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Abstract. We study tails of prime counting functions. Our approach leads to representa-
tions with a main term and an error term for the asymptotic size of each tail. It is further
shown that the main term is of a specific shape and can be written discretely as a sum in-
volving probabilities of certain events belonging to a perturbed binomial distribution. The
limitations of the error term in our representation give us equivalent conditions for various
forms of the Riemann hypothesis, for classical type zero-free regions in the case of the Rie-
mann zeta function and the size of semigroups of integers in the sense of Beurling. Inspired
by the works of Panaitopol, asymptotic companions pertaining to the magnitude of spe-
cific prime counting functions are obtained in terms of harmonic numbers, hyperharmonic
numbers and the number of indecomposable permutations. By introducing the notion of
asymptotic convexity and fusing it with a nice generalization of an inequality of Ramanujan
due to Hassani, we arrive at a curious asymptotic inequality for the classical prime counting
function at any convex combination of its arguments and further show that quotients arising
from prime counting functions of progressions furnish examples of asymptotically convex,
but not convex functions.

Keywords: prime counting function; discretization; Riemann hypothesis; harmonic num-
ber; indecomposable permutation; asymptotic convexity
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1. Introduction

Let π(x) be the number of prime numbers that are not greater than x. Finding the

asymptotic behavior of π(x) with enough precision has always been a central topic

of interest in number theory and analysis. The celebrated prime number theorem

with the classical error term asserts that

(1.1) π(x) = lix+O(xe−c
√
log x)
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for some constant c > 0 as x→ ∞, where

lix =

∫ x

2

1

log t
dt

is the logarithmic integral. In the classical approach to prime number theory, a very

fruitful idea, due to Chebyshev, is to linearize the distribution by introducing the

Chebyshev functions

ϑ(x) =
∑

p6x

log p, ψ(x) =
∑

n6x

Λ(n),

where p denotes a prime number throughout, and Λ(n) is the von Mangoldt function.

This offers the key option of connecting the distribution to its generating function

via the Dirichlet series identity

−ζ
′(s)

ζ(s)
=

∞
∑

n=1

Λ(n)

ns

for ℜ(s) > 1, where

ζ(s) =

∞
∑

n=1

1

ns
, ℜ(s) > 1

is the Riemann zeta function. One then obtains an equivalent formulation of the

prime number theorem in the linearized form

(1.2) ψ(x) = x+O(xe−c
√
log x)

for some constant c > 0 (throughout, c might represent a different constant in each

occurrence) as x→ ∞. Another striking outcome of this approach is the equivalence
of the Riemann hypothesis (abbreviated as RH from now on) to the formula

ψ(x) = x+O(x1/2+ε)

for every ε > 0. RH is also known to be equivalent to the estimate

M(x) =
∑

n6x

µ(n) = O(x1/2+ε)

for every ε > 0, where µ(n) is the Möbius function andM(x) is the Mertens function.

For a study of biases in the behavior of weighted Mertens sums, we refer to [4]. Con-

stant components ofM(x) were recently discovered by Camargo and Martin (see [15])

who employed them to confirm a suspicion, first mentioned by Sylvester, about the

difficulty of finding harmonic systems for the count of prime numbers. Other con-

nections between RH and various sorts of oscillating sums were studied in [2], [3],
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[5], [6]. Despite all of these, formula (1.1) can still claim a number of advantages

over (1.2). First, the equivalence of formulas involving π(x) and ψ(x) breaks down

in the case of Ω-type results for the detection of oscillations around the main term.

Although it is relatively easier to show that ψ(x) oscillates around x (see [35]), the

analogous problem for the oscillation of π(x) around lix turned out to be much more

difficult. Overcoming a remarkable range of technical difficulties, Littlewood in [24]

disproved a prediction, usually attributed to Gauss, that

π(x) < lix

holds for all large x. Second, the main term lix in (1.1) is intrinsically loaded with

a rich collection of function theoretic properties. Since it is known that 1/ log t does

not have an elementary antiderivative, there is no closed form evaluation of lix, and

consequently it is a transcendental function. To compensate with this defect, lix

allows us to see infinitely many phases of the distribution. Precisely, by repeated

applications of partial integration, we have

(1.3) lix =
m−1
∑

k=0

k!x

(log x)k+1
+O

( x

(log x)m+1

)

for every nonnegative integer m (the case m = 0 refers to no application of par-

tial integration, so that the sum over k in (1.3) is taken to be zero). Therefore,

using (1.3), (1.1) becomes

(1.4) π(x) =

m−1
∑

k=0

k!x

(log x)k+1
+O

( x

(log x)m+1

)

for every nonnegative integer m (again, the case m = 0 should be taken as to

correspond to the Chebyshev type estimate π(x) = O(x/ log x) using the elementary

estimate lix ≪ x/ log x). Lastly, formulas like (1.1) become handy for providing

a partial answer to the problem of finding an exact representation of the nth prime

number pn, since we may write

n = π(pn) = li(pn + en),

where en represents a relatively small error that results from the O-term in (1.1).

But then

(1.5) pn = li−1n− en

holds, where li−1 is the inverse function of li. Of course, we can only have a lim-

ited satisfaction with (1.5), since it is still a largely open problem to describe the
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nature of en and control its size with the help of an exact analytical formula even

under the assumption of RH. In his famous memoir, Riemann in [34] made a fun-

damental breakthrough on this question which, at least from a heuristic standpoint,

achieves this goal. We should remark here that (1.4) improves itself to an asymptotic

expansion

π(x) ∼
∞
∑

k=0

k!x

(log x)k+1

which means that

(1.6) π(x) −
m−1
∑

k=0

k!x

(log x)k+1
=

(1 + o(1))m!x

(log x)m+1

holds when x → ∞ for every m > 0. It is worth mentioning at this point that

a serious weakness of (1.3) is its inadequacy for numerical approximations of lix for

fixed x. For approximations of lix when x is fixed, one can either use the fact that

the function series

log log t+

∞
∑

n=1

(log t)n

n · n!
is an antiderivative for 1/ log t or directly refer to truncations of a rapidly converging

function series representation discovered by Ramanujan (see [9], pages 126–131) in

the form

Li(x) :=

∫ x

0

1

log t
dt = lim

ε→0

(
∫ 1−ε

0

+

∫ x

1+ε

)

1

log t
dt = γ+log log x+

√
x

∞
∑

n=1

bn(log x)
n,

where the coefficients are defined by

bn =
(−1)n−1

n! 2n−1

[(n−1)/2]
∑

k=0

1

2k + 1
, and γ := lim

n→∞

( n
∑

k=1

1

k
− logn

)

= 0.5772 . . .

is the Euler-Mascheroni constant. Formula (1.6) motivates us to asymptotically

study the tails of the distribution

Πm(x) := π(x) −
m−1
∑

k=0

k!x

(log x)k+1

arising from the infinitely many phases indexed by m. In particular, our approach

offers the possibility of getting various discrete forms for the main contributions to

prime counting functions and their tails with the help of harmonic and hyperharmonic

numbers which are combinatorially significant quantities. The nth harmonic number

is defined by

Hn =
n
∑

k=1

1

k
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for n > 1, where by convention, H0 = 0. Harmonic numbers arise naturally as

probabilities of certain events resulting from perturbations of the binomial distri-

bution. They also arise from expected values of specific random variables like as

in the coupon collector’s problem. The error term for the tail of the distributions

comes in different guises giving us equivalent conditions at one stroke for RH, gener-

alized Riemann hypothesis (GRH), quasi-Riemann hypothesis, zero-free regions and

the distribution of Beurling type integers. Let us make a digression to give some

of the ingredients necessary to formulate the statements in our first result. For any
1
2 6 θ < 1, quasi-Riemann hypothesis at θ, denoted as RH(θ), claims that the real

part of any zero of the Riemann zeta function is not greater than θ. The quasi-

generalized Riemann hypothesis, denoted as GRH(θ), claims the same inequality for

the real part of any zero of Dirichlet L-functions L(s, χ) modulo q, where

L(s, χ) =

∞
∑

n=1

χ(n)

ns

for ℜ(s) > 1, and χ is any character modulo q. For a generalization of Dirichlet

L-functions to the setting with periodic coefficients, see [1]. If s = σ + it is a zero

of ζ(s), then a classical zero-free region for ζ(s) is of the type

(1.7) σ > 1− c

(log |t|)α

for some α 6 1 and c > 0 when |t| > c. By the Vinogradov-Korobov type zero-free

region, we know that any α > 2
3 is available in (1.7), see [38]. If P is any set of

prime numbers, then the Beurling type integers generated by P are defined to be

the semigroup 〈P 〉, where the prime factorization of any number in 〈P 〉 consists of
only primes from P . The Euler-Mascheroni constant γ is subject to the asymptotic

formula

Hn = logn+ γ +O
( 1

n

)

as n→ ∞. We can now state our first contribution.

