattices (see [11], The-

orem 4.8). We conclude this article with the observation that every meet-distributive

lattice has the intersection property.

Theorem 1.2. Every finite meet-distributive lattice L has the intersection prop-

erty. Consequently, for a finite meet-distributive lattice L, the core label poset

CLO(L) is a meet-semilattice, and it is a lattice if and only if L is isomorphic to

a Boolean lattice.

We first recall the necessary basic notions in Section 2. After that we define

the core label order of a lattice in Section 3.1 and the canonical join complex of

a join-semidistributive lattice in Section 3.3, where we also prove Theorem 1.1. In

Section 3.4 we define the intersection property and prove Theorem 1.2.
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2. Preliminaries

2.1. Basic notions. Let P = (P,6) be a partially ordered set (poset for short).

The dual poset of P is P∗ def
= (P,>).

An element x ∈ P is minimal in P if y 6 x implies y = x for all y ∈ P . Dually,

x ∈ P is maximal in P if it is minimal in P
∗.

A cover of P is a pair (x, y) such that x < y and there is no z ∈ P such that

x < z < y. We usually write x ⋖ y for a cover, and we denote the set of all covers

of P by E(P). Moreover, if x ⋖ y, then we call x a lower cover of y and y an upper

cover of x.

A chain of P is a totally ordered subset of P and it is saturated if it can be written

as a sequence of covers. A saturated chain is maximal if it contains a minimal and

a maximal element of P.

We say that P is a lattice if for every two elements x, y ∈ P there exists a greatest

lower bound x∧ y (the meet) and a least upper bound x ∨ y (the join). Every finite

lattice has a unique minimal element (denoted by 0̂) and a unique maximal element

(denoted by 1̂).

A lattice is Boolean if it is isomorphic to the family of subsets of some set M

ordered by inclusion. If |M | = n, then we write Bool(n) for the Boolean lattice

with 2n elements.

2.2. Join-semidistributive lattices. Let L = (L,6) be a lattice. A join rep-

resentation of x ∈ L is a set X ⊆ L with x =
∨
X . A join representation X of x

join-refines a join representation X ′ of x if for every y ∈ X there exists some y′ ∈ X ′

such that y 6 y′. A join representation X of x is irredundant if no proper subset

of X joins to x, and an irredundant join representation is canonical if it join-refines

every other join representation of x. We denote the canonical join representation of

x ∈ L by Γ(x) (if it exists).

It turns out that the finite lattices in which every element admits a canonical

join representation can be characterized algebraically. A lattice L = (L,6) is join

semidistributive if for all x, y, z ∈ L the implication

(JSD) x ∨ y = x ∨ z ⇒ x ∨ y = x ∨ (y ∧ z)

holds.

Theorem 2.1 ([8], Theorem 2.24). A finite lattice is join semidistributive if and

only if every element admits a canonical join representation.
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2.3. Meet-distributive lattices. We now move to a subfamily of the join-

semidistributive lattices. Let L = (L,6) be a lattice. For x ∈ L, we define its

nucleus by

x↓
def
= x ∧

∧

y∈L : y⋖x

y.

We remark that the additional meet with x in the definition of x↓ is relevant, only

when x = 0̂. Since 0̂ has no lower covers and the meet over the empty set is usually

the greatest element, we need to add this correction term in order to ensure that

x↓ 6 x for all x ∈ L. This has been overlooked in the analogous definition of [11].

We call the interval [x↓, x] the core of x. Then, L is meet distributive if for

every x ∈ L, the core [x↓, x] is isomorphic to a Boolean lattice. Figure 1(a) shows

a join-semidistributive lattice that is not meet distributive, and Figure 2(a) shows

a meet-distributive lattice.
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Figure 1. (a) A join-semidistributive lattice; (b) The core label order of the lattice from
Figure 1(a).
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Figure 2. (a) A meet-distributive lattice; (b) The core label order of the lattice from
Figure 2(a).

