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Abstract. Let Hm,n be the mn?-dimensional Radford Hopf algebra over an algebraically
closed field of characteristic zero. We give the classification of all ideals of 8-dimensional
Radford Hopf algebra Hj o by generators.
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1. INTRODUCTION

The notion of Radford Hopf algebra is given by Radford in [5] in order to give an
example of Hopf algebra whose Jacobson radical is not a Hopf ideal. We recall the def-
inition of Radford Hopf algebra briefly. Let G be a cyclic group of order mn (n > 1)
generated by g. Assume that V; is a 1-dimensional vector space such that the action
of g on V; is the scalar multiplied by w’, where w is a primitive mnth root of unity.
Then {V;: i € Z,,,} forms a complete set of simple kG-modules up to isomorphism.
Let x be the k-linear character of V,,,—1). Namely, x(g) = w™(=1) = ;=™ The
order of y is n and the k-linear character of V;, is x~'. Let H,, n be generated as
an algebra by ¢ and z subject to

(1.1) g =1, zg=x(g)gz=w "gz, Z"=g" -1

We can endow H,, , with a Hopf algebra structure, where the comultiplication A,
the counit ¢, and the antipode S are given, respectively, by

(1.2) A(z)=2@9+1®z e(2)=0, S(z)=-29"",
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(1.3) Alg) =9y, elg)=1, S(g=g",

and H,, , is an mn2-dimensional pointed Hopf algebra with a k-basis {2%g7: 0 < i <
n—1,0<j < mn—1}. We call Hy, , Radford Hopf algebra for the given inte-
gers m and n. Wang et al. in [6], [7] studied the structure of the Green rings of
finite dimensional pointed Hopf algebras of rank one. In particular, they determined
the Green rings of Radford Hopf algebras by generators and relations. We showed
in [8] that Radford Hopf algebras are principal ideal rings and give the generators
of annihilator ideals of indecomposable modules. In this paper we will determine all
ideals of 8-dimensional Radford Hopf algebra Hs 2 by generators.

This paper is organized as follows. In Section 2, we recall from [6], [7] the structure
of all indecomposable modules of Radford Hopf algebra H,, . Then we refer to [8]
for all ideals and annihilator ideals of indecomposable H,, ,-modules. In Section 3,
we use the generators to classify all 14 different ideals of H> 5.

Throughout, we work over an algebraically closed field k of characteristic zero.
Unless other stated, all algebras, Hopf algebras and modules are vector spaces over k;
all modules are finite dimensional; all maps are k-linear; ® means ®;. We assume
that the reader is familiar with the basics of Hopf algebras and representation theory.
References [3], [4] are suggested for the former and [1], [2] are suggested for the latter.

2. PRELIMINARIES

In this section, we recall the structure and indecomposable modules of the Radford
Hopf algebras. As described in Section 1, for any h € kG with the comultiplication
A(h) = h1 ® hg, the k-linear character x induces an automorphism o of kG such
that o(h) = > x(h1)he. Thus,

(2.1) 2"h=oF(h)F for0 <k <n—1.

Let = be a variable and V an kG-module. For any natural integer [, let 'V be
a vector space defined by rlu + v = 2! (u +v) and A(z'u) = 2! (\u) for all u,v € V
and A € k. Then 2!V has a kG-module structure defined by

(2.2) h-(z'v) = x"Y(h)z'(h -v) for h € kG, v € V.

Denote by Ag the subset of Z,,, consisting of elements divisible by m, and by A;
the complementary subset of Ag. Let 7 be the permutation of 7,,, determined
by Vi1 @ V; = Vi), where V, -1 is exactly the simple kG-module V,,, with the
character x~1'. It is clear that 7(i) = m + i for any ¢ € Z,,,. Let (1) be the
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subgroup of the symmetric group S,., generated by the permutation 7. Then the
group (7) acts on the index set Z,,,, which is divided into m distinct (7)-orbits
[0],[1],...,[m —1], where [i] = {i,m+i,2m+i,...,(n—1)m+i} for 0 < i <m—1.
Moreover, Ag = [0] and Ay = [1JU[2]U...U[m —1].

