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Abstract. For a ternary quadratic form over the rational numbers, we characterize the
set of rational numbers represented by that form over the rational numbers. Consequently,
we reprove the classical fact that any positive definite integral ternary quadratic form must
fail to represent infinitely many positive integers over the rational numbers. Our proof uses
only the quadratic reciprocity law and the Hasse-Minkowski theorem, and is elementary.
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1. Introduction

It is a well-known theorem of Lagrange that any positive integer is a sum of at

most four squares. In other words, the quadratic form x2 + y2 + z2 + t2 represents

any positive integer over the integers. However, the quadratic form x2 + y2 + z2

cannot represent any number of the form 8k + 7 even when we allow x, y, and z to

be rational numbers. One may wonder if ax2 + by2 + cz2 for some carefully chosen

positive integers a, b, and c will represent all positive integers that are large enough

over the integers. Indeed, if we allow having negative coefficients, then a ternary

quadratic form such as x2 + y2 − z2 can represent any integer over the integers since

for an integer n, we have

(n+ 1)2 + 02 − n2 = 2n+ 1, n2 + 12 − (n− 1)2 = 2n.

However, it is a classical result that any positive definite integral ternary quadratic

form must fail to represent infinitely many positive integers even over the rationals,

see [2], page 142.
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One of the aims of this note is to characterize all rational numbers represented

by a rational ternary quadratic form over the rationals. For nonzero rational num-

bers a, b and c let us denote by R(a, b, c) the set of rational numbers represented

by ax2 + by2 + cz2 over the rational numbers. The following theorem determines

this set in the case when a, b, and c are square-free pairwise relatively prime nonzero

integers. The more general case is explained after the statement of the theorem. The

symbol
(

·
p

)

denotes Legendre’s symbol.

Theorem 1.1. Let a, b and c be square-free and pairwise relatively prime nonzero

integers, let N be a nonzero rational number, and let N = nn2
0, where n is a uniquely

determined square-free integer and n0 is a rational number uniquely determined up

to a sign. Then, N ∈ R(a, b, c) if and only if the following conditions hold.

(1) If a, b and c are positive (or negative) then n is positive (or negative, respectively).

(2) If a ≡ b ≡ c ≡ 1 or 3 (mod 4) then n 6≡ −abc (mod 8).

(3) If a is even and b+ c ≡ a or 2a (mod 8) then n 6≡ −abc (mod 16). Similarly, if b

is even and a + c ≡ b or 2b (mod 8) then n 6≡ −abc (mod 16). Finally, if c is

even and a+ b ≡ c or 2c (mod 8) then n 6≡ −abc (mod 16).

(4) If p is an odd prime divisor of n and a then (−bc
p

)

= 1 or (na/p
2

p ) = 1. Similarly,

if p is an odd prime divisor of n and b then (−ac
p ) = 1 or (nb/p

2

p ) = 1. Finally,

if p is an odd prime factor of n and c then (nc/p
2

p ) = 1 or (−ab
p ) = 1.

We prove this theorem in Section 2 using the Hasse-Minkowski theorem and a del-

icate analysis of the congruence classes represented by ax2+by2+cz2 modulo powers

of 2 and powers of odd prime numbers.

In fact, Theorem 1.1 can be used to determine the set of all rational numbers rep-

resented by any rational ternary quadratic form over the rational numbers. Indeed,

any rational ternary quadratic form Q(x, y, z) can be transformed into a diagonal

rational ternary quadratic form ax2+by2+cz2 by a linear change of variables with ra-

tional coefficients, see [11], Chapter 1, Section 3. Since Q(x, y, z) and ax2+ by2+ cz2

represent the same rational numbers over the rationals, hence we need to deter-

mine R(a, b, c). To do this, find unique positive rational numbers r, s, and t such

that a = r2a1, b = s2b1, and c = t2c1, where a1, b1, and c1 are square-free integers.

Also, let d be the greatest common divisor of a1, b1, and c1 and write a1 = da2,

b1 = db2, and c1 = dc2. It is clear that

R(a, b, c) = R(a1, b1, c1) = dR(a2, b2, c2).

Finally, let d1 (or d2 or d3) be the greatest common divisors of b2 and c2 (or a2
and c2 or a2 and b2, respectively). Therefore, one can find integers a3, b3, and c3
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such that a2 = d2d3a3, b2 = d1d3b3, and c2 = d1d2c3. Hence,

R(a2, b2, c2) = d1d2d3R(d1a3, d2b3, d3c3).