The following result characterizes meet-distributive lattices. Recall that L is lower

semimodular if for all x, y ∈ L it holds: whenever x, y ⋖ x ∨ y, then x ∧ y ⋖ x, y.

Theorem 2.2 ([1], Theorem 1.9). A finite lattice is meet distributive if and only

if it is join semidistributive and lower semimodular.

Meet-distributive lattices are precisely the lattices that arise from a closure oper-

ator satisfying the so-called anti-exchange property, see [1], [2], [7].
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3. The core label order of a join-semidistributive lattice

3.1. The core label order. Motivated by the study of the poset of regions of

real hyperplane arrangements, N.Reading introduced an alternate way to order the

elements of a congruence-uniform lattice (see [17], Section 9–7.4). In fact, we may

generalize this construction to arbitrary finite lattices.

Let L = (L,6) be a finite lattice, let M be a set and let λ : E(L) → M be an edge

labeling of L. The core label set of x ∈ L (with respect to λ) is

Ψλ(x)
def
= {λ(u, v) : x↓ 6 u ⋖ v 6 x}.

We now put x 6clo y if and only if Ψλ(x) ⊆ Ψλ(y). In general, this results in

a quasi-ordered set CLOλ(L)
def
= (L,6clo).

We say that λ is a core labeling if the assignment x 7→ Ψλ(x) is injective. If λ is

a core labeling, then it is quickly checked that CLOλ(L) is in fact a partially ordered

set; the core label poset. We call 6clo the core label order of L. Figures 1 and 2

illustrate this construction.

3.2. A perspectivity labeling. Two covers (x1, y1), (x2, y2) ∈ E(L) are perspec-

tive if either y1 ∨ x2 = y2 and y1 ∧ x2 = x1 or y2 ∨ x1 = y1 and y2 ∧ x1 = x2. We

write (x1, y1) [ (x2, y2) in this case. This definition is illustrated in Figure 3.

Figure 3. The grey edges represent perspective covers.

Recall another useful fact about join-semidistributive lattices. An element j ∈

L \ {0̂} is join irreducible if whenever j = x ∨ y, then j ∈ {x, y}. The set of join-

irreducible elements of L is denoted by J(L). In particular, if L is finite and j ∈ J(L),

then there exists a unique lower cover j∗ of j.

Lemma 3.1 ([1], Lemma 1.8). Let L be a finite join-semidistributive lattice. For

every (x, y) ∈ E(L), the set {z ∈ L : z 6 y and z 66 x} has a unique minimal

element j, and j is join irreducible.
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This gives rise to the following edge-labeling of a finite join-semidistributive lat-

tice L:

(3.1) λjsd : E(L) → J(L), (x, y) 7→
∧

{z ∈ L : z 6 y and z 66 x}.

This labeling is illustrated in Figures 1(a) and 2(a).

Lemma 3.2. Let (x, y) ∈ E(L) and j ∈ J(L). If (x, y) [ (j∗, j), then j 6 y.

P r o o f. If (x, y) [ (j∗, j), then either j 6 y or y 6 j. The latter case, however,

forces the existence of two lower covers of j, contradicting that j is join irreducible.

�

We now show that the labeling λjsd is a canonical labeling of a finite join-

semidistributive lattice, because it is determined by the perspectivity relation.

Lemma 3.3. Let (x, y) ∈ E(L). Then λjsd(x, y) = j if and only if (j∗, j) [ (x, y).

P r o o f. Suppose that λjsd(x, y) = j. By definition, x∨ j = y and thus x∧ j < j.

Since j is minimal with the property that j 6 y and j 66 x, we see that j∗ 6 x. This

implies x ∧ j = j∗ and it follows that (j∗, j) [ (x, y).

Conversely, suppose that (j∗, j) [ (x, y). By Lemma 3.2, we get j ∨ x = y and

j ∧x = j∗. Thus, λjsd(x, y) 6 j. But j∗ 6 x, which means that λjsd(x, y) 66 j∗. Since

j ∈ J(L), we must have λjsd(x, y) = j. �

The labeling λjsd also allows for a simple computation of canonical join represen-

tations.