Theorem 1. Consider n independent trials of an experiment, where each trial

results in success or failure. The probability of failure at the jth trial is assumed to

be 1/(j + 1) for j > 1. Let βn denote the probability of the event that there is only

one failure among the n attempts of the experiment. Then the following statements

hold.

(i) For any given nonnegative integer m, RH is equivalent to the formula

(1.8) Πm(x) = eγm!
∑

n6x/eγ

1

βm+1
n (n+ 1)m+1

+O(x1/2 log x)

as x→ ∞.
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(ii) For any given nonnegative integer m and 1
2 < θ < 1, RH(θ) is equivalent to the

formula

(1.9) Πm(x) = eγm!
∑

n6x/eγ

1

βm+1
n (n+ 1)m+1

+O
( xθ

log x

)

.

(iii) For any given nonnegative integer m and 1
2 6 θ < 1, GRH(θ) for all Dirichlet

L-functions modulo q is equivalent to the formula

(1.10) Πm(x, q, a) =
eγm!

ϕ(q)

∑

n6x/eγ

1

βm+1
n (n+ 1)m+1

+O(xθ log x)

for all 1 6 a 6 q with (a, q) = 1, where

Πm(x, q, a) := π(x, q, a) − 1

ϕ(q)

m−1
∑

k=0

k!x

(log x)k+1
,

where ϕ(q) is Euler’s function and π(x, q, a) is the number of primes not greater

than x that are equivalent a (mod q).

(iv) For any given nonnegative integer m and 0 < α 6 1, the existence of a zero-free

region for ζ(s) in the form

σ > 1− c

(log |t|)α

for large |t| is equivalent to the formula

(1.11) Πm(x) = eγm!
∑

n6x/eγ

1

βm+1
n (n+ 1)m+1

+O(xe−c(log x)1/(1+α)

)

for some constant c > 0.

(v) Let P be a set of prime numbers and let πP (x) and NP (x) be the counting

functions of P and 〈P 〉, respectively. If

(1.12) NP (x) = bx+O(xe−c(log x)a)

holds for some constants 0 < b 6 1, 0 < a 6 1 and c > 0 as x → ∞, then for
any given nonnegative integer m,

(1.13) πP (x)−
m−1
∑

k=0

k!x

(log x)k+1
= eγm!

∑

n6x/eγ

1

βm+1
n (n+ 1)m+1

+O(xe−c(logx)a
′

)

holds for some c > 0, where a′ = a/10. Conversely, if (1.13) holds for some

nonnegative integer m, c > 0 and a′ > 0, then (1.12) holds with a = a′/(a′ + 2).
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(vi) For any given nonnegative integer m, we have

(1.14) Πm(x) = eγm!
∑

n6x/eγ

1

βm+1
n (n+ 1)m+1

+O(xe−(0.2098)(log x)3/5/(log log x)1/5).

For any given nonnegative integer m and A > 0, if 1 6 a 6 q 6 (log x)A and

(a, q) = 1, then we have

(1.15) Πm(x, q, a) =
eγm!

ϕ(q)

∑

n6x/eγ

1

βm+1
n (n+ 1)m+1

+O(xe−c(log x)1/2)

for some c > 0 depending on A, where the O-constant in (1.15) is ineffective.

Hyperharmonic numbers were first introduced by Conway and Guy (see [13]) as

an iterative generalization of harmonic numbers. Precisely, they define the nth hy-

perharmonic number of order r recursively as

H(r)
n =

n
∑

k=1

H
(r−1)
k

for r > 1, where H
(0)
n = n−1. In particular, Hn = H

(1)
n . A nice combinatorial

approach supporting the significance of hyperharmonic numbers is due to Benjamin,

Gaebler and Gaebler, see [8]. Let us say that a permutation τ of {1, 2, . . . , n} is
indecomposable if

τ({1, 2, . . . ,m}) = {1, 2, . . . ,m}
holds for no m < n. Comtet in [11], [12] proved that almost all permutations of

{1, 2, . . . , n} are indecomposable. Precisely, he showed that

lim
n→∞

an
n!

= 1,

where an is the number of such permutations. He also obtained the recurrence

formula

(1.16) an = n!−
n−1
∑

i=1

(n− i)! ai,

and an expansion of an/n! in terms of rising factorials (n)k = n(n−1) . . . (n−k+1).

An elaboration on this is given in the proof of Theorem 2 below. Indecomposable

permutations turned out to be useful in coding theory, especially in generating Gray

codes. For details of this, we refer the reader to an interesting paper of King, see [23].

A few of the initial values are given below:

a1 = 1 = a2, a3 = 3, a4 = 13, a5 = 71, a6 = 461, a7 = 3447, a8 = 29093.
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Our next result gives a family of asymptotic representations of prime counting func-

tions in terms of hyperharmonic numbers and the number of indecomposable permu-

tations. Representations and inequalities pertaining to π(x) were studied extensively

in the literature from a function theoretic point of view, most notably by Panaitopol,

(see [28], [29], [31], also the papers of Mincu and Panaitopol [26] and Mititica and

Panaitopol [27]) who was a pioneer in the elementary treatments of prime counting

functions. Inspired by his work, we have the following result, which applies to the

counting functions of sets of prime numbers under quite general conditions.

Theorem 2. Let P be any set of prime numbers whose counting function satisfies

the asymptotic formula

πP (x) = cπ(xδ) + o
( xδ

(log x)2

)

for some constants 0 < c 6 1 and 0 < δ 6 1 as x → ∞. If the function AP (x) is

defined by the relation

πP (x) =
cxδ

δ log x−AP (x)

for all large enough x, then we always have

(1.17) lim
x→∞

AP (x) = 1.

If P is a set of prime numbers such that

(1.18) πP (x) = cπ(xδ) +O
( xδ

(log x)m

)

holds for some integer m > 3, then for any given r > 1, we have

(1.19) πP (n) =
(

1 +O
( 1

(logn)m−2

))

cnδ

×
(

δH
(r)
n−r+1

(

n
r−1

) + δHr−1 − δγ −
m−2
∑

k=1

ak
(δ logn)k−1

)−1

as n → ∞, where H(r)
n is the nth hyperharmonic number of order r and ak is the

number of indecomposable permutations of {1, 2, . . . , k} satisfying
k!

