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Abstract. For a connected graph G = (V,E) and a set S ⊆ V (G) with at least two
vertices, an S-Steiner tree is a subgraph T = (V ′, E′) of G that is a tree with S ⊆ V ′. If
the degree of each vertex of S in T is equal to 1, then T is called a pendant S-Steiner tree.
Two S-Steiner trees are internally disjoint if they share no vertices other than S and have
no edges in common. For S ⊆ V (G) and |S| > 2, the pendant tree-connectivity τG(S) is
the maximum number of internally disjoint pendant S-Steiner trees in G, and for k > 2,
the k-pendant tree-connectivity τk(G) is the minimum value of τG(S) over all sets S of k
vertices. We derive a lower bound for τ3(G ◦ H), where G and H are connected graphs
and ◦ denotes the lexicographic product.
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1. Introduction

A classical theorem due to Menger states that a graph G is k-vertex-connected if

and only if for every pair of vertices u, v ∈ V (G) there are at least k paths joining u

and v which have no edges or vertices other than the endpoints in common (see [5]);

we say such paths are internally disjoint. This foundational result has led a number

of authors to consider generalizations of connectivity which replace the k internally

disjoint paths with different structures, see [2]. One such generalization is due to

Hager (see [1]), who uses the notion of internally disjoint Steiner trees to define the
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tree-connectivity of a graph. For a graph G = (V,E) and a set S ⊆ V (G) of at

least two vertices, an S-Steiner tree is a subgraph T = (V ′, E′) of G that is a tree

with S ⊆ V ′. Note that when |S| = 2, an S-Steiner tree is simply a path connecting

the two vertices of S. Two S-Steiner trees T and T ′ are said to be internally disjoint

if E(T )∩E(T ′) = ∅ and V (T )∩V (T ′) = S. For S ⊆ V (G) and |S| > 2, the local tree-

connectivity κG(S) is the maximum number of pairwise internally disjoint S-Steiner

trees which can be constructed in G. For an integer k with 2 6 k 6 n, the k-tree-

connectivity of G, κk(G), is defined as the minimum value of κG(S) when S runs

over all k-element subsets of V (G). When |S| = 2, κ2(G) is simply the standard

vertex connectivity κ(G). For more information regarding the k-tree-connectivity

and other generalizations of connectivity, we refer the reader to [4].

For some applications, we may want to consider only pendant S-Steiner trees, in

which each vertex of S is a leaf. Analogously, the local pendant tree-connectivity

τG(S) is the maximum number of internally disjoint pendant S-Steiner trees in G.

For an integer k with 2 6 k 6 n, k-pendant tree-connectivity is defined as τk(G) =

min{τG(S) : S ⊆ V (G), |S| = k}. We let τk(G) = 0 when G is disconnected. When

k = 2, we once again recover the connectivity, as τ2(G) = κ(G). Thus, we can see

that the k-pendant tree-connectivity generalizes the connectivity, and is generalized

by the k-tree-connectivity.

We may observe that the k-tree-connectivity and k-pendant tree-connectivity of

a graph are indeed different. The bound κk(G) > τk(G) is immediate, since any

pendant S-Steiner tree is an S-Steiner tree, but the inequality may be strict. The

lexicographic product of two graphsG and H , written as G◦H , is a graph with vertex

set V (G ◦H) = V (G)× V (H), in which two vertices (u, v) and (u′, v′) of G ◦H are

adjacent if and only if either (u, u′) ∈ E(G) or u = u′ and (v, v′) ∈ E(H). Note that

the lexicographic product is not commutative.

The connectivity and tree-connectivity of graphs constructed using the lexico-

graphic product have previously been investigated. Yang and Xu in [6] determined

the connectivity of the lexicographic product of two graphs.

Theorem 1.1 ([6]). Let G and H be two graphs. If G is nontrivial, noncomplete

and connected, then κ(G ◦H) = κ(G)|V (H)|.

Furthermore, Li and Mao in [3] gave a lower bound for the 3-tree-connectivity of

the lexicographic product of two graphs.