Proposition 3.4 ([4], Lemma 19). If L = (L,6) is a finite join-semidistributive

lattice, then for every x ∈ L,

Γ(x) = {λjsd(x
′, x) : x′ ⋖ x}.

Proposition 3.5. The edge-labeling λjsd of a finite join-semidistributive lattice

is a core labeling.

P r o o f. Let L = (L,6) be a finite join-semidistributive lattice, and let x ∈ L.

If j ∈ Ψλjsd
(x), then there exist x1, x2 ∈ L such that x↓ 6 x1 ⋖ x2 6 x and

λjsd(x1, x2) = j. By Lemma 3.3, this means that (j∗, j)[ (x1, x2) and by Lemma 3.2

it follows that j 6 x2 6 x. As a consequence,
∨
Ψλjsd

(x) 6 x. Moreover, by

Proposition 3.4, we have Γ(x) ⊆ Ψλjsd
(x), and therefore x =

∨
Γ(x) 6

∨
Ψλjsd

(x).

It follows that
∨
Ψλjsd

(x) = x.
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Now, if there exist x, y ∈ L such that Ψλjsd
(x) = Ψλjsd

(y), then

x =
∨

Ψλjsd
(x) =

∨
Ψλjsd

(y) = y.

Hence, the assignment x 7→ Ψλjsd
(x) is injective and λjsd is a core labeling. �

Theorem 3.6. Let L = (L,6) be a finite join-semidistributive lattice. Then we

have Γ(x) = Ψλjsd
(x) for all x ∈ L if and only if L is meet distributive.

P r o o f. If L is meet distributive, then every core [x↓, x] is isomorphic to

a Boolean lattice. If Bool(k) is the Boolean lattice with the ground set M =

{1, 2, . . . , k}, then it is easy to verify that Γ(M) = M = Ψλjsd
(M). This proves

that Γ(x) = Ψλjsd
(x) for all x ∈ L.

Conversely, suppose that L is not meet distributive. By Theorem 2.2, L is not

lower semimodular, which means that there exist two elements x, y ∈ L such that

x, y ⋖ x ∨ y and—without loss of generality—(x ∧ y, x) /∈ E(L). This means that

there exists z ∈ L with x∧ y < z ⋖ x. Suppose that λjsd(z, x) = j. By construction,

j ∈ Ψλjsd
(x ∨ y). By perspectivity, j 6= λjsd(x, x ∨ y).

Since j 6 x and j 66 z, the assumption x ∧ y < z implies that j 66 y. Moreover,

z 66 y because otherwise z = x ∧ y. This implies that j ∨ y = x ∨ y = z ∨ y and by

(JSD) we get y 6= x ∨ y = y ∨ (z ∧ j) = y ∨ j∗. Thus j∗ 66 y and since j ∈ J(L), we

find y ∧ j 6= j∗. It follows that λjsd(y, x ∨ y) 6= j.

If x, y are the only lower covers of x∨y, then we have just shown that j /∈ Γ(x∨y),

which yields Γ(x ∨ y) ( Ψλjsd
(x ∨ y).

Suppose that there exists another lower cover u of x∨y (different from x and y). If

z 6 u, then we get x∨y = x∨u = y∨u and therefore by (JSD) x∨y = u∨ (x∧y) 6

u ∨ z = u, which is a contradiction. If j 6 u, then λjsd(u, x ∨ y) 6= j by Lemma 3.3.

Otherwise, we get j∨u = x∨y = z∨u and therefore u 6= x∨y = u∨ (z∧ j) = u∨ j∗,

and this implies λjsd(u, x ∨ y) 6= j. Since u was chosen arbitrarily, we conclude that

j /∈ Γ(x ∨ y) and we find that Γ(x ∨ y) ( Ψλjsd
(x ∨ y). �

We may define the Boolean defect of a join-semidistributive lattice L = (L,6) by

bdef(L)
def
=

∑

x∈L

|Ψλjsd
(x) \ Γ(x)|.