So, we have the formula

(1.1) R(a, b, c) = dd1d2d3R(d1a3, d2b3, d3c3).

Note that d1a3, d2b3 and d3c3 are square-free pairwise relatively prime nonzero inte-

gers. So, Theorem 1.1 can be used to determine R(d1a3, d2b3, d3c3) and formula (1.1)

will determine all rational numbers represented by Q(x, y, z) over the rationals.

As a corollary to Theorem 1, we can extend the following result of Doyle and

Williams, see [5], Theorem 1.

Theorem 1.2 (Doyle-Williams). Let a, b, c ∈ N. Then the ternary form ax2 +

by2 + cz2 does not represent over the integers any positive integer ≡ −4abc

(mod 32(abc)2).

Using the notation introduced after the statement of Theorem 1.1, we present the

following theorem that generalizes the Doyle-Williams theorem.

Theorem 1.3. Let a, b and c be positive rational numbers and abc = R2S,

where S is a uniquely determined square-free integer and R is a rational number

uniquely determined up to a sign. Then the ternary form ax2 + by2 + cz2 does not

represent any positive integer congruent to −S (mod 8d1d2d3S
2) over the rationals.

In particular, if a, b and c are integers then ax2+by2+cz2 does not represent any pos-

itive integer congruent to −abc (mod 8abcS) over the rationals and more particularly

it does not represent any number ≡ −abc (mod 8(abc)2) over the rationals.

As a consequence of Theorem 1.3 and the fact that any rational ternary quadratic

form is equivalent to a rational diagonal quadratic form, we can state the following

version of the classical result mentioned in [2], page 142.

Theorem 1.4. Any positive definite ternary quadratic form over the rational

numbers fails to represent an infinite progression of positive integers over the rational

numbers.

We also prove an assertion in the converse direction of the Doyle-Williams theorem.

Namely, we prove the following.
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Theorem 1.5. Let a, b and c be square-free and pairwise relatively prime nonzero

integers. Then the form ax2 + by2 + cz2 represents all integers over the integers if

and only if the congruence

ax2 + by2 + cz2 ≡ −abc (mod 8(abc)2)

is solvable.

The history of the problems studied in this article is very rich. It was Fermat, who

in 1638 first stated without proof that any number is a sum of at most four squares.

After some unsuccessful tries by Euler, Lagrange proved it in 1770. Gauss proved

in 1796 another conjecture of Fermat that any number is a sum of at most three trian-

gular numbers (i.e., numbers of the form 1
2n(n+1)) by showing that the only numbers

not represented by x2+y2+z2 over the integers are of the form 4m(8k+7). He pub-

lished this result in his famous Disquisitiones Arithmeticae in 1801. In 1748, Euler

conjectured that the ternary quadratic form x2+y2+2z2 represents every odd integer

over the integers and Lebesgue in 1857 in Théorème 1 of [12] proved this conjecture.

Dickson in [4], Theorems X and VII in 1927 showed that the forms x2+2y2+3z2 and

x2 + 2y2 + 4z2 also represent all odd integers over the integers. In 1995 Kaplansky

in [10], page 212 gave a list of 23 integral positive definite ternary quadratic forms

that he claimed to be the only such forms (up to equivalence) that represent all odd

integers over the integers. He showed the validity of his claim for 19 of these forms.

Interestingly, the three forms found by Euler and Dickson were the only diagonal

ternary quadratic forms in this list. Another interesting historical result is due to

Ramanujan. In 1916, he wrote a paper (see [17], page 220), in which, among other

things, he studied the ternary form x2 + y2 + 10z2. He showed that the only even

numbers not represented by this form over the integers are of the form 4m(16k+6),

and observed the following list of odd numbers are not represented over the integers

3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391, . . .

He mentioned that they do not seem to follow any simple law. It is not clear if

Ramanujan believed this list was complete or not or if the set was finite or infinite.

In 1927 Jones and Pall in [9], page 168 showed that 679 is in the list as well. In 1941

Gupta in [8], page 519 found that 2719 is also in the list. Computer searches for

numbers up to 2 × 1010 have not produced any new odd numbers. It was proved

in 1990 by Duke and Schulze-Pillot in [6], page 56 that x2 + y2 + 10z2 represents

all large enough odd integers, and hence this list is finite. Also, in 1997 Ono and

Soundararajan in [16], page 416 conjectured that Ramanujan’s list with the two ex-

tra numbers 679 and 2719 is complete. They showed the validity of their conjecture,

assuming the generalized Riemann hypothesis.
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The study of representability over the integers by ternary quadratic forms is a very

active research theme. For example, besides odd numbers, one may be tempted to

study other arithmetic progressions dk+ r for k ∈ {0, 1, . . .}. A form representing all

numbers in this progression over the integers is called (d, r)-universal. Sun in [19],

Theorem 1.7 proved that the forms x2+3y2+24z2, 4x2+3y2+6z2, and x2+12y2+6z2

are (6, 1)-universal. In [20], Theorems 1.1 and 1.2 Wu and Sun were able to show

that 2x2 +3y2+10z2 is (8, 5)-universal. Also, they showed that x2 +3y2+14z2 and

2x2 + 3y2 + 7z2 are (14, 7)-universal.