2
6 ak 6 k!

for all k > 1 and

ak =
(

1− 2

k
− 1

k2
− 5

k3
− 32

k4
+O

( 1

k5

))

k!

asymptotically when k → ∞.
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Let us remark that one can take P as the set of prime numbers belonging to

any progression equivalent a (mod q) with (a, q) = 1 in Theorem 2 by choosing

c = 1/ϕ(q) and δ = 1. Then (1.18) holds for all m > 2 as a result of the prime

number theorem for arithmetic progressions in the form

π(x, q, a) =
π(x)

ϕ(q)
+O(xe−c

√
log x)

for some c > 0. Therefore, (1.19) holds. Moreover, the correction function AP (x) is

a generalization of the correction term historically first introduced by Legendre who

suggested the empirical representation

x

log x− 1.08366

as a good measure for π(x). For measures of counting functions of sequences other

than primes, we refer to [7] and the references therein. Beyond mere asymptotic

representations of prime counting functions, there are various striking inequalities

related to π(x). A very explicit inequality of Schoenfeld (see [36]) given as

|π(x) − lix| < 1

8π

√
x log x for all x > 2657,

is equivalent to RH. Exploiting function theoretic properties arising from expansions

of π(x), Panaitopol in [30], [32], [33] and Hassani in [18] obtained a rich collection

of inequalities and approximations involving values of π(x) at different arguments.

Panaitopol in [31] also derived the expansion

1

π(ax)
=

log x

ax
+

log a− 1

ax
+

m
∑

i=1

ci(a)

x(log x)i
+ o

( 1

x(log x)m

)

from which he concluded that the functions

x

π(x)
,

1

π(x)

are not convex or concave when x > x1. These results were greatly extended to

prime numbers in progressions by Cobeli et al., see [10]. In light of [10], we say that

a function f is asymptotically convex if

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y) + o(1)

holds for any 0 6 λ 6 1 as x, y → ∞. Obviously, convex functions are asymptotically
convex. Our final result gives a family of functions that are asymptotically convex

but not convex. Although one can show the existence of such functions by making

minuscule alterations in the values of a linear function, our examples directly relate

to prime counting functions and connect us to the findings of [10]. As a byprod-

uct of asymptotic convexity together with a classical result of Ramanujan, and its
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strengthening by Hassani (see [19]), we obtain a curious inequality concerning values

of π(x) at any convex combination of its arguments.

Theorem 3.

(i) For 1 6 a 6 q, (a, q) = 1, the function

− x

π(x, q, a)

is not convex but asymptotically convex on any interval x > x1.

(ii) For any scalars 0 6 λ 6 1, α > e and any positive integer n, we have

(1.20)
(π(λx + (1− λ)y)

λx+ (1− λ)y

)2

<
λαπ(x/α)

x log x
+

(1− λ)απ(y/α)

y log y
+ o

( 1

(logmin(x, y))n

)

when x, y → ∞.
In particular, taking λ = 1

2 in Theorem 3, we deduce the more symmetric midpoint

version of (1.20) in the form

π(x+ y)

x+ y
<

√
α

2

(

√

π(2x/α)

x log 2x
+

√

π(2y/α)

y log 2y
+ o

( 1

(logmin(x, y))n

)

)

when x, y → ∞ for any α > e and positive integer n.

2. Preliminaries

In this section, we collect all of the ingredients that will be necessary for the proofs

of our claims. Our first result supplies the transition from a prime counting function

of a progression to its Chebyshev functions and vice versa under a fairly general

range of error terms.

Lemma 1. Assume 1 6 a 6 q and (a, q) = 1, and let r(x) be any monotonically

increasing function such that

(2.1)
x1/2

log x
≪ r(x) ≪ x

log x log log x

as x→ ∞. Then the formulas

(2.2) π(x, q, a) =
lix

ϕ(q)
+O(r(x))

and

(2.3) ψ(x, q, a) :=
∑

n6x
n≡a (mod q)

Λ(n) =
x

ϕ(q)
+O(r(x) log x)

are equivalent as x→ ∞.
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Lemma 1 shows that for a reasonably general span of error terms in the prime

counting formula, the error term of the linearization always inflates by a factor of

log x as expected. The lower bound for r(x) in (2.1) is optimal in some sense, since

already in the case when

r(x) ≍ x1/2

log x
,

Littlewood in [24] showed that

π(x) − lix = Ω±
(x1/2 log log log x

log x

)

and ψ(x) − x = Ω±(x
1/2 log log log x).

Therefore, both of (2.2) and (2.3) (in the case a = q = 1) become false. However,

their equivalence is a triviality in this case. On the other side, the upper bound

for r(x) in (2.1) is close to being optimal as well since it would be reasonable to have

r(x) = o
( x

log x

)

because of lix ∼ x/ log x. Although q is kept fixed in the statement of Lemma 1,

we should remark that, as the proof below shows, Lemma 1 is also valid when q is

allowed to grow with x. Thus, we may still use this result uniformly for all q bounded

by a monotonically growing function of x. Though, for reasonable applications, we

have to assume that
x1/2

log x
≪ r(x) = o

( lix

ϕ(q)

)

.

This will be of substance in the proof of (1.15) when q 6 (log x)A.

P r o o f of Lemma 1. First assume (2.2). Then by partial summation, we have

(2.4) ϑ(x, q, a) :=
∑

p6x
p≡a (mod q)

log p = π(x, q, a) log x−
∫ x

2

π(t, q, a)

t
dt.

From (2.2), we may write

(2.5) π(x, q, a) log x =
lix log x

ϕ(q)
+O(r(x) log x),

and

(2.6)

∫ x

2

π(t, q, a)

t
dt =

1

ϕ(q)

∫ x

2

li t

t
dt+O

(
∫ x

2

r(t)

t
dt

)

.

Next, we have

(2.7)
1

ϕ(q)

∫ x

2

li t

t
dt =

lix log x

ϕ(q)
− x− 2

ϕ(q)
.
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As r(x) is monotonically increasing, we see that

(2.8)

∫ x

2

r(t)

t
dt = O

(

r(x)

∫ x

2

1

t
dt

)

= O(r(x) log x).

Combining (2.4)–(2.8), one infers that

(2.9) ϑ(x, q, a) =
x

ϕ(q)
+O(r(x) log x).

We know that

(2.10) ψ(x, q, a) = ϑ(x, q, a) +O(x1/2).

Since, by (2.1), we have r(x) log x≫ x1/2 so that (2.3) follows from (2.9) and (2.10).

Conversely, assume (2.3). This time we use the auxiliary function

(2.11) π1(x, q, a) :=
∑

n6x
n≡a (mod q)

Λ(n)

logn
= π(x, q, a) +

∑

pm
6x

m>2
pm≡a (mod q)

1

m
.

Using Chebyshev’s estimates, it is plain from (2.11) that

(2.12) π(x, q, a) = π1(x, q, a) +O
( x1/2

log x

)

.

But by partial summation, one obtains that

(2.13) π1(x, q, a) =
ψ(x, q, a)

log x
+

∫ x

2

ψ(t, q, a)

t(log t)2
dt.

From (2.3), we have

(2.14)
ψ(x, q, a)

log x
=

x

ϕ(q) log x
+O(r(x))

and

(2.15)

∫ x

2

ψ(t, q, a)

t(log t)2
dt =

1

ϕ(q)

∫ x

2

1

(log t)2
dt+O

(
∫ x

2

r(t)

t log t
dt

)

.

First, note that

(2.16)
1

ϕ(q)

∫ x

2

1

(log t)2
dt =

lix

ϕ(q)
− x

ϕ(q) log x
+O(1).
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Second, let us use the decomposition

(2.17)

∫ x

2

r(t)

t log t
dt =

∫

√
x

2

r(t)

t log t
dt+

∫ x

√
x

r(t)

t log t
dt.

Clearly, by (2.8), we have

(2.18)

∫ x

√
x

r(t)

t log t
dt ≪ 1

log x

∫ x

2

r(t)

t
dt≪ r(x).

Moreover, using (2.1), one estimates that

(2.19)

∫

√
x

2

r(t)

t log t
dt ≪ r(

√
x) log log x≪

√
x

log x
≪ r(x).

Patching up the estimates in (2.18) and (2.19), we deduce from (2.15)–(2.17) that

(2.20)

∫ x

2

ψ(t, q, a)

t(log t)2
dt =

lix

ϕ(q)
− x

ϕ(q) log x
+O(r(x)).

