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Abstract. Let R be a local ring and C a semidualizing module of R. We investi-
gate the behavior of certain classes of generalized Cohen-Macaulay R-modules under
the Foxby equivalence between the Auslander and Bass classes with respect to C. In
particular, we show that generalized Cohen-Macaulay R-modules are invariant under
this equivalence and if M is a finitely generated R-module in the Auslander class with
respect to C such that C ⊗R M is surjective Buchsbaum, then M is also surjective
Buchsbaum.
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1. Introduction

Throughout this paper, (R,m, k) is a commutative Noetherian local ring with

nonzero identity. Let P(R) and I (R) denote the full subcategory of finitely gener-

ated R-modules of finite projective and injective dimension, respectively.

Let R be Cohen-Macaulay with a dualizing module ωR. By virtue of [12], Theo-

rem 2.9, there is an equivalence of categories

P(R)
ωR⊗R− //

I (R).
HomR(ωR,−)

oo
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Let CM(R) denote the full subcategory of Cohen-Macaulay R-modules. By [7],

Theorem 3.3 (i), the above equivalence leads to the following one

P(R) ∩ CM(R)
ωR⊗R− //

I (R) ∩ CM(R).
HomR(ωR,−)

oo

The notion of generalized Cohen-Macaulay modules is one of the most natural ex-

tensions of the notion of Cohen-Macaulay modules. Surjective Buchsbaum modules

and Buchsbaum modules are special classes of generalized Cohen-Macaulay mod-

ules. Kawasaki in [7], Theorem 3.3 (iii) showed that if an R-module M ∈ P(R)

is such that the R-module ωR ⊗R M is surjective Buchsbaum, then M itself is so.

Also, he presented an example to show that the converse does not hold, see [7],

Proposition 4.1.

Let (R,m, k) be an arbitrary local ring and C a semidualizing module of R.

Let AC(R) and BC(R) denote the Auslander and Bass classes with respect to C,

respectively. It is known that P(R) ⊆ AC(R) and I (R) ⊆ BC(R). Also, these

classes are closely related to Gorenstein homological dimensions. Namely, if R is

Cohen-Macaulay with a dualizing module ωR, then AωR
(R) or BωR

(R) is precisely

the class of all R-modules with finite Gorenstein projective or Gorenstein injective

dimension, respectively, see [4], Theorems 4.1 and 4.4. By Foxby equivalence, there

is an equivalence of categories:

AC(R)
C⊗R− //

BC(R).
HomR(C,−)

oo

In this article, we investigate the behavior of the classes of Gorenstein, maximal

Cohen-Macaulay, Cohen-Macaulay, surjective Buchsbaum, Buchsbaum and gener-

alized Cohen-Macaulay R-modules under the later equivalence. More precisely,

ifX (R) is any of these classes of modules, we examine the existence of an equivalence

AC(R) ∩ X (R)
C⊗R− //

BC(R) ∩ X (R).
HomR(C,−)

oo

To ease the reading of the paper, in Section 2, we will recall the needed defini-

tions and bring some elementary results. In Section 3, we will consider the classes

of Gorenstein, maximal Cohen-Macaulay and Cohen-Macaulay R-modules, see The-

orem 3.3. In Section 4, which is the core of this paper, we will consider the classes

of surjective Buchsbaum, Buchsbaum and generalized Cohen-Macaulay R-modules,

see Theorems 4.3, 4.7 and Corollary 4.9. Also, we provide an example of a Cohen-

Macaulay local ring R with a dualizing module ωR and a Buchsbaum R-module

M ∈ AωR
(R) such that ωR ⊗R M is not Buchsbaum, see Example 4.8.
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2. Prerequisites

We begin with recalling the definitions of weak sequences and filter regular se-

quences.

Definition 2.1. Let M be a finitely generated R-module and x = x1, . . . , xn be

a sequence of elements of m.

(i) Following [15], page 39, we say x is a weak M -sequence if

(〈x1, x2, . . . , xi−1〉M :
M
xi) ⊆ (〈x1, x2, . . . , xi−1〉M :

M
m)

for every i = 1, . . . , n.

(ii) Following [11], we say x is a filter M -regular sequence if

(〈x1, x2, . . . , xi−1〉M :
M
xi) ⊆

⋃

l∈N

(〈x1, x2, . . . , xi−1〉M :
M
m

l)

for every i = 1, . . . , n.