According to [5], page 2, we do not know who was the first person to state that

integral positive definite ternary quadratic forms must fail to represent infinitely

many positive integers over the rationals. This statement goes back to at least

1933 when Albert (see [1], page 275) states it and also in Conway’s beautiful book

(see [2], page 142), where he gives a modern proof using p-adic equivalence of forms

and isotropic forms. Finally, we mention two papers by Mordell (see [14], [15]) that

study the solvability of the equation ax2+ by2+ cz2+ dt2 = 0 when x, y, z and t are

integers not all equal to zero. As this is related to the representability of an integer

by ax2 + by2 + cz2 over the rationals, some of his results overlap ours.

2. Proofs

In this section, we prove the results of the introduction. First, we state the fol-

lowing important lemma.

Lemma 2.1. Let a, b and c be positive square-free pairwise relatively prime

integers. If for all odd prime factors p of a, we have (−bc
p ) = 1 and similarly, for all

odd prime factors p′ of b, we have (−ac
p′

) = 1 and finally, for all prime factors p′′ of c,

we have (−ab
p′′

) = 1, then the conditions of parts (2) or (3) of Theorem 1.1 hold for

a, b and c.

P r o o f. The proof uses quadratic reciprocity for the Jacobi symbol
(m

n

)

=
∏

i

(m

pi

)ei
,

where n = pe11 . . . pekk is an odd number. We use the following well-known facts,

see [7], Chapter 3.8.

(−1

n

)

= (−1)(n−1)/2,
( 2

n

)

= (−1)(n
2−1)/8 when n is odd.(2.1)

( n

m

)(m

n

)

= (−1)((n−1)/2)(m−1)/2 when n, m are odd and (m,n) = 1.(2.2)

(mm′

n

)

=
(m

n

)(m′

n

)

when n is odd.(2.3)
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First assume that a, b and c are odd integers. By definition of the Jacobi symbol we

have (−bc
a ) =

∏

p|a

(−bc
p ) = 1. Similarly we have (−ac

b ) = (−ab
c ) = 1. Hence, if we use

equation (2.3) and write these as

(−1

a

)( b

a

)( c

a

)

= 1,
(−1

b

)(a

b

)(c

b

)

= 1,
(−1

c

)(a

c

)(b

c

)

= 1,

and take the product of the three expressions and use equation (2.1) and the reci-

procity law of equation (2.2) above, we get

(2.4) (−1)α+β+γ+αβ+βγ+αγ = 1,

where α = 1
2 (a − 1), β = 1

2 (b − 1) and γ = 1
2 (c− 1). This implies that α, β, and γ

have the same parity since if, for example, α is even and β is odd, the exponent in

equation (2.4) is congruent to 1 modulo 2. Hence, a ≡ b ≡ c (mod 4). It remains

to prove the lemma when exactly one of a, b or c is even. So, let us assume that

a = 2a′, where a′ is an odd number. Then using equation (2.3), we have

(−1

a′

)( b

a′

)( c

a′

)

= 1,
(−1

b

)(2

b

)(a′

b

)(c

b

)

= 1, and
(−1

c

)(2

c

)(a′

c

)(b

c

)

= 1.

So if we let α = 1
2 (a

′ − 1), β = 1
2 (b − 1), γ = 1

2 (c − 1), β′ = 1
8 (b

2 − 1) and

γ′ = 1
8 (c

2 − 1), it follows by multiplying this expressions and using the properties of

the Jacobi symbol that

(−1)αβ+αγ+βγ+α+β+γ+β′+γ′

= 1.