From (2.13), (2.14) and (2.20), we have

(2.21) π1(x, q, a) =
lix

ϕ(q)
+O(r(x)).

Finally, (2.2) follows from (2.12) and (2.21), again by using (2.1). This completes

the proof. �

Our final preliminary result will be needed more than once in the sequel, and it

confirms the asymptotic convexity of a family of functions satisfying fairly general

conditions on their asymptotic expansions which are reminiscent of prime counting

functions.

Lemma 2. For a positive integer m, let {ck}∞k=−m be a sequence of real numbers

such that

ck

{

6 0 if k 6 −1,

> 0 if k > 0.

Consider a function f having an asymptotic expansion of the form

f(x) ∼
∞
∑

k=−m

ck
(log x)k

.

Then f is asymptotically convex. In particular, for any 0 6 λ 6 1 and positive

integer n,

(2.22) f(λx+ (1 − λ)y) 6 λf(x) + (1− λ)f(y) + o
( 1

(logmin(x, y))n

)

holds when x, y → ∞.
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P r o o f of Lemma 2. To start with, because of the asymptotic expansion of f ,

we may write for every positive integer n that

(2.23) f(x)−
n−1
∑

k=−m

ck
(log x)k

=
cn + o(1)

(log x)n

as x→ ∞. Note that

(2.24)
d2

dx2
(log x)−k = kx−2(log x)−k−1(1 + (k + 1)(log x)−1).

It follows from (2.24) and our assumption on ck that

(2.25)
ck

(log x)k

is a convex function when k > 0 and x > 1. Moreover, when −m 6 k 6 −1, we have

for all large enough x (in terms of m) that

(2.26) 1 + (k + 1)(log x)−1 > 0.

It follows from (2.24), (2.26) and our assumption on ck that (2.25) is again a convex

function for all large enough x. Since convex functions are closed under finite sums,

we see that

(2.27)

n−1
∑

k=−m

ck
(log x)k

is convex for all large enough x in terms of m. To show (2.22), define for 0 6 λ 6 1,

g(x, y, λ) := λf(x) + (1− λ)f(y)− f(λx + (1− λ)y).

Our task is to show that g(x, y, λ) > 0 asymptotically at the expense of an o(1) term

which we make more explicit. To this end, we rewrite g(x, y, λ) in the form

(2.28) λ

(

f(x)−
n−1
∑

k=−m

ck
(log x)k

)

+ (1− λ)

(

f(y)−
n−1
∑

k=−m

ck
(log y)k

)

+

n−1
∑

k=−m

ck
(log(λx+ (1 − λ)y))k

− f(λx+ (1− λ)y)

+ λ

n−1
∑

k=−m

ck
(log x)k

+ (1− λ)

n−1
∑

k=−m

ck
(log y)k

−
n−1
∑

k=−m

ck
(log(λx+ (1 − λ)y))k

.
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First, by the convexity of the function in (2.27), we have

(2.29) λ

n−1
∑

k=−m

ck
(log x)k

+ (1− λ)

n−1
∑

k=−m

ck
(log y)k

−
n−1
∑

k=−m

ck
(log(λx + (1− λ)y))k

> 0

for all large enough x, y. Therefore, we can dispense with (2.29), and assume that

it does not affect the asymptotic nonnegativity of (2.28). Moreover, applying (2.23),

we further get

λ

(

f(x)−
n−1
∑

k=−m

ck
(log x)k

)

=
λcn + o(1)

(log x)n
,(2.30)

(1 − λ)
(

f(y)−
n−1
∑

k=−m

ck
(log y)k

)

=
(1− λ)cn + o(1)

(log y)n
,(2.31)

f(λx + (1− λ)y)−
n−1
∑

k=−m

ck
(log(λx+ (1 − λ)y))k

=
cn + o(1)

(log(λx+ (1 − λ)y))n
(2.32)

when x, y → ∞. Assembling (2.28) with (2.30)–(2.32), we are left to consider only

(2.33)
λcn + o(1)

(log x)n
+

(1 − λ)cn + o(1)

(log y)n
− cn + o(1)

(log(λx + (1− λ)y))n
.

However, (2.33) equals

(2.34)
λcn

(log x)n
+

(1 − λ)cn
(log y)n

− cn
(log(λx+ (1− λ)y))n

+ o
( 1

(log x)n
+

1

(log y)n
+

1

(log(λx + (1− λ)y))n

)

.

Again by convexity, we have

(2.35)
λcn

(log x)n
+

(1− λ)cn
(log y)n

− cn
(log(λx+ (1 − λ)y))n

> 0.

Also note that

(2.36) o
( 1

(log x)n
+

1

(log y)n
+

1

(log(λx+ (1 − λ)y))n

)

= o
( 1

(logmin(x, y))n

)

.

Finally, using (2.34)–(2.36), we infer that

g(x, y, λ) + o
( 1

(logmin(x, y))n

)

> 0

for every positive integer n when x, y → ∞. This finishes the proof. �
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3. Proof of Theorem 1

We start by making a surgery on lix in two main stages. Once this is accomplished,

we can then obtain all parts of Theorem 1 at one stroke by relating our representation

for lix to the theory of L-functions. Though it sounds simple in principle, this task

requires us to deal with some technical details. First, by a simple elaboration on (1.3),

we obtain by repeated use of partial integration that

(3.1) lix =

m−1
∑

k=0

k!x

(log x)k+1
+m!

∫ x

2

1

(log t)m+1
dt+O(1)

for every given nonnegative integer m, where the O-term in (3.1) (depending on m)

collects the total accumulation of boundary evaluations at t = 2 each time we apply

integration by parts. Next we have

(3.2) m!

∫ x

2

1

(log t)m+1
dt = eγm!

∫ x/eγ

2/eγ

1

(γ + log t)m+1
dt.

A continuous generalization of harmonic numbers of the shape

(3.3) Ht :=
∑

n6t

1

n

for any real number t > 1 would become handy for us. Note that (3.3) defines

a monotonically increasing step function with jump discontinuities at integers not

less than 2, and is subject to the formula

(3.4) Ht = log t+ γ +O
(1

t

)

.

Using (3.4), we may write

(3.5)

∫ x/eγ

2/eγ

1

(γ + log t)m+1
dt =

∫ x/eγ

2/eγ

1

Hm+1
t (1 +O(1/(tHt)))m+1

dt.

Note that

(3.6)
1

(1 +O(1/(tHt)))m+1
=

(

1 +O
( 1

tHt

))m+1

= 1 +O
( 1

tHt

)

,

where the last O-term in (3.6) would depend on m but we abuse this. Feeding (3.6)

into (3.5), we arrive at the term

(3.7)

∫ x/eγ

2/eγ

1

Hm+1
t

dt+O

(
∫ x/eγ

2/eγ

1

tHm+2
t

dt

)

.
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Clearly, we have

(3.8)

∫ x/eγ

2/eγ

1

tHm+2
t

dt≪
∫ x

2

1

t(log t)m+2
dt = O(1).

Note that 2/eγ = 1.12 . . . so that

(3.9)

∫ x/eγ

2/eγ

1

Hm+1
t

dt =

(
∫ 2

2/eγ
+

∫ [x/eγ ]

2

+

∫ x/eγ

[x/eγ ]

)

1

Hm+1
t

dt.

Moreover, we see that

(3.10)

∫ 2

2/eγ

1

Hm+1
t

dt = 2− 2

eγ
= O(1)

and obviously that

(3.11)

∫ x/eγ

[x/eγ ]

1

Hm+1
t

dt = O(1).

Assembling (3.9)–(3.11), one infers that

(3.12)

∫ x/eγ

2/eγ

1

Hm+1
t

dt =

∫ [x/eγ ]

2

1

Hm+1
t

dt+O(1).