By the definition, it is clear that any weak M -sequence is a filter M -regular se-

quence.

The following lemma is well-known and easily verified.

Lemma 2.2. Let M be a finitely generated R-module and x = x1, . . . , xn ∈ m.

The following statements are equivalent:

(i) x is a filter M -regular sequence.

(ii) For each 1 6 i 6 r, the element xi does not belong to the union of the elements

of AssR(M/〈x1, x2, . . . , xi−1〉M) \ {m}.

(iii) x1/1, . . . , xn/1 is a weak Mp-regular sequence for every p ∈ SuppR(M) \ {m}.

In the sequel, we denote the length of an R-module M by lR(M).

Definition 2.3. Let M be a finitely generated R-module.

(i) We say that M is Gorenstein if either M = 0 or M is nonzero and idRM =

depthRM .

(ii) We say that M is maximal Cohen-Macaulay if depthRM = dimR.

(iii) We say that M is surjective Buchsbaum if the natural map

ϕi
M : ExtiR(k,M) → Hi

m(M)

is surjective for every i < dimR M .

(iv) We say that M is Buchsbaum if every system of parameters x1, . . . , xd of M

forms a weak M -sequence.

(v) We say that M is generalized Cohen-Macaulay if lR(H
i
m(M)) < ∞ for every

i < dimR M .
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Remark 2.4.

(i) Every Cohen-Macaulay R-module is surjective Buchsbaum.

(ii) The classes of modules introduced in the above definition are subsets of each

other from top to bottom, respectively.

(iii) If M is a generalized Cohen-Macaulay R-module, then every system of param-

eters of M is a filter M -regular sequence, see [13], Appendix, Remark 11 and

Theorem 14.

(iv) If R is a quotient of a Cohen-Macaulay local ring, then an R-module M is

generalized Cohen-Macaulay if and only if every system of parameters of M is

a filter M -regular sequence, see [13], Appendix, Proposition 16.

Definition 2.5. A finitely generated R-module C is called semidualizing if it

satisfies the following conditions:

(i) the homothety map χR
C : R → HomR(C,C) is an isomorphism and

(ii) ExtiR(C,C) = 0 for all i > 0.

Definition 2.6. Let C be a semidualizing module of R.

(i) The Auslander class AC(R) is the class of all R-modules M for which the

natural map γC
M : M → HomR(C,C ⊗R M) is an isomorphism and

TorRi (C,M) = 0 = ExtiR(C,C ⊗R M)

for all i > 1.

(ii) The Bass classBC(R) is the class of all R-modulesM for which the evaluation

map ξCM : C ⊗R HomR(C,M) → M is an isomorphism and

ExtiR(C,M) = 0 = TorRi (C,HomR(C,M))

for all i > 1.

3. Cohen-Macaulay modules

In Theorem 3.3, we show that Cohen-Macaulay R-modules are invariant under

Foxby equivalence. To prove it, we need the following two lemmas.

Lemma 3.1. Let C be a semidualizing module of R and M a finitely generated

R-module. Then:

(i) SuppRC = SpecR.

(ii) SuppR(C ⊗R M) = SuppRM = SuppR(HomR(C,M)). In particular,

dimR(C ⊗R M) = dimR M = dimR(HomR(C,M)).

(iii) C ⊗R M 6= 0 if and only if M 6= 0 if and only if HomR(C,M) 6= 0.
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P r o o f. (i) It is well-known and obvious, because

SpecR = SuppR(HomR(C,C)) ⊆ SuppRC ⊆ SpecR.

(ii) By (i), one has

SuppR(C ⊗R M) = SuppRM ∩ SuppRC = SuppRM.

On the other hand, [1], page 267, Proposition 10 implies that

AssR(HomR(C,M)) = SuppRC ∩ AssRM = AssRM,

and so SuppRM = SuppR(HomR(C,M)).

(iii) is clear by (ii). �

Lemma 3.2. Let C be a semidualizing module of R and x = x1, . . . , xn ∈ m.

Assume that M ∈ AC(R) and N ∈ BC(R) are two finitely generated R-modules.

Then:

(i) AssRM = AssR(C ⊗R M) and AnnRM = AnnR(C ⊗R M).