Equivalently

8αβ + 8αγ + 8βγ + 8α+ 8β + 8γ + 8β′ + 8γ′ = (a′ + b+ c)2 − (a′)2 − 8

must be divisible by 16. This implies that (b + c)(b + c + 2a′) = (b + c)(b + c + a)

is divisible by 8 and not by 16. Since b and c are odd hence, b + c ≡ 0, a, 2a or

3a (mod 8). Since (b+ c)(b+ c+ a) is divisible by 16 when b+ c ≡ 0 or 3a (mod 8),

this finishes the proof. �

In the following, we use the Hasse-Minkowski theorem (see [18], Chapter IV, The-

orem 8) to prove Theorem 1.1. For an integral diagonal ternary quadratic form

ax2+ by2+ cz2, the Hasse-Minkowski theorem asserts that for an integer n the equa-

tion ax2+by2+cz2 = n has a solution in rational numbers if and only if it has a solu-

tion in real numbers and for any prime power pm the congruence ax2+ by2+ cz2 ≡ n

(mod pm) has a solution in integers. This version of the Hasse-Minkowski theorem

was essentially proved by Legendre, see [13].

The following two lemmas characterize numbers represented modulo 8 or 16 by

ax2 + by2 + cz2.
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Lemma 2.2. Let a, b and c be square-free pairwise relatively prime integers.

Then the ternary quadratic form ax2 + by2 + cz2 (mod 8) represents all congruence

classes (mod 8) unless a ≡ b ≡ c (mod 4), in which case the only congruence class

that is not represented is −abc (mod 8).

P r o o f. We consider three cases.

Case 1 : If one of the coefficients a, b or c is even, for example a ≡ 2 (mod 4),

then since the square of any number is ≡ 0 or 1 (mod 4), one sees that ax2 + by2

(mod 4) represents all congruence classes (mod 4). Note that 4c ≡ 4 (mod 8). So

if ax2 + by2 represents n (mod 8) then ax2 + by2 + 4c represents n+ 4 (mod 8) and

hence all congruence classes (mod 8) are represented in this case.

Case 2 : If a ≡ b ≡ c (mod 4), then without loss of generality we may assume that

our form is one of the two ternary quadratic forms a(x2+y2+z2) or a(x2+y2+5z2).

They represent all congruence classes modulo 8 except−a (mod 8) and−5a (mod 8),

respectively, which are the same as −abc (mod 8) in each case.

Case 3 : If all the coefficients are odd and two of them, for example, a and b, are

not congruent modulo 4, then clearly ax2+ by2 (mod 4) represents 1 and 3 (mod 4)

and in this representation one of x or y is even. If we replace the even variable,

for example x, with x + 2, we see that this form represents 1, 3, 5 and 7 (mod 8).

Since c is odd letting z = 1, we see that ax2 + by2 + c represents 0, 2, 4, 6 (mod 8).

Hence, all congruence classes modulo 8 are represented. �

Lemma 2.3. Let a, b and c be square-free pairwise relatively prime integers and

one of them be even. The ternary quadratic form Q(x, y, z) = ax2 + by2 + cz2

(mod 16) represents all congruence classes unless a (possibly b, possibly c) is even

and b + c ≡ a or 2a (mod 8) (possibly a + c ≡ b or 2b (mod 8), possibly a + b ≡ c

or 2c (mod 8), respectively), in which case the only congruence class that is not

represented is −abc (mod 16).

P r o o f. Without loss of generality, we may assume that a = 2a′ is even and

since a is square-free hence, a′ is odd. First, we show that n (mod 16) is rep-

resented by ax2 + by2 + cz2 for any odd integer n. By Lemma 2.2, one can

find x0, y0 and z0 such that ax
2
0 + by20 + cz20 ≡ n (mod 8). Since n is odd, one

of y0 or z0 is odd. Assume for example that y0 is odd, then 9by20 ≡ by20 + 8

(mod 16). Hence, replacing y0 with 3y0, if needed, we may represent n (mod 16).

Since a′ (mod 16) and 3a′ (mod 16) are represented, hence replacing x, y and z

with 2x, 2y and 2z one can represent 4a′ and 12a′ that is 2a and 6a modulo 16.

Also clearly 0, a and 4a are represented. The only congruence classes modulo 16

that remain are 3a, 5a and 7a. Depending on the congruence of b+ c modulo 8, we

have four cases.
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Case 1 : If b + c ≡ 0 (mod 8) then b 6≡ c (mod 4), that is one of them is con-

gruent to a′ (mod 4) and the other one to 3a′ (mod 4). Hence, Q(1, 2, 0) = a + 4b

and Q(1, 0, 2) = a + 4c are 3a and 7a modulo 16. If b + c ≡ 4a (mod 16) then

Q(1, 1, 1) ≡ 5a (mod 16) and if b + c ≡ 0 (mod 16) then 9b + c ≡ 8 ≡ 4a (mod 16)

and therefore, Q(1, 3, 1) ≡ 5a (mod 16). So in this case all congruence classes

modulo 16 are represented.