Using the fact that
1

Hm+1
t

=
1

Hm+1
n

when n 6 t < n+ 1, one obtains

(3.13)

∫ [x/eγ ]

2

1

Hm+1
t

dt =

[x/eγ ]−1
∑

n=2

1

Hm+1
n

=
∑

n6x/eγ

1

Hm+1
n

+O(1).

As a consequence of (3.2), (3.7), (3.8), (3.12) and (3.13), we verify the formula

(3.14) m!

∫ x

2

1

(log t)m+1
dt = eγm!

∑

n6x/eγ

1

Hm+1
n

+O(1).

From (3.1) and (3.14), we record the result of the first stage of our surgery in the form

(3.15) lix =

m−1
∑

k=0

k!x

(log x)k+1
+ eγm!

∑

n6x/eγ

1

Hm+1
n

+O(1)
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for every given nonnegative integer m. For the second stage, let us find a represen-

tation for βn. Since among the n independent trials of an experiment, the single

failure can be on the first attempt or on the second attempt, or in general on the

ith attempt, where 1 6 i 6 n, we see by the mutual disjointness of these events that

the probability of having exactly one failure is given by

(3.16) βn =

n
∑

i=1

1

i+ 1

∏

j 6=i

(

1− 1

j + 1

)

.

The right hand side of (3.16) can be rewritten as

(3.17)
n
∏

j=1

(

1− 1

j + 1

)

n
∑

i=1

1

i+ 1

(

1− 1

i+ 1

)−1

.

As a consequence of the telescoping product, we have

(3.18)

n
∏

j=1

(

1− 1

j + 1

)

=
1

n+ 1
.

Moreover, noting that

(3.19)

n
∑

i=1

1

i+ 1

(

1− 1

i+ 1

)−1

=

n
∑

i=1

1

i
= Hn,

we may gather (3.16)–(3.19) to justify the relation

(3.20) Hn = βn(n+ 1)

for every positive integer n. Bringing together the two stages of our surgery

from (3.15) and (3.20), we arrive at the representation

(3.21) lix =

m−1
∑

k=0

k!x

(log x)k+1
+ eγm!

∑

n6x/eγ

1

βm+1
n (n+ 1)m+1

+O(1)

for every given nonnegative integer m. We have now completed all the preliminary

work to prove parts of Theorem 1. For part (i), we recall the well-known criterion

(see [14], Chapter 18) that RH is equivalent to the asymptotic formula

(3.22) ψ(x) = x+O(x1/2(log x)2).

However, by Lemma 1, (3.22) is equivalent to the formula

(3.23) π(x) = lix+O(x1/2 log x).
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Since the O(1) term of (3.21) can always be buried into the O-term of (3.23), (3.23)

is equivalent to the formula

(3.24) π(x) =

m−1
∑

k=0

k!x

(log x)k+1
+ eγm!

∑

n6x/eγ

1

βm+1
n (n+ 1)m+1

+O(x1/2 log x).

Finally, using (3.24) and the definition of Πm(x), we deduce that (1.8) is an equiv-

alent condition for RH as x→ ∞. This proves part (i).
Next we show (ii) by paying specific attention to why the O-term of (1.9) turns

out to be better than the O-term of (1.8) in the logarithmic factor. To this end, first

assume that

(3.25) ψ(x) = x+O(xθ)

holds asymptotically for some 1
2 < θ < 1. Then, from the generating function

technology, we know that

−ζ
′(s)

ζ(s)
=

∞
∑

n=1

Λ(n)

ns
= s

∫ ∞

1

ψ(x)

xs+1
dx

for ℜ(s) > 1. Consequently, using (3.25), one obtains

(3.26) −ζ
′(s)

ζ(s)
=

s

s− 1
+ s

∫ ∞

1

E(x)

xs+1
dx,

where E(x) := ψ(x)− x = O(xθ). But then

s

∫ ∞

1

E(x)

xs+1
dx

is analytic when ℜ(s) > θ, and it follows from (3.26) that ζ(s) can have no zeros with

ℜ(s) > θ so that RH(θ) holds. Conversely, if RH(θ) holds, then referring to a result

of Grosswald (see [17]), we know that (3.25) holds. Therefore, (3.25) is an equivalent

condition for RH(θ). However, by Lemma 1, we further know that (and this is the

only reason why we gain in the logarithmic factor as a consequence of Grosswald’s

improvement when 1
2 < θ < 1):

(3.27) π(x) = lix+O
( xθ

log x

)

.

Combining (3.21) and (3.27), we see that (1.9) is equivalent to RH(θ). This completes

the proof of (ii).

33



Although the proof of (iii) follows similar lines as in (i) and (ii), the details are

heavier, so we sketch them carefully for the sake of completeness. Let q be fixed

and assume that GRH(θ) holds for all Dirichlet L-functions modulo q for a given
1
2 6 θ < 1. For 1 6 a 6 q and (a, q) = 1, we know that

(3.28) ψ(x, q, a) =
1

ϕ(q)

∑

χ

χ(a)ψ(x, χ),

where the sum on the right hand side of (3.28) is over all characters modulo q and

(3.29) ψ(x, χ) :=
∑

n6x

χ(n)Λ(n).

Let χ1 be the principal character modulo q. Rewriting (3.28), we have

(3.30) ψ(x, q, a) =
ψ(x, χ1)

ϕ(q)
+

1

ϕ(q)

∑

χ6=χ1

χ(a)ψ(x, χ).

Using (3.29), one gets

(3.31) |ψ(x, χ1)− ψ(x)| 6
∑

n6x
(n,q)>1

Λ(n) ≪ (log q)(log x) ≪ log x.

Since, for all complex s,

L(s, χ1) = ζ(s)
∏

p|q

(

1− 1

ps

)

holds, and the product
∏

p|q

(

1− 1

ps

)

has zeros only on the imaginary axis, GRH(θ) for L(s, χ1) implies RH(θ). Therefore,

we may write from (3.31) that

(3.32) ψ(x, χ1) = ψ(x) +O(log x) = x+O(xθ(log x)2)

for 1
2 6 θ < 1, where (log x)2 can be deleted from (3.32) when 1

2 < θ < 1 by

Grosswald’s result. From (3.30) and (3.32), one has

(3.33) ψ(x, q, a) =
x

ϕ(q)
+

1

ϕ(q)

∑

χ6=χ1

χ(a)ψ(x, χ) +O(xθ(log x)2).

Recall the explicit formula representing ψ(x, χ) when χ 6= χ1 (see [14], Chapter 19)

in the form

(3.34) ψ(x, χ) = −x
̺1

̺1
−

∑

|t|<T

xω

ω
+O

(x(log qx)2

T
+ x1/4 log x

)
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for 2 6 T 6 x, where the sum in (3.34) is over all critical zeros ω of L(s, χ) with

ordinate t excluding the Siegel zeros at ̺1 and 1−̺1 (if they exist). The term−x̺1/̺1
is omitted from (3.34) if the Siegel zero does not exist. Now GRH(θ) implies that

̺1 6 θ and ℜ(ω) 6 θ for any critical zero ω. Consequently, we obtain from (3.34) that

(3.35) |ψ(x, χ)| ≪ xθ + xθ
∑

|t|<T

1

|ω| +
x(log x)2

T
+ x1/4 log x

for any nonprincipal character χ modulo q. We also know that (see [14], Chapter 20)

(3.36)
∑

|t|<T

1

|ω| ≪ (log qT )2 ≪ (log qx)2 ≪ (log x)2.

Choosing T = x1−θ, it follows from (3.35) and (3.36) that

(3.37) |ψ(x, χ)| ≪ xθ(log x)2

for all χ 6= χ1, and from (3.37) that

(3.38)
1

ϕ(q)

∣

∣

∣

∣

∑

χ6=χ1

χ(a)ψ(x, χ)

∣

∣

∣

∣

≪ xθ(log x)2.