Theorem 3.6 has the following consequence, which strengthens [11], Proposition 5.2.

Corollary 3.7. A finite join-semidistributive lattice L has bdef(L) = 0 if and

only if L is meet distributive.
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3.3. The canonical join complex of a join-semidistributive lattice. Given

a finite set M , a simplicial complex on M is a family ∆(M) of subsets of M such

that for every F ∈ ∆(M) and every F ′ ⊆ F we have F ′ ∈ ∆(M). The members of

∆(M) are faces. The face poset of ∆(M) is the poset (∆(M),⊆).

N.Reading has observed in [16], Proposition 2.2 that the set of canonical join

representations of a lattice is closed under taking subsets. In other words, it forms

a simplicial complex; the canonical join complex of L, denoted by Can(L).

We are now ready to prove Theorem 1.1.

P r o o f of Theorem 1.1. Let L = (L,6) be a finite join-semidistributive lat-

tice. By definition, the face poset of Can(L) is precisely ({Γ(x) : x ∈ L},⊆) and

CLOλjsd
(L) is isomorphic to ({Ψλjsd

(x) : x ∈ L},⊆).

If L is meet distributive, then Theorem 3.6 states that these two posets are iso-

morphic.

If L is not meet distributive, then by Theorem 3.6, there exists some x ∈ L such

that Γ(x) ( Ψλjsd
(x). In particular, there exists j ∈ Ψλjsd

(x) \ Γ(x). It follows that

{j} ⊆ Ψλjsd
(x), but {j} 6⊆ Γ(x), so that the core label poset of L is not isomorphic

to the face poset of Can(L). �

Figure 4 illustrates Theorem 1.1 on a bigger example.
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{1, 2} {2, 3} {1, 3} {1, 4} {3, 4}

{1, 3, 4}

(b)

4 3

21

(c)

Figure 4. Illustration of Theorem 1.1: (a) A meet-distributive lattice; (b) The core label
order of the lattice from Figure 4(a); (c) The canonical join complex of the lattice
from Figure 4(a). The highlighted region indicates a two-dimensional face.

3.4. The intersection property. N.Reading asked in [17], Problem 9.5 for con-

ditions on a congruence-uniform lattice L which would imply that CLO(L) is a lat-

tice, too. We gave one such property in [11], Section 4.2, which extends to arbitrary

lattices as follows. A finite lattice L = (L,6) with the edge labeling λ has the inter-

section property if for all x, y ∈ L there exists z ∈ L such that Ψλ(x)∩Ψλ(y) = Ψλ(z).

Provided that λ is a core labeling, the proof of [11], Theorems 1.3 and 4.7 carries

over essentially verbatim to the more general case.
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Theorem 3.8 ([11], Theorems 1.3 and 4.7). Let L be a finite lattice with core

labeling λ. The core label poset CLOλ(L) is a meet-semilattice if and only if L has

the intersection property. It is a lattice if and only if 1̂↓ = 0̂.

We conclude this article with the proof of Theorem 1.2.

P r o o f of Theorem 1.2. Let L = (L,6) be a finite meet-distributive lattice. For

x, y ∈ L we conclude from Theorem 3.6 that Ψλjsd
(x) = Γ(x) and Ψλjsd

(y) = Γ(y).

It follows that Z = Γ(x) ∩ Γ(y) is a face of Can(L), which means that there exists

z ∈ L with Z = Γ(z) = Ψλjsd
(z). We have thus established that L has the intersection

property.

Lemma 3.9 of [11] states that CLO(L) has a greatest element if and only if 1̂↓ = 0̂.

Now, if L is meet-distributive, then the interval [1̂↓, 1̂] is isomorphic to a Boolean

lattice. Thus, 1̂↓ = 0̂ if and only if L is Boolean. The claim then follows from

Theorem 3.8. �
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