Case 2 : If b + c ≡ 3a (mod 8) then Q(0, 1, 1) = b + c and Q(0, 3, 1) = 9b + c ≡

b+ c+8 (mod 16) are 3a and 7a (mod 16). Also Q(1, 2, 2) = a+4(b+ c) ≡ 13a ≡ 5a

(mod 16). Again all congruence classes modulo 16 are represented.

Case 3 : If b + c ≡ 2a ≡ 4 (mod 8) then since b and c are odd it follows that

bc ≡ 3 (mod 8) and hence −abc ≡ −3a ≡ 5a (mod 16). So we need to show that

3a and 7a are represented modulo 16 but 5a is not. Note that Q(1, 1, 1) = a+ b+ c

and Q(1, 3, 1) = a + 9b + c ≡ a + b + c + 8 (mod 16). These are 3a and 7a

(mod 16). The only even congruence classes modulo 16 that are represented by

by2 + cz2 are 0, 4b, 4c, 4(b + c), b + c and b + c + 8 ≡ b + c + 4a (mod 16), so if

Q(x, y, z) ≡ 5a (mod 16), since ax2 ≡ 0, a or 4a (mod 16), hence by2 + cz2 ≡ 5a, 4a

or a (mod 16). Comparing with the possible even congruence values of by2 + cz2

shows that this is impossible.

Case 4 : If b+ c ≡ a (mod 8) then we have two subcases.

Subcase 4.1 : If b ≡ c ≡ a′ (mod 4) then either b ≡ c ≡ a′ (mod 8) or a ≡

b ≡ 5a′ (mod 8), in both cases bc ≡ 1 (mod 8) and hence −abc ≡ 7a (mod 16).

Hence, we need to show that Q(x, y, z) represents 3a and 5a (mod 16) but it does

not represent 7a (mod 16). Note that Q(1, 2, 2) = a + 4b + 4c ≡ 5a (mod 16) and

Q(1, 2, 0) = a + 4b ≡ a + 4a′ = 3a (mod 16). If Q(x, y, z) ≡ 7a (mod 16) then

by2 + cz2 ≡ 7a, 6a or 3a (mod 16). Note that 4b ≡ 4c ≡ 2a (mod 16). Hence,

the even congruence classes of by2 + cz2 listed in Case 3 cannot represent 7a, 6a or

3a (mod 16).

Subcase 4.2 : If b ≡ c ≡ 3a′ (mod 4) then one of them is congruent to 3a′ and the

other one is congruent to 5a′ modulo 8 so bc ≡ 5 (mod 8) and hence −abc ≡ −5a ≡

3a (mod 16). Hence, we need to show that Q(x, y, z) represents 5a and 7a (mod 16)

but it does not represent 3a (mod 16). Note that Q(1, 2, 2) = a + 4b + 4c ≡ 5a

(mod 16), Q(1, 2, 0) = a+4b ≡ a+12a′ = 7a (mod 16). If Q(x, y, z) ≡ 3a (mod 16)

then by2 + cz2 ≡ 3a, 2a or 7a (mod 16). Note that 4b ≡ 4c ≡ 6a (mod 16). Hence,

the even congruence classes of by2 + cz2 listed in Case 3 cannot represent 3a, 2a

or 7a (mod 16). �

In Lemmas 2.4 and 2.5, we classify all the congruence classes modulo 2m form > 3

when the coefficients a, b and c are odd and modulo 2m for m > 4 when one of a, b

or c is even, that are represented by ax2 + by2 + cz2.
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Lemma 2.4. If a, b and c are odd pairwise relatively prime and square-free inte-

gers and an integer n is represented by ax2+by2+cz2 (mod 8) then it is represented

(mod 2m) for any m > 3.

P r o o f. It is enough to show this for the case, where n is not divisible by 4, since

we can replace x, y and z by 2lx, 2ly and 2lz for some l. We prove the claim by

induction onm. Suppose that we can find x, y, z such that ax2+by2+cz2 = n+k2m

form > 3. Since n is not a multiple of 4 hence at least one of x, y or z is odd. Without

loss of generality, we can assume that x is odd. Put x′ = x+ k12
m−1. Then

a(x′)2 + by2 + cz2 = n+ k2m + 2mak1x+ ak212
2m−2.