At this point, we remark that Grosswald’s improvement in (3.32) for the log factor

when 1
2 < θ < 1 no longer helps because of (3.36). Therefore, assuming that GRH(θ)

holds for all Dirichlet L-functions modulo q, we have shown from (3.33) and (3.38)

that

(3.39) ψ(x, q, a) =
x

ϕ(q)
+O(xθ(log x)2)

for 1
2 6 θ < 1. Thus by Lemma 1, (3.39) gives that

(3.40) π(x, q, a) =
lix

ϕ(q)
+O(xθ log x).

Conversely, assuming (3.40) for all 1 6 a 6 q with (a, q) = 1, we get (3.39) by

Lemma 1. Let us rewrite (3.28) as a linear system of equations over the ϕ(q)

reduced residues modulo q. In matrix notation, we would get

(3.41) B







ψ(x, χ1)
...

ψ(x, χϕ(q))






=







ϕ(q)ψ(x, q, a1)
...

ϕ(q)ψ(x, q, aϕ(q))






,
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where χ1, . . . , χϕ(q) and a1, . . . , aϕ(q) are all the characters and reduced residues

modulo q, respectively. Moreover, the ϕ(q) × ϕ(q) matrix B in (3.41) is defined

by B = [bij ], where bij = χj(ai) for all 1 6 i, j 6 ϕ(q). Let B∗ be the conjugate

transpose of B. Note that as a vector in Cϕ(q), the ith row of B∗ would be the same

as the conjugate of the ith column of B which is the vector

[χi(a1), . . . , χi(aϕ(q))] ∈ C
ϕ(q).

Therefore, using the orthogonality of characters, the ordinary dot product of the ith

row of B∗ with the jth column of B is easily computed to be

(3.42)
∑

a

(χiχj)(a) =

{

ϕ(q) if i = j,

0 if i 6= j,

where the sum in (3.42) is over all the reduced residues modulo q. Now (3.42) shows

that

(3.43) B∗B = ϕ(q)I,

where I is the identity matrix of the same size. In particular, this shows that the

normalized matrix
( 1
√

ϕ(q)

)

B

is unitary. Multiplying both sides of (3.41) by B∗ and using (3.43), one achieves an

inversion of the form

(3.44)







ψ(x, χ1)
...

ψ(x, χϕ(q))






= B∗







ψ(x, q, a1)
...

ψ(x, q, aϕ(q))






.

Precisely, (3.44) means that, for the principal character χ1, we have

(3.45) ψ(x, χ1) =

ϕ(q)
∑

j=1

ψ(x, q, aj),

and

(3.46) ψ(x, χ) =

ϕ(q)
∑

j=1

χ(aj)ψ(x, q, aj)

when χ 6= χ1. Combining (3.39) and (3.45), we see that

(3.47) ψ(x, χ1) = x+O(ϕ(q)xθ(log x)2) = x+O(xθ(log x)2)

as q is fixed. Now from (3.31) and (3.47),

(3.48) ψ(x) = x+O(xθ(log x)2)
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follows. Thus (3.48) shows that RH(θ) holds and consequently GRH(θ) holds

for L(s, χ1). From (3.39) and (3.46), we get

(3.49) ψ(x, χ) =
x

ϕ(q)

ϕ(q)
∑

j=1

χ(aj) +O(xθ(log x)2) = O(xθ(log x)2) = O(xθ+ε)

for any ε > 0 since
ϕ(q)
∑

j=1

χ(aj) = 0

when χ 6= χ1. It follows from (3.49) and the identity

(3.50) −L
′(s, χ)

L(s, χ)
= s

∫ ∞

1

ψ(x, χ)

xs+1
dx

that both sides of (3.50) are analytic when ℜ(s) > θ. Thus, GRH(θ) holds for L(s, χ)

when χ 6= χ1. This completes the proof that GRH(θ) modulo q is equivalent to

(3.40). Note that from (3.15), one has

(3.51)
lix

ϕ(q)
=

1

ϕ(q)

m−1
∑

k=0

k!x

(log x)k+1
+

eγm!

ϕ(q)

∑

n6x/eγ

1

βm+1
n (n+ 1)m+1

+O(1).

Assembling (3.40) and (3.51) and the definition of Πm(x, q, a), we deduce that

GRH(θ) modulo q is equivalent to (1.10). This finishes the argument of part (iii).

To prove part (iv), we recall from the works of Ingham (see [22], pages 60–65) and

Turán (see [37]) that existence of a zero-free region for the Riemann zeta function as

in (1.7) is equivalent to the asymptotic formula

(3.52) ψ(x) = x+O(xe−c(log x)1/(1+α)

)

for some constant c > 0. Of course, by Lemma 1, (3.52) is equivalent to

(3.53) π(x) = lix+O(xe−c(log x)1/(1+α)

)

for some (possibly different) constant c > 0. Once again, (3.21) and (3.53) tell us

that (1.11) is an equivalent statement to the above mentioned zero-free region for

every given m > 0.

For the proof of part (v), first assume that (1.12) holds. Then Malliavin in [25]

showed that

(3.54) πP (x) = lix+O(xe−c(log x)a
′

),

holds with a (possibly different) constant c > 0 and a′ = a/10. From (3.21) and (3.54),

we infer that (1.13) holds. Conversely, if (1.13) holds for some m > 0, c > 0
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and a′ > 0, then combining this with (3.21), we would get (3.54) for some c > 0 and

a′ > 0. But conversely, Malliavin [25] also showed that (3.54) for some c > 0 and

a′ > 0 implies (1.12) for some 0 < b 6 1, c > 0 and a = a′/(a′ + 2). This completes

the proof of part (v).

The proof of part (vi) follows in a similar fashion. First we know by the

Vinogradov-Korobov type zero-free region for the Riemann zeta function together

with its correction by Walfisz (see [38]) and its perfection with explicit constants by

Ford (see [16]) that

(3.55) π(x) = lix+O(xe−(0.2098)(log x)3/5/(log log x)1/5).

Thus (1.14) is a consequence of (3.21) and (3.55) for every given m > 0. To ob-

tain (1.15), note that by the Siegel-Walfisz theorem (see [14], Chapter 22), we have

(3.56) ψ(x, q, a) =
x

ϕ(q)
+O(xe−c(log x)1/2)

uniformly for q 6 (log x)A, where c > 0 depends on A and the O-constant is ineffec-

tive in (3.56). By the remark after Lemma 1, we know that (3.56) implies

(3.57) π(x, q, a) =
lix

ϕ(q)
+O(xe−c(logx)1/2)

uniformly for q 6 (log x)A. Therefore, (1.15) follows from (3.51) and (3.57) for every

given m > 0. The proof of Theorem 1 is now complete. �

4. Proof of Theorem 2

We are given that

(4.1) cπ(xδ) + o
( xδ

(log x)2

)

=
cxδ

δ log x−AP (x)

as x→ ∞. We may also write

(4.2) π(xδ) =
cxδ

δ log x
+

cxδ

δ2(log x)2
+ o

( xδ

(log x)2

)

.

Feeding (4.2) into (4.1), and solving for AP (x), one obtains that

(4.3) AP (x) =
1 + o(1)

1 + 1/(δ log x) + o(1/ log x)

as x → ∞. It is plain that (1.17) follows from (4.3). Next assume that (1.18) holds
for some m > 3. From the asymptotic expansion of π(x), we know that

(4.4) π(xδ) = li(xδ) +O
( xδ

(log x)m

)

.

38



Using (4.4), we may write

(4.5) πP (x) = c li(xδ) +O
( xδ

(log x)m

)

.

We may bring (4.5) to the form

(4.6)
πP (x)

xδ
=

c

δ log x

(m−2
∑

k=0

k!

δk(log x)k
+O

( 1

(log x)m−1

)

)

.