Theorem 1.2 ([3]). Let G and H be two connected graphs. Then

κ3(G ◦H) > κ3(G)|V (H)|,

and the bound is sharp.

238



In this paper, we derive the following lower bound for the 3-pendant tree-

connectivity of the lexicographic product of two graphs.

Theorem 1.3. Let G and H be two connected graphs. Then

τ3(G ◦H) > min{(τ3(G) + 1)(|V (H)| − 1), τ3(G)|V (H)|}.

If τ3(G) = 0,

τ3(G ◦H) > (τ3(G) + 1)(|V (H)| − 1),

and the bound is sharp.

The sharpness of this bound when τ3(G) = 0 is illustrated by the following

example:

Example 1.4. Let Pn be a path on n vertices and Qm be a path on m ver-

tices, n,m > 2. Then τ3(Pn) = 0, |V (Qm)| = m, and τ3(Pn ◦ Qm) = m − 1 =

(τ3(Pn) + 1)(|V (Qm)| − 1).

If V (Pn) = {u1, . . . , un} and V (Qm) = {v1, . . . , vm}, then let

S = {(u1, v1), (u1, v2), (u2, v1)} ⊆ V (Pn ◦Qm).

The vertex (u1, v1) has degree m+ 1 in the graph Pn ◦Qm, but only m− 1 of these

edges can appear in pendant S-Steiner trees as it is adjacent to the two other vertices

in S, so we have τ3(Pn ◦Qm) 6 m− 1.

In graphs with τ3(G) > 0, we are not aware of an example, where this bound is

sharp. This is due to the fact that the number of pendant Steiner trees in a graph

constructed through the lexicographic product depends on the number of Steiner

trees in its first factor, not only the number of pendant Steiner trees. Nevertheless,

the method by which this bound is constructed illustrates the similarity between

the 3-pendant tree-connectivity and other measures of connectivity in lexicographic

product graphs.

2. Derivation of lower bound

In this section, let G andH be two connected graphs with V (G) = {u1, u2, . . . , un}

and V (H) = {v1, v2, . . . , vm}, respectively. Then V (G ◦H) = {(ui, vj) : 1 6 i 6 n,

1 6 j 6 m}. For v ∈ V (H) we use G(v) to denote the subgraph of G ◦H induced by

the vertex set {(ui, v) : 1 6 i 6 n}. Similarly, for u ∈ V (G) we use H(u) to denote

the subgraph of G ◦H induced by the vertex set {(u, vj) : 1 6 j 6 m}; we refer to

the subgraphs H(u) as copies of H .
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We now introduce the general idea of the proof of Theorem 1.3. In Subsec-

tion 2.1, we first study the 3-pendant tree-connectivity of the lexicographic prod-

uct of a path P and a connected graph H and show τ3(P ◦ H) > |V (H)| − 1.

Next, we investigate the 3-pendant tree-connectivity of the lexicographic product

of a tree T and a connected graph H and show τ3(T ◦ H) > |V (H)| − 1 in Sub-

section 2.2. After these preparations, we consider the graph G ◦ H and prove

τ3(G ◦H) > min{(τ3(G) + 1)(|V (H)| − 1), τ3(G)|V (H)|} in Subsection 2.3.

Before proceeding, we mention two bounds derived by Hager (see [1]) relating the

k-pendant tree-connectivity of a graph to its connectivity and minimum degree.

Lemma 2.1 ([1]). Let G be a graph, l > 0, and k > 3. If τk(G) > l, then

δ(G) > k + l − 1 and κ(G) > k + l − 2.

2.1. Lexicographic product of a path and a connected graph. First, we

consider the 3-pendant tree connectivity of the lexicographic product of a path and

a connected graph.

Proposition 2.2. Let H be a connected graph and P be a path with n vertices,

n > 2. Then τ3(P ◦H) > |V (H)| − 1. Moreover, the bound is sharp.

Let V (H) = {v1, v2, . . . , vm} and V (P ) = {u1, u2, . . . , un}. Without loss of gen-

erality, let ui and uj be adjacent if and only if |i − j| = 1, where 1 6 i 6= j 6 n. It

suffices to show that τP◦H(S) > m − 1 for any S = {x, y, z} ⊆ V (P ◦H), that is,

there exist m− 1 internally disjoint pendant S-Steiner trees in P ◦H . We prove this

using the following three lemmas.