Since 2m− 2 > m+1, we only need to take k1 = k to make the induction work. �

Lemma 2.5. Let a, b and c be square-free pairwise relatively prime integers. If

one of a, b or c is even and an integer n is represented by ax2 + by2 + cz2 (mod 16)

then it is represented (mod 2m) for any m > 4.

P r o o f. As in the previous part, we may assume that n is not divisible by 4.

Assume ax2 + by2 + cz2 = n + k2m for some m > 4. Since n is not a multiple of 4

one of x, y or z is odd. Assume x is odd. If a is odd as well, then the same proof as

before makes the induction work. Assume a = 2a′, where a′ is an odd integer. Let

x′ = x+ k12
m−2 then

a(x′)2 + by2 + cz2 = n+ k2m + 2ma′k1x+ a′k212
2m−3.

Since 2m− 3 > m+1, we only need to take k1 = k to make the induction work. �

We summarize the previous lemmas in the following corollary that will be used in

the proof of Theorem 1.1.

Corollary 2.6. Let a, b and c be square-free pairwise relatively prime integers.

A number n is represented by ax2 + by2 + cz2 modulo all powers of 2 if and only:

(1) if a, b and c are odd and a ≡ b ≡ c (mod 4) then n 6≡ −abc (mod 8).

(2) if a (possibly b, possibly c) is even and b+c ≡ a or 2a (mod 8) (possibly a+c ≡ b

or 2b (mod 8), possibly a + b ≡ c or 2c (mod 8), respectively) then n 6≡ −abc

(mod 16).

P r o o f. It follows directly from Lemmas 2.2, 2.3, 2.4 and 2.5. �

Lemma 2.7. If p is an odd prime number that does not divide bc, then any

integer n prime to p is represented by ax2 + by2 + cz2 (mod pm) for any m > 1. If p

does not divide a, then all numbers are represented modulo pm.
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P r o o f. We prove this by induction on m = 1. Let n be an integer which is not

divisible by p. Since the classes of by2 and n− cz2 modulo p are each of size 1
2 (p+1)

so they intersect and hence one can find y and z not both divisible by p (since n is

prime to p) such that by2+cz2 ≡ n (mod p). Suppose that we have y and z not both

multiples of p, such that by2+cz2 = n+kpm for m > 1 and some integer k. Without

loss of generality, we assume that y is not a multiple of p. Let y′ = y + k1p
m. Then

b(y′)2 + cz2 = n+ kpm + 2byk1p
m + bk21p

2m.

Since 2m > m + 1, we need to take k1 = −(2by)−1k (mod p) for the induction to

work. So we even showed that by2 + cz2 (mod pm) represents all integers that are

prime to p. If p does not divide a and n is a multiple of p then n− a is prime to p

and is therefore, represented by by2 + cz2 (mod pm). Hence, if we let x = 1 we have

n ≡ a+ by2 + cz2 (mod pm). �

Lemma 2.8. If p is an odd prime number that divides a then for any integer n

prime to p, np is represented by ax2 + by2 + cz2 (mod pm) for any m > 1, unless

(−bc
p ) = (na/pp ) = −1, where it is not represented (mod p2).

P r o o f. Note that if (−bc
p ) = 1 then by2 + cz2 ≡ np ≡ 0 (mod p) has a solu-

tion (y, z) such that not both y and z are divisible by p, so the above proof works

again. If (na/pp ) = 1, let a = pa′, then we can find z such that a′x2 ≡ n (mod p)

or ax2 ≡ np (mod p2). Suppose that ax2 = np+ kpm for some m > 2 and k. Then

since n is prime to p, x is also prime to p. Let x′ = x+ k1p
m−1, then

a(x′)2 = np+ kpm + 2a′xk1p
m + k21a

′p2m−1.

Since 2m − 1 > m + 1, it is enough to take k1 ≡ −(2a′x)−1k (mod p) for the

induction to work. So, even ax2 alone represents np modulo pm. We now show that

if (−bc
p ) = (−na/p

p ) = −1 then np is not represented modulo p2. In contrary, assume

that for integers x, y and z, we have

ax2 + by2 + cz2 ≡ np (mod p2).

If y or z is not divisible by p, then by considering the above equation modulo p, it

follows that −bc is a quadratic residue modulo p, contrary to the assumption. So y

and z are divisible by p. Simplifying the equation, it follows that

a

p
x2 ≡ n (mod p).

Therefore, na/p is a quadratic residue modulo p, again contrary to the assumption.