(ii) x is a (weak) M -regular sequence if and only if it is a (weak) C ⊗R M -regular

sequence. In particular, depthRM = depthR(C ⊗R M).

(iii) AssRN = AssR(HomR(C,N)) and AnnRN = AnnR(HomR(C,N)).

(iv) x is a (weak)N -regular sequence if and only if it is a (weak)HomR(C,N)-regular

sequence. In particular, depthRN = depthR(HomR(C,N)).

P r o o f. (i) By [1], page 267, Proposition 10, one has

AssRM = AssR(HomR(C,C ⊗RM)) = SuppRC ∩AssR(C⊗RM) = AssR(C⊗RM).

By considering the R-isomorphism M ∼= HomR(C,C ⊗R M), one can easily deduce

that AnnRM = AnnR(C ⊗R M).

(ii) By Lemma 3.1 (iii), it follows that M/xM 6= 0 if and only if

(C ⊗R M)/x(C ⊗R M) 6= 0.

So, it is enough to show that x is a weak M -regular sequence if and only if it is

a weak C ⊗R M -regular sequence. We prove this by induction on n. The case n = 1

follows by (i). Note that for a finitely generated R-module L, the union of members

of AssRL is the set of all elements of R which are zero-divisor on L.
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Next, assume that n > 1 and the claim holds for n−1. By the case n = 1, without

loss of generality, we can and do assume that x1 is regular on both M and C ⊗R M .

Set M := M/x1M . Applying [10], Proposition 3.1.7 (a) on the exact sequence

0 → M
x1−→ M → M → 0

yields that M ∈ AC(R). By induction hypothesis, x2, . . . , xn is a weak M -regular

sequence if and only if x2, . . . , xn is a weak C ⊗R M -regular sequence. Since

C ⊗R M ∼= (C ⊗R M)/x1(C ⊗R M),

the proof is complete.

As N ∈ BC(R), one has N ∼= C ⊗R HomR(C,N) and HomR(C,N) ∈ AC(R).

Thus, (iii) and (iv) are immediate by (i) and (ii), respectively. �

Part (i) of the next result extends [7], Theorem 3.3 (i).

Theorem 3.3. Let C be a semidualizing module of R andM a finitely generated

R-module in AC(R). Then:

(i) M is Cohen-Macaulay if and only if C ⊗R M is Cohen-Macaulay.

(ii) M is maximal Cohen-Macaulay if and only if C ⊗R M is maximal Cohen-

Macaulay.

(iii) If M is Gorenstein, then C ⊗R M is also Gorenstein.

P r o o f. (i) By Lemma 3.1 (ii) and Lemma 3.2 (ii), one has dimR M =

dimR(C ⊗R M) and depthRM = depthR(C ⊗R M). So (i) is immediate.

(ii) It is immediate, because by Lemma 3.2 (ii) we have

depthRM = depthR(C ⊗R M).

(iii) Assume thatM is Gorenstein and set N := C⊗RM . IfM = 0, then the claim

is obvious. So we assume that M 6= 0. Then N 6= 0 and N ∈ BC(R). As N 6= 0,

depthRN < ∞. Now, as ExtiR(C,N) = 0 for all i > 1 and HomR(C,N) ∼= M has

finite injective dimension, [3], Theorem 8.1 yields that C ∼= R. Thus, C ⊗R M ∼= M ,

and so C ⊗R M is Gorenstein. �

The following example indicates that the converse of Theorem 3.3 (iii) does

not hold.

Example 3.4. Let (R,m, k) be a Cohen-Macaulay local ring which is not Goren-

stein with a dualizing module ωR. Then ωR ⊗R R is Gorenstein, but R is not

Gorenstein.
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4. Generalized Cohen-Macaulay modules

In this section, we first prove that generalized Cohen-Macaulay R-modules are

invariant under Foxby equivalence. To this end, we need the following two lemmas.

Lemma 4.1. Let C be a semidualizing module of R, M an n-dimensional finitely

generated R-module and x = x1, . . . , xn ∈ m. Then x is a system of parameters ofM

if and only if it is a system of parameters of C ⊗R M .

P r o o f. First note that by Lemma 3.1 (ii), we have dimR(C ⊗R M) = dimR M .