Lemma 2.3. If x, y and z belong to the same copy H(ui) (1 6 i 6 n), then there

exist m internally disjoint pendant S-Steiner trees.

P r o o f. Without loss of generality, we assume x, y, z ∈ V (H(u1)). Then the

trees Tj on {x, y, z, (u2, vj)} with edges {x(u2, vj), y(u2, vj), z(u2, vj)} for 1 6 j 6 m

are m internally disjoint pendant S-Steiner trees, as desired. �

Lemma 2.4. If only two of x, y and z belong to the same copy H(ui) (1 6 i 6 n),

then there exist m− 1 internally disjoint pendant S-Steiner trees.

P r o o f. Without loss of generality, we may assume that x, y ∈ V (H(uα)) and

z ∈ V (H(uβ)), where 1 6 α < β 6 n. Additionally, we may write x = (uα, vm−1),

y = (uα, vm), z = (uβ, vm), and let w = (uβ , vm−1) be adjacent to z in H(uβ).

If β = α+1, then the trees Tj on {x, y, z, (uα, vj), (uβ , vj)} with edges {x(uβ , vj),

y(uβ, vj), (uα, vj)(uβ , vj), (uα, vj)z} for 1 6 j 6 m− 2 together with the tree Tw on
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{w, x, y, z} with edges {xw, yw, zw} are m− 1 internally disjoint pendant S-Steiner

trees, as desired.

If β > α + 1, then let Wj be a path with V (Wj) = {(uk, vj) : α + 1 6 k 6

β − 1} and E(Wj) = {(uk, vj)(uk+1, vj) : α + 1 6 k < β − 1}, and let wj,α+1

and wj,β−1 refer to the initial and terminal vertices, respectively, of Wj . Note

that Wj may consist of a single vertex and no edges, in which case we have

wj,α+1 = wj,β−1. Then the trees Tj on {x, y, z, (uα+1, vj), . . . , (uβ−1, vj)} with

edges E(Wj) ∪ {xwj,α+1, ywj,α+1, zwj,β−1} for 1 6 j 6 m are m internally disjoint

pendant S-Steiner trees, as desired. �

Lemma 2.5. If x, y and z are contained in distinct copies H(ui), then there exist

m− 1 internally disjoint pendant S-Steiner trees.

P r o o f. We may assume without loss of generality that x ∈ V (H(uα)), y ∈

V (H(uβ)) and z ∈ V (H(uγ)), where 1 6 α < β < γ 6 n. Additionally, by the

structure of P ◦H we may suppose that x = (uα, vm), y = (uβ, vm) and z = (uγ , vm).

Let Wj be a path with V (Wj) = {(uk, vj) : α + 1 6 k 6 γ − 1} and E(Wj) =

{(uk, vj)(uk+1, vj) : α + 1 6 k < γ − 1}, and let wj,α+1 and wj,γ−1 refer to the

two endpoints of Wj . Note that Wj may consist of a single vertex and no edges, in

which case we have wj,α+1 = wj,γ−1 = (uβ, vj). If γ = β + 1, then the trees Tj on

{x, y, z, (uα+1, vj), . . . , (uγ , vj)} with edges

E(Wj) ∪ {xwj,α+1, zwj,γ−1, wj,γ−1(uγ , vj), y(uγ , vj)}

for 1 6 j 6 m− 1 are m− 1 internally disjoint pendant S-Steiner trees, as desired.

Otherwise, we have γ >β+1, and the trees Tj on {x, y, z, (uα+1, vj), . . . , (uγ−1, vj)}

with edges E(Wj)∪{xwj,α+1, ywj,β+1, zwj,γ−1} for 1 6 j 6 m−1 arem−1 internally

disjoint pendant S-Steiner trees, as desired. �

From Lemmas 2.3, 2.4 and 2.5, we conclude that for any S ⊆ V (P ◦H), there exist

m−1 internally disjoint pendant S-Steiner trees, which implies that τP◦H(S) > m−1.