�
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Corollary 2.9. A number n is represented by ax2 + by2 + cz2 modulo all powers

of an odd prime number p unless p | n and p divides a (or b, or c) and (−bc
p ) =

(na/p
2

p ) = −1 (or (−ac
p ) = (nb/p

2

p ) = −1, or (−ab
p ) = (nc/p

2

p ) = −1, respectively) in

which case n is not represented modulo p2.

P r o o f. It follows directly from Lemmas 2.7 and 2.8. �

Now, we prove Theorem 1.1.

P r o o f of Theorem 1.1. Note that N is represented over the rationals by

ax2 + by2 + cz2 if and only if n is represented by the rationals. Because, it is

enough to replace x, y and z with n0x, n0y and n0z. Condition (1) is equivalent to

the representability over the real numbers. Conditions (2) and (3) are equivalent to

the representability modulo powers of 2 according to Corollary 2.6. Finally, Condi-

tion (4) is equivalent to the representability modulo powers of odd primes according

to Corollary 2.9. So by the Hasse-Minkowski theorem, our proof is complete. �

Example 2.10. For instance, consider the Ramanujan ternary form x2 +

y2 + 10z2. Since (−1
5 ) = 1 and a + b ≡ c (mod 8), i.e., 2 ≡ 10 (mod 8), the

only positive numbers up to a square factor not represented over the rational num-

bers are those ≡ −10 (mod 16). That is numbers of the form 16k + 6. If we take

the square factor into the account, the only positive integers not represented by

this form are of the form l2(16k + 6). If we write l = 2mr for some odd number r

and a nonnegative integer m then numbers of the form 4m(16k + 6)r2 are the only

positive integers not represented by this form over the rationals. But since r2 ≡ 1

or 9 (mod 16), hence (16k+6)r2 is of the form 16k′+6. Therefore, the only positive

integers not represented by this form are of the form 4m(16k′ + 6) for some inte-

ger k′. This is different from representing numbers over integers. It was mentioned

in the introduction that without assuming the generalized Riemann hypothesis, we

do not know all the odd integers not represented by this form over the integers. All

odd positive integers are represented over the rational numbers by this form. For

example 3 = (12 )
2 + (12 )

2 + 10(12 )
2, although 3 is not represented over the integers.

Next, let us prove Theorem 1.3.

P r o o f of Theorem 1.3. First, we prove that if a, b, c are positive square-

free pairwise relatively prime integers, then any positive integer congruent to −abc

(mod 8(abc)2) is not represented by ax2 + by2 + cz2 over the rationals.

If for an odd prime p that divides a (or b, or c) we have (−bc
p ) = −1 (or (−ac

p ) = −1,

or (−ab
p ) = −1, respectively) then if n ≡ −abc (mod (abc)2) we conclude that n ≡

−abc (mod p2) and hence n/p ≡ −abc/p (mod p) and so (na/p
2

p ) = ( (a/p)
2bc

p ) =

(−bc
p ) = −1 (or (nb/p

2

p ) = (−ac
p ) = −1, or (nc/p

2

p ) = (−ab
p ) = −1, respectively). By
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part (4) of Theorem 1.1, n is not representable over the rationals. If such a prime

factor does not exist then according to Lemma 2.1, we are either in part (2) or

part (3) of Theorem 1.1. In part (2), any n ≡ −abc (mod 8) is not representable and

in part (3) any n ≡ −abc (mod 16) is not representable over the rationals.

According to the formula (1.1) we have

R(a, b, c) = dd1d2d3R(d1a3, d2b3, d3c3).

Since d1a3, d2b3 and d3c3 are positive square-free relatively prime integers, hence,

any positive integer congruent to

−d1d2d3a3b3c3 (mod 8(d1d2d3a3b3c3)
2)

is not in R(d1a3, d2b3, d3c3). Therefore, any positive number congruent to

−dd21d
2
2d

2
3a3b3c3 (mod 8d(d1d2d3)

3(a3b3c3)
2)

is not in R(a, b, c). Since S = da3b3c3 so any positive integer congruent to

−(d1d2d3)
2S (mod 8(d1d2d3)

3S2)

is not in R(a, b, c). We can divide by a square, here (d1d2d3)
2, without changing

the representability over the rationals. Hence, any positive integer congruent to −S

(mod 8d1d2d3S
2) is not in R(a, b, c). This proves the first statement of Theorem 1.3.

If a, b and c are positive integers, then d1d2d3S divides abc. Therefore, any

positive integer congruent to −S (mod 8abcS) is not in R(a, b, c). Notice that R

is an integer, so any number congruent to −R2S (mod 8abcR2S) or equivalently

congruent to −abc (mod 8(abc)2) is not in R(a, b, c). �

We finish this section by proving Theorem 1.5.