Applying Lemma 3.1 (ii) again yields that

dimR((C ⊗R M)/〈x1, x2, . . . , xn〉(C ⊗R M)) = dimR(C ⊗R (M/〈x1, x2, . . . , xn〉M))

= dimR(M/〈x1, x2, . . . , xn〉M).

This completes the argument, because for an n-dimensional finitely generated

R-module N , it is known that x is a system of parameters of N if and only if

dimR(N/〈x〉N) = 0. �

Lemma 4.2. Let C be a semidualizing module of R. LetM be a finitely generated

R-module in AC(R) and x = x1, . . . , xn ∈ m. Then x is a filter M -regular sequence

if and only if x is a filter C ⊗R M -regular sequence.

P r o o f. Let p ∈ SpecR. Then by [10], Propositions 2.2.3 and 3.5.3, respec-

tively, Cp is a semidualizing module of the local ring Rp and Mp ∈ ACp
(Rp).

Thus, Lemma 3.2 (ii) yields that x1/1, . . . , xn/1 is a weak Mp-regular sequence if

and only if x1/1, . . . , xn/1 is a weak Cp ⊗Rp
Mp-regular sequence. Now, Lemma 2.2

completes the proof. Note that Cp ⊗Rp
Mp

∼= (C ⊗R M)
p
and by Lemma 3.1 (ii),

SuppRM = SuppR(C ⊗R M). �

The next result generalizes [7], Theorem 3.3 (ii).

Theorem 4.3. Let C be a semidualizing module of R andM a finitely generated

R-module in AC(R). Then M is generalized Cohen-Macaulay if and only if C⊗R M

is generalized Cohen-Macaulay.

P r o o f. By [10], Propositions 2.2.1 and 3.4.7, Ĉ is a semidualizing module of R̂

and M̂ ∈ A
Ĉ
(R̂). On the other hand, it is routine to check that a finitely generated

R-module N is generalized Cohen-Macaulay if and only if the R̂-module N̂ is so.

Also, there is a natural R̂-isomorphism Ĉ ⊗
R̂
M̂ ∼= ̂C ⊗R M . Thus, we may and do

assume that R is complete. Now, the assertion follows by Lemmas 4.1 and 4.2 and

Remark 2.4 (iv). Note that by the Cohen Structure Theorem, every complete local

ring is a homomorphic image of a regular local ring. �
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Let a be an ideal of R and M and N two R-modules. The ith generalized lo-

cal cohomology module of M and N with respect to a is defined by Hi
a(M,N) :=

lim−→
n

ExtiR(M/anM,N), see [6].

Lemma 4.4. Let a be an ideal of R and C a semidualizing module of R. Then

for every R-module N in BC(R), there is a natural R-isomorphism Hi
a(C,N) ∼=

Hi
a(HomR(C,N)) for all i > 0.

P r o o f. For every finitely generatedR-module L and every injective R-module E,

we claim that Hi
a(HomR(L,E)) = 0 for all i > 1. To this end, let F◦ be a free

resolution of L consisting of finitely generated free R-modules. As the R-module E

is injective, it follows that HomR(F◦, E) is an injective resolution of the R-module

HomR(L,E). Since Γa(E) is an injectiveR-module, for each natural integer i, one has

Hi
a(HomR(L,E)) = Hi(Γa(HomR(F◦, E))) = Hi(HomR(F◦,Γa(E))) = 0.

Let I◦ be an injective resolution of N . Since N and all modules in the complex I◦

belong to BC(R), it follows that the functor HomR(C,−) leaves the exact sequence

0 → N → I0 → . . . → Ij → . . .

exact. Hence, HomR(C, I
◦) is a Γa-acyclic resolution of the R-module HomR(C,N).

This implies the first isomorphism in the following display:

Hi
a(HomR(C,N)) ∼= Hi(Γa(HomR(C, I

◦)))

∼= Hi(lim
−→
n

HomR(R/an,HomR(C, I
◦)))

∼= lim−→
n

Hi(HomR(R/an,HomR(C, I
◦)))

∼= lim−→
n

Hi(HomR(C/anC, I◦))

∼= lim−→
n

ExtiR(C/anC,N) = Hi
a(C,N).