From the arbitrariness of S we have τ3(P ◦H) > m− 1. This completes the proof of

Proposition 2.2. �

2.2. Lexicographic product of a tree and a connected graph. Next, we con-

sider the 3-pendant tree-connectivity of the lexicographic product of a tree and a con-

nected graph, which can be seen as a generalization of the result in Subsection 2.1.

Proposition 2.6. Let H be a graph and let T be a tree with n vertices. For any

S = {x, y, z} ⊆ V (T ◦H), if x ∈ V (H(uα)), y ∈ V (H(uβ)) and z ∈ V (H(uγ)), then

τ(S) > |V (H)| − 1, where uα, uβ , uγ are three vertices in T . If uα, uβ, uγ do not lie

on a path in T , then τ(S) > |V (H)|.
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P r o o f. Set V (T ) = {u1, u2, . . . , un} and V (H) = {v1, v2, . . . , vm}. It suffices to

prove that for any S = {x, y, z} ⊆ V (T ◦H), where x ∈ V (H(uα)), y ∈ V (H(uβ))

and z ∈ V (H(uγ)), τT◦H(S) > m − 1 when uα, uβ and uγ lie on a path, and that

τT◦H(S) > m otherwise. So for any S = {x, y, z} ⊆ V (T ◦H) we need to show there

exist m− 1 (or m) internally disjoint pendant S-Steiner trees in T ◦H . Recall that

V (T ◦H) =
n⋃

i=1

V (H(ui)).

If all three of uα, uβ and uγ lie on a path P in T (including cases, where two or

three of them are the same vertex), then by Proposition 2.2 we have τ(S) > m− 1,

since P ◦H is a subgraph of T ◦H .

Otherwise, uα, uβ and uγ are distinct vertices of T that do not lie on a path. This

means that uα, uβ and uγ are pairwise not adjacent in T . Let P be the unique path

in T between uα and uβ and Q be the unique path between uα and uγ . Since uα, uβ

and uγ are pairwise not adjacent, P and Q each contain at least one vertex other

than uα, uβ or uγ . If P = {uα, p1, . . . , pr, uβ} and Q = {uα, q1, . . . , qs, uγ}, let i

be the maximal subscript such that pi = qi; since T is a tree, there is only one

such i, and pk = qk for all 1 6 k 6 i. Note that we may have r = 1, s = 1 or

i = s, and that pi cannot be uα, uβ or uγ , otherwise these three vertices would lie

on a path. Let Pj be a path in T ◦H with V (Pj) = {x, (p1, vj), . . . , (pr, vj), y} and

E(Pj) = {x(p1, vj), (pr, vj)y} ∪ {(pk, vj)(pk+1, vj) : 1 6 k < r}. Similarly, let Qj be

a path with V (Qj) = {(qi, vj), . . . , (qs, vj), z} and

E(Qj) = {(qs, vj)z} ∪ {(qk, vj)(qk+1, vj) : i 6 k < s}.

We can see that Pj and Qj have the vertex (pi, vj) in common, and the trees Tj with

V (Tj) = V (Pj)∪ V (Qj) and E(Tj) = E(Pj)∪E(Qj) for 1 6 j 6 m are m internally

disjoint pendant S-Steiner trees, as desired.

Thus, for any S = {x, y, z} ⊆ V (T ◦H) there existm−1 internally disjoint pendant

S-Steiner trees, which implies that τT◦H(S) > m− 1. The proof is complete. �

2.3. Lexicographic product of two general graphs. Finally, we use the re-

sults of Subsections 2.1 and 2.2 to establish Theorem 1.3, regarding the 3-pendant

tree-connectivity of the lexicographic product of two connected graphs.