Let M(k,i)=V,®2V; ®...®z* 1V, for i € Ag and 1 < k < n. Then M(k,i) is
an H,, ,-module:

(2.3) h-(zlv) = x7H(R)at (h-v), 0<I<k-—1,
0.0 e
: z-(z'v) =
0, l=k-1

for any h € kG and v € V;.
Let P, =V, ®2V;®...® 2" 'V;, j € A1. Then P; is an H,, ,-module:

(2.5) h-(ztv) = x Yh)2l(h-v), 0<I<n—1,
o, 0<l<n—2,
(2.6) z- (zlv) =
(g™ — 1)v, l=n-1

for any h € kG and v € V;. For any two j, j' € A1, P; = Pj: as Hy, ,-modules if and
only if [j] = [j']. Let Pp;; stand for a representative of the isomorphism class [P;] of P;.

The following results will be used in the next section and we quote them here for
convenience of the reader.

Proposition 2.1 ([6], Theorem 2.5, [7], Proposition 2.4, Proposition 2.8, The-
orem 2.9). The set {M(1,i), P;j: i € Ao, j € A1} forms a complete set of finite
dimensional simple H,, ,-modules up to isomorphism. And the set {M (k,), Py;:
1€ Mo, 1 < k< n,je€ A} forms a complete set of finite dimensional indecompos-
able H,, y,-modules up to isomorphism.

Proposition 2.2 ([8], Theorem 3.4). Let I be any nonzero two-sided ideal
of Hp, . Then there exist integers 1 <t <n,n—1>ky > ks > ... >k >0 and

polynomials di(y),d2(y),...,di(y) € kly] with di(y)|d2(y)|...|d:(y)|y™" — 1 and
0 < deg(di(y)) < deg(da(y)) < ... < deg(di(y)) < mn — 1 such that

I =(z"di(g),2"da(g),...,2"di(9)) = (2" di(g) + 2 da(g) + ... + 2" di(g)).

We end this section by giving the following lemma, which is useful in the next

section.
Lemma 2.3. We have (z!(g — w’)) = (2!) for any j € Ay and 0 <1< n— 1.
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Proof. Since ged(y —w’,y™ — 1) = 1, there exist u(y),v(y) € k[y] such that

u(y)(y —w?) +v(y)(y" —1) = 1.

Hence, it follows that

u(g)(g — w’) +v(g)z" = u(g)(g — w’) +v(g)(g" —1) = 1.

Therefore (g — w?) + (2") = (1). Note that z € (g9 — w’) by [8], Lemma 3.10. Then
= (

we have (g — w’) = (1). Assume that

1= 3" f1u(9) + oo+ fas(@))(g = @) his(9) + -+ as(9)),

S

where fis(y), his(y) € kly] for 1 < k < n. Thus, we have

A= ST i) e Fus(9))(9 — ) (" has(9) - has(9))
= 3 f1s(9) + - A 0 (s (90)2(9 — W) (2" hag(9) -+ Pins(9))-

This implies 2! € (2!(g — w’)). Hence (z!(g — w’)) = (). O

3. IDEALS OF Hy s

In this section, we give explicitly the generators of all ideals of 8-dimensional
Radford Hopf algebra. The Radford Hopf algebra H; o is generated by g and z
subject to

gt=1, zg=w?¢gz=—gz and 2?=g%—1,

where w is a primitive 4th root of unity. Let I = (z*1d;(g) + ...+ 2**d;(g)) be any
nonzero ideal of Hy o, where 1 <t <2, 1> k1 > ... >k =0, di(y)]...|de(y)y* — 1
and 0 < deg(di(y)) < ... < deg(d:(y)) < 3. Note that Ag = {0,2}, A; = {1,3}. It is
clear that P, = P3 and we denote it by P[l] Since y*—1= (y—1)(y— w) (y+1)(y—|—w)
one can obtain that dy(y) is 1, y — W', y — w’, (y — W) (y — w’), v? — 1, ¥%> + 1,
(> —1)(y—w?) or (y* +1)(y —w') for i € Ay, j € A1, 1 < s < t. We shall prove the
following theorem.