�

Corollary 4.5. Let C be a semidualizing module of R andM a finitely generated

R-module in AC(R). Then there is a spectral sequence

Extpm(C,H
q
m(C ⊗R M)) ⇒

p
Hp+q

m (M).
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P r o o f. Let L and N be two finitely generated R-modules. Consider the covari-

ant functors G(−) := Γm(−) and F (−) := HomR(L,−) on the category of R-modules

and R-homomorphisms. Then for every injective R-module I, the R-module G(I)

is injective and Hi
m(L,N) ∼= Ri(FG)(N) for all i ∈ N0. Hence, applying [9], Theo-

rem 10.47 on the functors G(−) and F (−) yields a spectral sequence

ExtpR(L,H
q
m(N)) ⇒

p
Hp+q

m (L,N).

Letting L := C and N := C ⊗R M , by Lemma 4.4, one deduces that

Hp+q
m (C,C ⊗R M) ∼= Hp+q

m (HomR(C,C ⊗R M)) ∼= Hp+q
m (M).

�

Recall that for each nonnegative integer n, the nth Betti (or Bass) number

of an R-module M is defined as βR
n (M) := Vdimk(Tor

n
R(k,M)) (or µn

R(M) :=

Vdimk(Ext
n
R(k,M))). If there is no ambiguity about the underlying ring, we then

show these invariants with βn(M) and µn(M), respectively.

Lemma 4.6. Let M be a generalized Cohen-Macaulay R-module with d :=

dimR M > 0. Then we have

µn(M) 6

n∑

j=0

βj(k)lR(H
n−j
m (M))

for all n 6 d. Furthermore, the following statements are equivalent:

(i) M is a surjective Buchsbaum R-module.

(ii) The equality in the above holds for all n < d.

P r o o f. See [7], Lemma 2.2, [8], Corollary 1.14 and [16], Theorem 1.2. �

The next result is a far reach generalization of [7], Theorem 3.3 (iii).

Theorem 4.7. Let C be a semidualizing module of R andM a finitely generated

R-module in AC(R). Assume that C ⊗R M is surjective Buchsbaum. Then M is

also surjective Buchsbaum.

P r o o f. Remark 2.4 (ii) and Theorem 4.3 imply that M is generalized Cohen-

Macaulay. Clearly, we may assume that d := dimR M > 0. So by Lemma 4.6, we have

(∗) µn(M) 6

n∑

j=0

βj(k)lR(H
n−j
m (M))

and

(∗∗) µn(C ⊗R M) =

n∑

j=0

βj(k)lR(H
n−j
m (C ⊗R M))
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for all n < d. Note that by Lemma 3.1 (ii), dimR M = dimR(C⊗RM). Let 0 6 n < d

be an integer. Consider the spectral sequence

ExtpR(C,H
q
m(C ⊗R M)) ⇒

p
Hp+q

m (M),

see Corollary 4.5. There is a filtration

0 = H−1 ⊆ H0 ⊆ . . . ⊆ Hn−1 ⊆ Hn = Hn
m(M)

such that Hp /Hp−1 ∼= Ep,n−p
∞ for all p = 0, . . . , n. Hence,

lR(H
n
m(M)) =

n∑

p=0

lR(E
p,n−p
∞ ) 6

n∑

p=0

lR(E
p,n−p
2 ).

Note that Ep,n−p
∞ is a subquotient of Ep,n−p

2 for all p = 0, . . . , n. Let F◦ be a minimal

free resolution of C. Then Ep,n−p
2 = ExtpR(C,H

n−p
m (C ⊗R M)) is a subquotient of

HomR(Fp,H
n−p
m (C ⊗R M)), and so

(†) lR(H
n
m(M)) 6

n∑

p=0

βp(C)lR(H
n−p
m (C ⊗R M)).

As M ∼= HomR(C,C ⊗R M) and ExtiR(C,C ⊗R M) = 0 for all i > 1, we get

M ≃ RHomR(C,C ⊗R M), and so [5], Chapter 13, Result 19 yields that

µn(M) =

n∑

p=0

βp(C)µn−p(C ⊗R M).

Thus,

µn(M)
(∗∗)
=

n∑

p=0

βp(C)

(n−p∑

j=0

βj(k)lR(H
n−p−j
m (C ⊗R M))

)

=

n∑

j=0

βj(k)

(n−j∑

p=0

βp(C)lR(H
n−j−p
m (C ⊗R M))

)

(†)
>

n∑

j=0

βj(k)lR(H
n−j
m (M))

(∗)

> µn(M).