P r o o f of Theorem 1.3. Let τ3(G)=k and τ3(H)= l. Set V (G)={u1, u2, . . . , un},

V (H) = {v1, v2, . . . , vm}. From the definition of τ3(G ◦H), for any S = {x, y, z} ⊆

V (G ◦ H), we need to prove that τG◦H(S) > min{(k + 1)(m − 1), km}. Clearly,

V (G ◦H) =
n⋃

i=1

V (H(ui)).
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Case 1 : The vertices x, y and z belong to the same copy of H . With-

out loss of generality, let x, y, z ∈ V (H(u1)). If k = 0, by the connected-

ness of G we know that u1 has a neighbor u2 in G. Then the trees Tj on

{x, y, z, (u2, vj)} with edges {x(u2, vj), y(u2, vj), z(u2, vj), (u2, vj)} for 1 6 i 6 m

are m = (k + 1)m internally disjoint pendant S-Steiner trees in G ◦H . Otherwise,

by Lemma 2.1, δ(G) > τ3(G) + 2 = k + 2 and the vertex u1 has at least k + 2

neighbors in G. Select k + 2 neighbors from them, say u2, u3, . . . , uk+3. Then the

trees Ti,j on {x, y, z, (ui, vj)} with edges {x(ui, vj), y(ui, vj), z(ui, vj), (ui, vj)} for

2 6 i 6 k + 3 and 1 6 j 6 m are (k + 2)m internally disjoint pendant S-Steiner

trees in G ◦H .

Since τ3(H) = l, it follows that there are l internally disjoint pendant S-Steiner

trees in H(u1). Observe that these l pendant S-Steiner trees and the trees Tj

or Ti,j are internally disjoint. So in either case, we have τG◦H(S) > (k + 1)m+ l >

min{(k + 1)(m− 1), km}, as desired.

Case 2 : Only two of x, y and z belong to the same copy of H . Without loss

of generality, let x, y ∈ H(u1) and z ∈ H(u2). If k = 0, by the connectedness

of G we have at least one path P joining u1 and u2 in G. From Proposition 2.2

we know there exist m − 1 internally disjoint pendant S-Steiner trees in P ◦H . So

the total number of internally disjoint pendant S-Steiner trees in G ◦H is at least

m − 1 = (k + 1)(m − 1). Otherwise, from Lemma 2.1, κ(G) > τ3(G) + 1 = k + 1

and hence, there exist k + 1 internally disjoint paths connecting u1 and u2 in G,

say P1, P2, . . . , Pk+1. From Proposition 2.2, there exist m − 1 internally disjoint

pendant S-Steiner trees in Pi ◦ H (1 6 i 6 k + 1). So the total number of in-

ternally disjoint pendant S-Steiner trees in G ◦ H is at least (k + 1)(m − 1). In

either case, we have τG◦H(S) > (k + 1)(m − 1) > min{(k + 1)(m − 1), km}, as

desired.

Case 3 : The vertices x, y and z are contained in distinct copies ofH . Without loss

of generality, let x ∈ V (H(u1)), y ∈ V (H(u2)) and z ∈ V (H(u3)). If k = 0, then by

the connectedness of G there is at least one S-Steiner tree T connecting {u1, u2, u3}

in G. From Proposition 2.6, there exist m− 1 internally disjoint pendant S-Steiner

trees in T ◦ H . So the total number of internally disjoint pendant S-Steiner trees

in G◦H is at leastm−1 = (k+1)(m−1). Thus, we have τG◦H(S) > (k+1)(m−1) >

min{(k + 1)(m− 1), km}, as desired.

Otherwise, since τ3(G) = k > 0, it follows that there exist k internally disjoint

pendant Steiner trees connecting {u1, u2, u3} in G, say T1, T2, . . . , Tk. From Propo-

sition 2.6, since the trees Ti are pendant S-Steiner trees, there exist m internally

disjoint pendant S-Steiner trees in Ti ◦ H (1 6 i 6 k). So the total number of

internally disjoint pendant S-Steiner trees in G ◦ H is at least km. In either case,

we have τG◦H(S) > km > min{(k + 1)(m− 1), km}, as desired.
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Considering each case above, we conclude that for any S ⊆ V (G◦H) with |S| = 3,

we have

τG◦H(S) > min{(k + 1)(m− 1), km},

which implies that

τ3(G◦H) > min{(k+1)(m− 1), km} = min{(τ3(G)+1)(|V (H)|− 1), τ3(G)|V (H)|}.
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