Theorem 3.1. The Radford Hopf algebra Hs 2 has the following 14 ideals:

(O)a (1)a (g - 1)a (g + 1)7 (92 - 1)a (92 + 1)7
(P+Dg-1), (F*+Dg+1), (2), (2(g—1)),
(2(g+1), (2(g°+1), (2" +1)(g—1), (2(g°+1)(g+1)).
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In the sequel, we need to show that the ideals in Theorem 3.1 are all different and
each ideal of Hj 5 is one of the ideals in Theorem 3.1.

Lemma 3.2. We have z € ((g — w)(g — w?)) fori € Ag and j € A;.
Proof. Note that
2(g—w)g—w’) = (g —w)g —w)z = —2zg(w’ +w) € ((g —w')(g — w’)).

Since w® + w’ # 0 and g is invertible, we have z € ((g — w?)(g — w?)). O

Lemma 3.3. We have (z!(g — w®)(g — w’)) = (z}(g —w?)) for 0 <1 < 1,7 € A
and j € Aq.

Proof. It suffices to show that

((g—w)g—w))=(9-w") and (z(g—w')(g—w’)) = (2(g —w").

Since (g — w’) = (1) by Lemma 2.3, we may assume that

1= (2f15(9) + f2s(9)) (9 — &) (2h1s(9) + has(9)),

s

where fis(y), his(y) € k[y] for 1 < k < 2. Therefore,
g—w' = (9—w)(zfs(g) + f2s(9)) (g — @) (zh15(g) + has(9))

=20+ Y (9—w")fas(9)(g — w’)has(g)
for some v € Ha 2. Noting that 2 € ((¢9 — w')(g — w’)) by Lemma 3.2, we have
g—w' € ((g—w)lg—u’)).
Hence ((g9 — w*)(g — w’)) = (g — w?). For the second equation, we may assume that

g—w' = (#p1:(9) + p2s(9))(g — ) (g — &) (zr1s(9) + r2e(9)):

S

where prs(y), rs(y) € kly] for 1 < k < 2. Hence,

2(g—w') =2 (2p1s(9) + P2s(9)) (9 — ') (g — W) (2r15(9) + r24(9))
=Y (20(p1s(9)) + 0(f25(9)))2(9 — w) (g — ?)(2715(9) + 725(9))-

Thus, we obtain z(g — w') € (2(g9 — w')(g — w’)). Therefore

(2(g — ")) = (2(g — ") (g — ).

We finish the proof. O
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Lemma 3.4. If (zui(g)) = (u2(g)), where ui(y) € kly], 0 < deg(ux(y)) < 3,
ue(y)ly* — 1, for 1 <k <2, then (2u1(g)) = (u2(g)) = (2(9> — 1)) = (¢° — 1).

Proof. Itisclear that (2(g>—1)) C (¢92—1). Noting that g?—1 = 12¢%-2(g>—1),
we have (z(g? — 1)) = (g2 — 1). If (zu1(g)) = (u2(g)), then we may assume

uz(9) = Y _(2f15(9) + fas(9))2u1(g) (zh1s(g) + has(9)),

S

where fis(y), hes(y) € kly] for 1 < k < 2. Noticing that {z%°: 0 < a < 1,
0 < b < 3} is a k-basis of Hy 2, we have

(9> = 1) ZU (f15(9))ur(9)h2s(9) + fos(9)o ™" (u1(9))h1s(9)-

Since the right-hand side annihilates the simple Hs o-module M(1,0) and M (1,2),
we have ua(y) = (y* — 1)c(y), where c(y) € kly] and 0 < deg(c(y)) < 1. Since
uz(y)|y* — 1, we obtain ¢(y) = 1, y — w or y + w. Thus,

(zu1(g)) = (u2(g)) = (9> — De(g)) = (¢* — 1).
O

Lemma 3.5. For any given 0 <[ < 1, the following seven ideals are all different:

(), ('g-1), ('g+1), ('(g*-1),
(Z'(g* +1), ((P+1g-1), ("¢ +1)(g+1).