So,

µn(M) =

n∑

j=0

βj(k)lR(H
n−j
m (M))

for all n < d. Therefore, M is surjective Buchsbaum by Lemma 4.6. �

Next, we provide an example of a Cohen-Macaulay local ring R with a dualizing

module ωR and a Buchsbaum R-module M of finite projective dimension such that

the R-module ωR ⊗R M is not Buchsbaum.
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Example 4.8. Let (T, n, k) be a 4-dimensional regular local ring with k in-

finite. Let a ⊂ n2 be an ideal of T with 3 generators such that R := T/a

is a 2-dimensional Cohen-Macaulay local ring which is not Gorenstein. (For

an explicit realization, let k be an infinite field, T := k[[X,Y, Z,W ]] and R :=

k[[X,Y, Z,W ]]/〈X4 − Y 3, X5 − Z3, Y 5 − Z4〉.)

The Auslander-Buchsbaum formula yields that pdTR = 2. Let µ(a) denote the

minimum number of generators of a. Then

2 = dimT − dimR = hta 6 µ(a) 6 3.

We claim that µ(a) = 3. On the contrary, suppose that a can be generated by two

elements z1 and z2. Then by [2], Corollary 1.6.19, z1, z2 is a T -regular sequence, and

so R is Gorenstein. From this contradiction we conclude that µ(a) = 3.

As µ(a) = 3, the minimal free resolution of the T -module R has the form

0 → T n → T 3 → T → 0.

We show that n = 2. To this end, let K denote the quotient field of the domain T .

As a 6= 0, we immediately see that K ⊗T a ∼= K. Hence, by applying the exact

functor K ⊗T − to the exact sequence

0 → T n → T 3 → a → 0,

it turns out that n = 2.

Let ωR denote the dualizing module ofR. Then by [2], Corollary 3.3.9, the minimal

free resolution of the T -module ωR has the form

0 → T → T 3 → T 2 → 0.

Applying the right exact functor R⊗T − to the exact sequence T 3 → T 2 → ωR → 0

implies the exact sequence R3 → R2 → ωR → 0. Thus, R3 → R2 → 0 is the

beginning of the minimal free resolution of the R-module ωR, and so βR
0 (ωR) =

βT
0 (ωR) = 2 and βR

1 (ωR) = βT
1 (ωR) = 3.

By [7], Proposition 4.1 and its proof, there exists a 2-dimensional surjective Buchs-

baum R-module M of finite projective dimension such that the R-module ωR ⊗R M

is not surjective Buchsbaum and

(4.1) lT (H
i
n(ωR ⊗R M)) =

{
βT
1 (R), i = 1,

βT
0 (R), i = 0,

and

(4.2) lT (H
i
n(M)) =

{
βT
1 (ωR), i = 1,

βT
0 (ωR), i = 0.
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We claim that the R-module ωR ⊗R M is not even Buchsbaum. Suppose the con-

trary holds. Then by [13], Chapter I, Lemma 1.6, M and ωR ⊗R M are also Buchs-

baum as T -modules. As T is regular, [13], Chapter I, Corollary 2.16 yields that M

and ωR ⊗R M are surjective Buchsbaum T -modules. In particular, by Lemma 4.6,

one has the following equalities:

(4.3) µ1
T (ωR ⊗R M) = βT

0 (k)lT (H
1
n(ωR ⊗R M)) + βT

1 (k)lT (H
0
n(ωR ⊗R M))

= βT
0 (k)β

T
1 (R) + βT

1 (k)β
T
0 (R) = 3 + βT

1 (k)

and

(4.4) µ1
T (M) = βT

0 (k)lT (H
1
n(M)) + βT

1 (k)lT (H
0
n(M))

= βT
0 (k)β

T
1 (ωR) + βT

1 (k)β
T
0 (ωR) = 3 + 2βT

1 (k).