P r o o f of Theorem 1.5. Suppose that the congruence ax2 + by2 + cz2 ≡ −abc

(mod 8(abc)2) is solvable. Then by Theorem 1.3, a, b and c are not of the same signs.

If for a prime p | c, we have (−ab
p ) = −1 then according to part (4) of Theorem 1.1,

−abc is not represented by ax2 + by2 + cz2 (mod p2), because ( (−abc/p)(c/p)
p ) =

(−ab
p ) = −1. This implies that for any prime p | c, we have (−ab

p ) = 1. By the

Chinese remainder theorem, this implies that −ab is a quadratic residue modulo c.

Similarly −bc and −ac are quadratic residues modulo a and b, respectively. Now, we

use a well-known theorem proved by Legendre in 1785 (see [13], pages 509–513) that

states that if a, b and c are pairwise relatively prime integers not of the same sign,

such that −bc, −ac and −ab are quadratic residues modulo a, b and c, respectively,

then the equation

ax2
0 + by20 + cz20 = 0
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has solution in integers, where not all the three numbers x0, y0 and z0 are zero.

We may assume that the greatest common divisor of x0, y0, z0 is one. This implies

that these numbers are pairwise relatively prime, since we have assumed that the

coefficients a, b and c are square free and if a prime factor divides x0 and y0 (for

example) then it must divide z0 as well. From this fact, it follows that the greatest

common divisor of ax0, by0 and cz0 is one. Therefore, there are integers x1, y1 and z1

such that

ax0x1 + by0y1 + cz0z1 = 1.

Now, it follows that

(2.5) a(kx0 + x1)
2 + b(ky0 + y1)

2 + c(kz0 + z1)
2 = 2k + (ax2

1 + by21 + cz21).

Assume that a, b and c are odd. Then one of x0, y0 or z0 is even and the other two

are odd. Without loss of generality, we assume x0 is even. Note that x2 = x1 + by0,

y2 = y1 − ax0 and z2 = z1 satisfy

ax0x2 + by0y2 + cz0z2 = 1.

Hence,

(2.6) a(kx0 + x2)
2 + b(ky0 + y2)

2 + c(kz0 + z2)
2 = 2k + (ax2

2 + by22 + cz22).

Since ax2
1 + by21 + cz21 and ax2

2 + by22 + cz22 have different parities, equations (2.5)

and (2.6) above represent all integers. Next, assume that all of a, b, and c are not

odd. Without loss of generality, we can assume that a is even and b and c are odd.

Then since y0 and z0 are coprime, they need to be odd. Hence y1 and z1 must be

of different parities and this implies that ax2
1 + by21 + cz21 is odd. So equation (2.5)

represents all odd integers. To represent all even integers, it is enough to represent

numbers of the form 4k+2, since other numbers are of the form 4mn, where n is either

odd or ≡ 2 (mod 4), which has been represented. Now choose x1, y1, z1 such that

ax0x1 + by0y1 + cz0z1 = 2

and hence

(2.7) a(kx0 + x1)
2 + b(ky0 + y1)

2 + c(kz0 + z1)
2 = 4k + (ax2

1 + by21 + cz21).

As before, we may replace (x1, y1, z1) with (x1 + by0, y1 − ax0, z1) if needed to

assume x1 is odd. Since y1 and z1 are of the same parity, if we replace (x1, y1, z1)

with (x1, y1 + cz0, z1 − by0) we may assume that y1 and z1 are even. Hence,

ax2
1 + by21 + cz21 ≡ a ≡ 2 (mod 4)

and equation (2.7) represents all numbers equivalent to 2 (mod 4). �
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Remark 2.11. Inspecting the proof given above, one sees that the ternary

quadratic form ax2 + by2 + cz2 with abc square-free represents all integers over the

integers if and only if it represents zero nontrivially. For example x2 + by2 − cz2

with b, c > 0 square-free and coprime represents all integers if and only if c is of the

form x2 + by2, where x and y are rational numbers. This implies that c must divide

x2 + by2 with x and y being nonzero relatively prime integers. If x2 + by2 is the only

binary quadratic form of the discriminant −4b up to equivalence, which by a theorem

of Landau happens only when b = 1, 2, 3, 7 (see [3], page 28) then we can conclude

that c must be of the form x2+by2 for two relatively prime nonzero integers x and y.

For example, the form x2 + 3y2 − pz2 for a prime number p represents all integers

over the integers if and only if p ≡ 1 (mod 3).
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