Proof. We only need to show that if
(2'(g = D7 (g* + D)7 (g + D) = (2'(g = 1) (¢° + )" (g + 1)),

where 0 < pi, 7 < 1,0 < po+p1+p2, 7o+7r1+7r2 <2, then pp =1, for 0 < k < 2.
We may assume

2g — 1) (g% + 1)P (g + 1)P?
= Z 2f15(9) + f2s(9)2' (9 = 1) (6% + 1) (g + 1) (2h15(9) + has(9)),

where fis(y), hrs(y) € kly], 1 < k < 2. Since {2%°: 0 < a <1, 0 < b < 3}is
a k-basis of Hj 2, we have

(g— 1) (g* + 1) (g + 1)”2
= ZU (f2s(9))(g = 1) (g% + 1)" (g + 1) has(9)

+Z o (fra(@)) (g — D™ (g7 + 1) (—g + 1) haslg).
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If pr < ri, then pr = 0 and r, = 1. Note that the right-hand side annihilates the
simple kG-module V}, and (g — 1)P° (g2 +1)P* (g + 1)P2 - Vi, # 0. It is a contradiction.
Hence, pr > 7 for 0 < k < 2. In a similar way we conclude r; < pg. Then py = ry.
We finish the proof. O

Lemma 3.6. We have

(Z,g2—1):(2:), (Z(g—].),g2—].):(2:(g—1)),
(2,92 +1) = (1), (2(g+1),9*—1) = (2(g+1)).

Proof. By Lemma 3.4, it is easy to see that

(2(g—1),9° = 1) = (2(g — 1),2(¢> = 1)) = (2(g — 1)),
(2(g+1),9° = 1) = (2(g+ 1),2(¢> = 1)) = (2(g + 1)),
(2,9° = 1) = (2,2(9> = 1)) = (2).

Note that 2=g¢?+1—2-z € (2,¢> + 1). It follows that (z,¢9% + 1) = (1). O
Lemma 3.7. We have

(z (@ +Dg+1)=(g+1), (z(g+1),(@+(g+1)=(9+1),
(z (@ +Dg-1)=(g—-1), (z2(g—1),(+1)(g-1)=(g—1).

Proof. Since

zo2(g+ 1) — (P + D+ D) =" -D(g+1) — (" +1)(g+1) = =2(g + 1),

we have g + 1 € (2(g +1),(9% + 1)(g + 1)). It is clear that z(g + 1) € (g + 1) and
(> +1)(g+1) € (g+1). Hence, it follows that

(2(g+1),(¢* + (g +1)) = (g +1).
It is easy to see that
(2, (¢° +1)(g + 1)) 2 (2(g + 1), (¢* + 1) (g + 1)) = (9 + 1).
Since z € (g4 1) by [8], Lemma 3.10 and (g2 + 1)(g + 1) € (g + 1), it follows that
(2, (> + D(g+1)) = (g +1).

The proof of (2(g — 1), (9> +1)(9 —1)) = (9= 1) and (2, (¢° +1)(9 — 1)) = (¢ - 1) is
similar. (I
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Lemma 3.8. We have z(g> + 1) € ((¢> + 1)(g — 1)) N ((¢®> + 1)(g + 1)).

Proof. Note that

2P+ 1)(g—1) = (¢* +1)(g — Dz =229(g° + 1) € ((¢° + 1)(g — 1)).

Since g is invertible, we have z(g%> + 1) € ((¢°> + 1)(g — 1)). In a similar way, we
conclude that 2(g? + 1) € ((9% + 1)(g + 1)). Hence, we finish the proof. O

Proof of Theorem 3.1. We divide the 14 ideals into two classes:

Class . (0), (1), (9—1), (9+1), (¢°+1),
(6> =1), ((F®+D-1), ((¢"+(g+1));
Class Il:  (2), (2(9—1)), (2(g+1)), (2(g>+1)),
(2(®+ (g —1), (2(¢*+D(g+1)).