Our next task is to reciprocate (4.6). For simplicity, we use the notation

1

δ log x
= X.

Then essentially our task is to find

(4.7)

(m−2
∑

k=0

k!Xk +O(Xm−1)

)−1

= (1 +O(Xm−1))

(m−2
∑

k=0

k!Xk

)−1

as X → 0. By the theory of power series, since the constant term of
m−2
∑

k=0

k!Xk is

nonzero, it follows that

(4.8)

(m−2
∑

k=0

k!Xk

)−1

=

∞
∑

n=0

bnX
n

is a power series around zero with positive radius of convergence, where the bn’s

in (4.8) can be obtained from the equality of power series

(4.9)

(m−2
∑

k=0

k!Xk

)( ∞
∑

n=0

bnX
n

)

= 1,

where the left hand side of (4.9) is computed as a Cauchy product. However, we

prefer to rewrite (4.9) in the form

(4.10)

(m−2
∑

k=0

k!Xk

)(m−2
∑

n=0

bnX
n +O(Xm−1)

)

= 1,

and it follows from (4.7) and (4.10) that the representation

(4.11)

(m−2
∑

k=0

k!Xk +O(Xm−1)

)−1

= (1 +O(Xm−1))

(m−2
∑

n=0

bnX
n

)

holds, where the coefficients in (4.11) are subject to the recurrence formula

(4.12)

n
∑

i=0

(n− i)! bi = 0
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for 1 6 n 6 m−2, and b0 = 1. We find that b1 = −1 = b2. For n > 1, put a∗n = −bn.
Then (4.12) becomes

(4.13) a∗n = n!−
n−1
∑

i=1

(n− i)! a∗i

Comparing (1.16) and (4.13), since the initial values are also the same, we deduce that

(4.14) an = a∗n = −bn

for all n > 1, where an is the number of indecomposable permutations. Therefore,

the reciprocation of (4.6) is justified with a complete description of coefficients

by (4.14) in terms of the number of indecomposable permutations. Precisely, we get

(4.15)
xδ

πP (x)
=
δ log x

c

(

1−
m−2
∑

k=1

ak
(δ log x)k

+O
( 1

(log x)m−1

)

)

for every given m > 3 as x→ ∞. Letting x = n to be an integer tending to infinity

in (4.15), one has

(4.16)
cnδ

πP (n)
= δ logn−

m−2
∑

k=1

ak
(δ logn)k−1

+O
( 1

(logn)m−2

)

.

Using the asymptotic formula for Hn, we may rewrite (4.16) as

(4.17)
cnδ

πP (n)
= δHn − δγ −

m−2
∑

k=1

ak
(δ logn)k−1

+O
( 1

(logn)m−2

)

.

Next, let us recall the following important formula from [13]

(4.18) H(r)
n =

(

n+ r − 1

r − 1

)

(Hn+r−1 −Hr−1)

which is useful in connecting hyperharmonic numbers of order r > 1 to harmonic

numbers. Replacing n by n− r + 1 in (4.18) and feeding this into (4.17), we finally

arrive at the relation

(4.19)
cnδ

πP (n)
=
δH

(r)
n−r+1

(

n
r−1

) + δHr−1 − δγ −
m−2
∑

k=1

ak
(δ logn)k−1

+O
( 1

(logn)m−2

)

for a given r > 1 when n → ∞. Now (1.19) is an immediate consequence of (4.19).
To complete the proof of Theorem 2, we make some observations and comment on

the size of coefficients. It is plain that b1, . . . , bn−1 are all negative integers and they
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all satisfy bk > −k! (since ak 6 k!). If we only use (4.12), then note that starting

with the obvious inequality

(4.20)

n−1
∑

i=1

(n− i)! bi > (n− 1)

n−1
∑

i=1

(n− i− 1)! bi,

and
n−1
∑

i=1

(n− i)! bi = − n!− bn,(4.21)

n−1
∑

i=1

(n− i− 1)! bi = − (n− 1)!,(4.22)

we infer from (4.20)–(4.22) that

(4.23) −n! 6 bn 6 −(n− 1)!

for all n > 1. Thus, (4.23) implies that

(4.24) (n− 1)! 6 an 6 n!

for all n > 1. This is what we may come by analytically from (4.12) at a first

glance. However, exploiting the combinatorial significance of an’s as the number of

indecomposable permutations, King in [23] obtained a significant improvement of

the lower bound in (4.24). Precisely, he showed that

(4.25)
n!

2
6 an 6 n!

for all n > 1. Finally, we analyze the asymptotic behavior of an using only (1.16).

Let q be a given positive integer. From (1.16), we may consider the decomposition

(4.26) an = n!−
q

∑

j=1

(n− j)! aj −
q

∑

j=1

j! an−j −
n−q−1
∑

j=q+1

(n− j)! aj .

Since aj 6 j! for any j, we have

(4.27)

n−q−1
∑

j=q+1

(n− j)! aj 6

n−q−1
∑

j=q+1

(n− j)! j!.

Let us estimate the right hand side of (4.27) keeping in mind the unimodality of

binomial coefficients in a row of Pascal’s triangle. First, by symmetry, we obtain for

all large n that

(4.28)
n−q−1
∑

j=q+1

(n− j)! j! 6 2

[n/2]
∑

j=q+1

(n− j)! j! = 2
∑

q+16j6n/4

(n− j)! j! + 2
∑

n/4<j6[n/2]

(n− j)! j!.
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Precisely, the unimodality says that the ratio of two consecutive summands in (4.28) is

(4.29)
(n− j − 1)! (j + 1)!

(n− j)! j!
=
j + 1

n− j
.

Note that the ratio in (4.29) is always not greater than 1 when j 6 [n/2] − 1.

Therefore, one obtains that

(4.30) 2
∑

n/4<j6[n/2]

(n− j)! j! = O
(

n
(

n−
[n

4

]

− 1
)

!
([n

4

]

+ 1
)

!
)

.

Moreover, when q + 1 6 j 6 n/4, the ratio in (4.29) is

j + 1

n− j
6
n/4 + 1

3n/4
6

1

2
,

provided n > 8. Consequently, one gets

(4.31) 2
∑

q+16j6n/4

(n− j)! j! 6 2(q + 1)! (n− q − 1)!

∞
∑

r=0

1

2r
= Oq((n− q − 1)!).

Next we show that the estimate in (4.30) can be absorbed into the estimate in (4.31).

We make a digression to show a more general result that suffices for this. We claim

that for any given q > 1

(4.32) u! v! 6 (u+ v − q)!

holds when u, v → ∞ and u ∼ δv for some δ > 0. Note that (4.32) is trivial when

q 6 0. Clearly, (4.32) is equivalent to

(4.33) log u! + log v! 6 log(u+ v − q)!.

Using the well-known asymptotic formula for the logarithm of a factorial, we may

write

(4.34) log u! + log v! = u log u+ v log v − u− v +O(log u) +O(log v)

and

(4.35) log(u+ v − q)! = (u+ v − q) log(u + v − q)− u− v + q +O(log(u + v)).

Furthermore, we have

(4.36) (u+ v − q) log(u+ v − q) = (u+ v) log(u+ v − q) +Oq(log(u + v))

= (u+ v) log(u+ v) + (u + v) log
(

1− q

u+ v

)

+Oq(log(u+ v)).
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Note that

(4.37) log
(

1− q

u+ v

)

= − q

u+ v
+O

( q2

(u+ v)2

)

.

Combining (4.35)–(4.37), one infers that

(4.38) log(u+ v − q)! = (u+ v) log(u+ v)− u− v +Oq(log(u + v)).

Using now (4.34) and (4.38), we see that showing (4.33) boils down to the verification

of the asymptotic inequality

(4.39) u log u+ v log v +Oq(log(u+ v)) 6 (u+ v) log(u+ v).