Since pdRM is finite, it follows thatM ∈ AωR
(R). In particular, TorRi (ωR,M) = 0

for all i > 0, and so one has the quism ωR⊗RM ≃ ωR⊗L
RM . By [2], Exercise 3.3.26,

we have µ1
T (ωR ⊗R M) = βT

3 (ωR ⊗R M) and µ1
T (M) = βT

3 (M). So,

(4.5) µ1
T (ωR ⊗R M) = Vdimk(H3((ωR ⊗R M)⊗L

T k))

= Vdimk(H3((ωR ⊗L
R M)⊗L

T k))

= Vdimk(H3(ωR ⊗L
R (M ⊗L

T k)))

=
∑

i+j=3

Vdimk(Hi(ωR ⊗L
R k))×Vdimk(Hj(M ⊗L

T k))

> Vdimk(H0(ωR ⊗L
R k))×Vdimk(H3(M ⊗L

T k))

= βR
0 (ωR)β

T
3 (M) = 2µ1

T (M).

The fourth equality holds by [5], Chapter 10, Result 7. Now, (4.3), (4.4) and (4.5)

yield the desired contradiction. Hence, the R-module ωR ⊗R M is not Buchsbaum.

Corollary 4.9. Let C be a semidualizing module of R andM a finitely generated

R-module in BC(R).

(i) M is generalized Cohen-Macaulay if and only if HomR(C,M) is generalized

Cohen-Macaulay.

(ii) If M is surjective Buchsbaum, then HomR(C,M) is also surjective Buchsbaum.

(iii) M is Cohen-Macaulay if and only if HomR(C,M) is Cohen-Macaulay.

(iv) M is maximal Cohen-Macaulay if and only if HomR(C,M) is maximal Cohen-

Macaulay.

(v) If the R-module HomR(C,M) is Gorenstein, then M is also Gorenstein.

P r o o f. In view of the natural isomorphismM ∼= C⊗RHomR(C,M) and the fact

that HomR(C,M) ∈ AC(R), these claims follow immediately by Theorems 3.3, 4.3

and 4.7. �
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Let C be a semidualizing module of R and n be a nonnegative integer. LetPC(R)

and IC(R) denote, respectively, the classes of C-projective and C-injective finitely

generated R-modules. Set P̂C(R)6n, P̂(R)6n, ÎC(R)6n and Î (R)6n to be the

classes of finitely generated R-modules of C-projective, projective, C-injective and

injective dimension of at most n, respectively. Then by [14], Theorem 2.12, there are

the following Foxby equivalences of categories:

P(R)
� _

��

C⊗R− //
PC(R)

� _

��
HomR(C,−)

oo

P̂(R)6n� _

��

C⊗R− //
P̂C(R)6n� _

��
HomR(C,−)

oo

AC(R)
C⊗R− //

BC(R)
HomR(C,−)

oo

ÎC(R)6n

?�

OO

C⊗R− //
Î (R)6n.

HomR(C,−)
oo

?�

OO

IC(R)
?�

OO

C⊗R− //
I (R).

HomR(C,−)
oo

?�

OO

In view of Theorems 3.3, 4.3 and 4.7 and Corollary 4.9, we deduce the following

corollary.

Corollary 4.10. Let C be a semidualizing module of R and n a nonnegative inte-

ger. Let (Y (R),Z (R)) be any of the pairs (P(R),PC(R)), (P̂(R)6n, P̂C(R)6n),

(AC(R),BC(R)), (ÎC(R)6n, Î (R)6n); or (IC(R),I (R)). Then there is the fol-

lowing display of equivalences and functors:

Y (R) ∩ G(R)
� _

��

C⊗R− //
Z (R) ∩ G(R)

� _

��
Y (R) ∩MCM(R)

� _

��

C⊗R− //
Z (R) ∩MCM(R)

� _

��
HomR(C,−)

oo

Y (R) ∩ CM(R)
� _

��

C⊗R− //
Z (R) ∩ CM(R)

� _

��
HomR(C,−)

oo

Y (R) ∩ SB(R)
� _

��

Z (R) ∩ SB(R)
� _

��
HomR(C,−)

oo

Y (R) ∩ GCM(R)
C⊗R− //

Z (R) ∩ GCM(R).
HomR(C,−)

oo

Here, G(R) andMCM(R) denote the classes of Gorenstein and maximal Cohen-

Macaulay R-modules, respectively, and SB and GCM stand for the full subcategory

of surjective Buchsbaum and generalized Cohen-Macaulay R-modules, respectively.
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We end the paper by proposing the following natural question.

Question 4.11. Let C be a semidualizing module of R andM a finitely generated

R-module in AC(R) such that C ⊗R M is Buchsbaum. Then, is M Buchsbaum?
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