We have proven that the ideals in each class are all different by Lemma 3.5 and
the ideals in different classes are different by Lemma 3.4. Hence, the 14 ideals are
all different. Next we will show that each ideal of Hyo must be one of the 14
ideals. Let I = (2%1di(g) + ...+ 2%*d;(g)) be any nonzero ideal of Hs o, where
1<t<2, 12k >...>k 2 0, di(y),...,di(y) € kly], di()]...|de(y)|y* — 1 and
0 <deg(di) <...< deg(dt) <3

Case 1: k1 = 0. This 1mphes that I = (di(g)). Since di(y)|y* — 1, di(y) can
be taken 1, y — w', y — w’, (y —w)(y —w’), v> — 1, ¥ + 1, (y*> — 1)(y — ) or
(y? +1)(y — w?) for i € Ag and j € A;. Then I has to be taken the following ideals:

1), (g-1), (g+1), (¢®-1), (P+1), ((F+1(g-1), (P+1)(g+1)),

which are in Class I.
Case 2: ky = 1. It follows that I = (zdi(g)) or I = (2d1(g) + d2(g)).

> When I = (zdi(g)), I is one of the ideals in Class II or

I= (g~ 1) = (4" ~ 1),

which is in Class I.

> When I = (2dy1(g) + da(g)), if da(y) =y — w' or y — w’ for i € Ay, j € A1, noting
that 2z € (g —w*) and 2z € (g — w’), then I = (g — w’) or (1), which is in Class L. If
d2(y) = (y — w%)(y — w?), then by Lemma 3.3,

I=(zdi(g), (9 —w')(g — ) = (2d1(g), g — w') = (g — ),
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which is in Class L. If do(y) = 4% — 1, then d;(y) =y — 1, y + 1 or 1. Thus,
I=(2(9-1),9° 1), (2(9+1),9°=1) or (2,9°—1).

By Lemma 3.6, I = (2(g—1)), (2(g+1)) or (2), which is in Class IL. If da(y) = y>+1,
then di(y) =y — w, y + w or 1. Therefore,

I=(2(9-w),g’+1), (2(g+w),g°+1) or (z¢°+1).

By Lemma 3.6, I = (1), which is in Class L. If da(y) = (y? — 1)(y — w’) for j € Ay,
then di(y) =1, y —w', y —w?, > — 1 or (y — w®)(y — w?). Therefore,

I=(z9"-1), (2(9—1),6°—1) or (2(g+1),9°—1).

By Lemma 3.6, I = (z), (2(g — 1)) or (2(g + 1)), which is in Class IL. If da(y) =
(2 +1)(y—1),thendi(y) =1,y -1,y —wl, y> + 1, (y — 1)(y — w?) for j € A;.
Hence,

I=(z("+1)(g—1), (2(g—1),(g> + (g — 1)) or (2(¢° +1),(¢* +1)(g — 1)).

By Lemmas 3.7 and 3.8, [ = (g — 1) or ((¢®> + 1)(g — 1)), which is in Class L. If
da(y) = (P + 1)y + 1), then di(y) =1, y + 1, y —w’, y* + L or (y + 1)(y — w’)
for j € A;. Thus,

I=(z(*+1)(g+1), (z(g+1),(g>+1)(g+1)) or (2(¢° +1),(¢* + 1) (g + 1)).

By Lemmas 3.7 and 3.8, I = (g + 1) or ((g®> + 1)(g + 1)), which is in Class L.
Hence, we finish the proof. O

Remark 3.9. By [8], Propositions 3.5, 3.6 and 3.9, it is clear that the annihilator
ideal of M (1,0) is (g —1), the one of M(1,2) is (g+1), and the one of Py is (¢ +1).
The annihilator ideal of M (2,0) is (2(g — 1)), and the one of M (2,2) is (z(g + 1)).
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