Since log(u+ v) = o(u+ v) as u, v → ∞, (4.39) reduces to

(4.40)
( u

u+ v

)

log u+
( v

u+ v

)

log v + o(1) 6 log(u + v).

By concavity of the logarithm, we have

(4.41)
( u

u+ v

)

log u+
( v

u+ v

)

log v 6 log
(u2 + v2

u+ v

)

.

Finally, since u/v → δ,

(4.42) log(u+ v)− log
(u2 + v2

u+ v

)

= log
(

1 +
2uv

u2 + v2

)

→ log
(

1 +
2δ

1 + δ2

)

> 0.

Thus, (4.40) easily follows from (4.41) and (4.42). This proves (4.33) and our claim

in (4.32). Taking u = [ 14n] + 1 and v = n − [ 14n] − 1, and applying our claim with

δ = 1
3 , we deduce that

(4.43)
(

n−
[n

4

]

− 1
)

!
([n

4

]

+ 1
)

! 6 (n− q − 2)!

asymptotically as n→ ∞. As q is fixed, it follows from (4.43) that

(4.44) n
(

n−
[n

4

]

− 1
)

!
([n

4

]

+ 1
)

! = O((n − q − 1)!).

Assembling (4.30), (4.31) and (4.44), we know that (4.26) becomes

(4.45) an = n!−
q

∑

j=1

(n− j)! aj −
q

∑

j=1

j! an−j +O((n− q − 1)!),
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where the dependence of the O-constant on q in (4.45) is minor. We remark

that (4.45) can be used in an inductive manner to arrive at an asymptotic expansion

of an of the form

(4.46) an =
(

1 +
c1
n

+
c2
n2

+ . . .+
cq
nq

+O
( 1

nq+1

))

n!

for some scalars c1, c2, . . . , cq. Let us demonstrate this when q = 4. From (4.45), we

would get by taking q = 4 that

(4.47)
an
n!

= 1− 1

n
− 1

n(n− 1)
− 3

n(n− 1)(n− 2)
− 13

n(n− 1)(n− 2)(n− 3)

− an−1

n!
− 2an−2

n!
− 6an−3

n!
− 24an−4

n!
+O

( 1

n5

)

.

As a result of the postulated asymptotic formula in (4.46), we need to show that

(4.48)
an
n!

= 1 +
c1
n

+
c2
n2

+
c3
n3

+
c4
n4

+O
( 1

n5

)

,

where c1, c2, c3, c4 are scalars to be determined. As our inductive hypothesis, we

are allowed to assume that

(4.49)
an−j

(n− j)!
= 1 +

c1
n− j

+
c2

(n− j)2
+

c3
(n− j)3

+
c4

(n− j)4
+O

( 1

n5

)

for j = 1, 2, 3, 4. To carry out the induction step, we combine (4.47)–(4.49) and

make sure to keep only the significant terms that are superior to O(1/n5). In this

way, one obtains that

(4.50) 1 +
c1
n

+
c2
n2

+
c3
n3

+
c4
n4

= 1− 2

n
− c1 + 3

n(n− 1)
− 2c1 + 9

n(n− 1)(n− 2)

− 6c1 + 37

n(n− 1)(n− 2)(n− 3)
− c2
n(n− 1)2

− c3
n(n− 1)3

− 2c2
n(n− 1)(n− 2)2

+O
( 1

n5

)

.

It is clear that for (4.50) to hold, we must have c1 = −2. To find c2 note that the

only contributor from the right hand side of (4.50) is the term containing

1

n(n− 1)
=

1

n2
+

1

n3
+

1

n4
+ . . .

Thus, we must have c2 = −c1 − 3 = −1. To find c3, note that

1

n(n− 1)(n− 2)
=

1

n3(1− 1/n)(1− 2/n)
=

1

n3

(

1 +
3

n
+ . . .

)

and
1

n(n− 1)2
=

1

n3
+

2

n4
+ . . .
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Therefore, c3 = −3c1 − c2 − 12 = −5. Finally, the representations

1

n(n− 1)(n− 2)(n− 3)
=

1

n4
+O

( 1

n5

)

,
1

n(n− 1)3
=

1

n4
+O

( 1

n5

)

,

1

n(n− 1)(n− 2)2
=

1

n4
+O

( 1

n5

)

hold, and note that they all start with the most significant term 1/n4. Taking into

account all of these contributions, we find

c4 = −13c1 − 4c2 − c3 − 67 = −32.

This completes the induction step. Of course the base case of the induction is auto-

matic since we may arrange the O-constants so that (4.48) trivially holds for small

values of n. Lastly, (4.25) and (4.48) complete our comments on the behavior of the

number of indecomposable permutations. This finishes the proof of Theorem 2. �

5. Proof of Theorem 3

For the proof of part (i), by taking δ = 1 and c = 1/ϕ(q) in (4.15), we obtain as

a special case of the reciprocation that

(5.1) − x

π(x, q, a)
= −ϕ(q) log x+

m−2
∑

k=1

ϕ(q)ak
(log x)k−1

+O
( 1

(log x)m−2

)

for all m > 3, 1 6 a 6 q and (a, q) = 1 when x→ ∞. Let us remark that m > 3 was

assumed only for convenience in Theorem 2 just to make the O-term in (1.19) tend

to zero. Therefore, (5.1) still holds for all m > 2, and when m = 2, it becomes

(5.2) − x

π(x, q, a)
= −ϕ(q) log x+O(1).

Clearly, (5.1) and (5.2) signify the asymptotic expansion

(5.3) − x

π(x, q, a)
∼ −ϕ(q) log x+

∞
∑

k=1

ϕ(q)ak
(log x)k−1

.

Note that (5.3) falls into the scope of Lemma 2, and we deduce that

− x

π(x, q, a)

is asymptotically convex. But, as mentioned in the introduction, we know from [10]

that this function is never convex on any interval x > x1. This proves part (i).
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For part (ii), let us start with the expansion

(5.4)
π(x)

x
∼

∞
∑

k=0

k!

(log x)k+1
.

Note that if we let X = 1/ logx, then

∞
∑

k=0

k!

(log x)k+1
=

∞
∑

k=0

k!Xk+1

is formally a power series around zero (whose radius of convergence is also zero, but

this is not harmful to us as we only use it formally). It is known that asymptotic

expansions can be multiplied in the same way that their formal power series are

multiplied as a Cauchy product. Therefore, from (5.4), we may conclude that the

asymptotic expansion of the function

f(x) :=
(π(x)

x

)2

is given by

(5.5)
∞
∑

k=2

ck
(log x)k

,

where each ck is a sum of terms each of which are products of two factorials. It is

plain that ck > 0 for k > 2. Because of this, (5.5) lies in the scope of Lemma 2, and

we see that f(x) is an asymptotically convex function satisfying (2.22). Precisely,

when 0 6 λ 6 1 and x, y → ∞, we have

(5.6)
(π(λx + (1 − λ)y)

λx+ (1− λ)y

)2

6 λ
(π(x)

x

)2

+ (1− λ)
(π(y)

y

)2

+ o
( 1

(logmin(x, y))n

)

for any given positive integer n. At this point, we recall a pretty generalization of

a curious inequality of Ramanujan

(π(x)

x

)2

<
eπ(x/e)

x log x

due to Hassani (see [19] and also [21] for many variations over Ramanujan’s inequal-

ity) of the form

(5.7)
(π(x)

x

)2

<
απ(x/α)

x log x

for any α > e and all large x (for quantifications on how large x should be so

that (5.7) holds, we refer to [19] and [20]). Furthermore, Hassani’s work shed full
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light on Ramanujan’s special preference of taking α = e in his inequality and showed

that the inequality is reversed in (5.7) when 0 < α < e (so that Ramanujan’s choice

for the parameter α is minimal). Finally, (1.20) follows from (5.6) and (5.7). This

ends part (ii) and the proof of Theorem 3. �
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