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Abstract. We develop and test a relatively simple enhancement of the classical model
reduction method applied to a class of chemical networks with mass conservation properties.
Both the methods, being (i) the standard quasi-steady-state approximation method, and
(ii) the novel so-called delayed quasi-steady-state approximation method, firstly proposed
by Vejchodský (2014), are extensively presented. Both theoretical and numerical issues
related to the setting of delays are discussed. Namely, for one slightly modified variant of
an enzyme-substrate reaction network (Michaelis-Menten kinetics), the comparison of the
full non-reduced system behavior with respective variants of reduced model is presented
and the results discussed. Finally, some future prospects related to further applications of
the delayed quasi-steady-state approximation method are proposed.

Keywords: reaction network; model reduction; singular perturbation; quasi-steady-state
approximation; D-QSSA method; optimization
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1. Introduction

When dealing with many reaction systems, some reactions can be classified as fast,

some are in between, and some are slow. The existence of slow-fast phenomena in the

network represents difficulties for numerical simulation of all species in the network,

however, on the other hand, it provides opportunities to reduce the system order, e.g.,

through singular perturbation methods [8], [9], [20]. Singular perturbation method
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for a controlled system is studied, e.g., in [15]. Hence, due to the timescales separation

of respective slow and fast reactions, the simplification of the ODE system by certain

order reduction is possible. One of the most famous examples of such reduction is

Briggs and Haldane’s application of the quasi-steady-state (QSS) assumption for the

simplification of an enzyme-substrate reaction network leading to Michaelis-Menten

(MM) kinetics, see [3], [17], [18] and references therein. Based on different QSS

assumptions, different QSS approximation (QSSA1) methods have been proposed,

e.g., the standard, reverse, and total QSSA in [5] and zero-derivative principle in [7].

As follows, in Section 2, instead of providing a detailed theoretical description of

QSSA methods and their variants, we introduce only two of them: (i) the standard

QSSA and (ii) the relatively novel and unexplored delayed QSSA (D-QSSA) recently

formulated by Vejchodský [21] for a class of chemical networks. While the time-

dependent delay was introduced in [21], here we are looking for a constant delay τ ,

in some sense optimal. Another study dealing with an observer design for linear

systems with time dependent (even discontinuous) delays is presented in [14].

Afterward, in Section 3, an illustrative example (an extension of the classical

enzyme-catalyzed reaction) is employed to reveal both the problem complexity and

the comprehensive account of the numerical issues related to the novel D-QSSA

technique. Mainly, we present and discuss the results of our numerical experiments,

especially those related to the choice of an optimal delay. Finally, in Section 4 we

resume our efforts and trace the directions for subsequent investigations. Let us

underline that the model reduction methods applied to a class of chemical networks

represent a relatively fresh field of study, being therefore worth analyzing.2

2. Two model reduction methods: standard QSSA and novel D-QSSA

This section introduces the notations used throughout this study, mainly based

on a framework for describing the fast/slow ordinary differential equation (ODE)

systems and singular perturbation methods (SPM). Moreover, we keep in mind that

one of our aims is to present and promote the relatively novel extension of the

QSSA method, i.e., the delayed QSSA (D-QSSA) method introduced by Vejchodský

et al. [21], [22] for a class of mass-action models with a wide timescale separation.

1 The nomenclature for the QSSA abbreviation is not unequivocal. In order to follow the
mainstream paved, e.g., by [6], [16] we stick on the term approximation within QSSA
abbreviation, contrarily to [21], [22].

2 The authors actually develop one pilot study (concerning a dosing regime optimization
for another chemical reaction system) aiming to compare both the precision and the
computational cost of respective models solutions. An optimization procedure is expected
to run faster on the reduced model than on the full model, while the precision issue is
still uncertain.
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Thus, we introduce an initial value problem for a system of ODEs that describes

the time course of state variables (species concentrations) within a chemical reaction

network with the mass conservation property.

First, let us consider the system of differential equations describing the process

under study, which is usually written in the form

(2.1) ẋ(t) = Ax(t) + b(x(t))

for t ∈ [0, T ] with T > 0, where x(t) ∈ R
n, a constant matrix A ∈ R

n×n represents a

linear part of the system, and b(x(t)) ∈ R
n represents non-linear and constant parts

of the system. The above system (2.1) is throughout this paper associated with a set

of initial conditions, such that x(0) = x0. Suppose the existence of the fast and slow

variables xF ∈ R
nF and xS ∈ R

nS and let x(t) = (x⊤

F (t), x
⊤

S (t) )
⊤ be the partitioning

of x(t), where nF + nS = n. Then for a general fast/slow ODE system it holds

(2.2) εẋF = fF (xS , xF ; ε),

ẋS = fS(xS , xF ; ε),

when 0 < ε ≪ 1 and suitable initial conditions are set. Then, the ODE system (2.2)

can be approximated by a simpler algebro-differential system (the associated slow

subsystem), see, e.g., [8], [9],

(2.3) 0 = fF (xS , xF ; 0),

ẋS = fS(xS , xF ; 0).

The equations (2.3) are called singularly perturbed in the singular perturba-

tion theory, whereas, in the chemical literature, such a model reduction is called

a (standard) quasi-steady-state approximation, when the underlying assumption

(0 < ε ≪ 1) assuring small approximation error, i.e., the validity of the standard

QSSA, is often referred to as the reactant-stationary assumption [5]. Several mathe-

matical studies were dedicated to quantifying the accuracy of different QSSA meth-

ods applied to enzyme kinetics [5], [17], [18]. Common to these efforts is the identi-

fication of a presumably small parameter ε, see (2.2), which quantifies the timescale

separation. This explicit identification of a suitable ε for every system and oper-

ating condition requires non-trivial mathematical operations. Consequently, when

one tries to omit such analysis, the non-justified use of the QSSA method frequently

occurs, which in fact represents the QSSA method’s abuse [6].

Here, for a class of chemical networks with the mass conservation property, we

present how the so-called D-QSSA method [21], [22] can be successfully used without

the necessity to identify an ‘ε-based’ condition for its validity. Another parameter of

the D-QSSA method is a delay, which should be vigorously treated, e.g., determined

through an optimization procedure.
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Before stating definitions of QSS and D-QSS approximations, we will make the

following assumption.

Assumption 2.1. Assuming a timescale separation for the rates of species evo-

lution in a chemical network (2.1), let the state vector x(t) be partitioned into the

fast and slow parts, i.e., x(t) = (x⊤

F (t), x
⊤

S (t) )
⊤
, where xF (t) is a vector composed

of nF fast variables and xS(t) is a vector composed from nS slow variables. Let the

non-reduced ODE system (2.1) be rewritten in the form

(2.4) ẋF (t) = f(xS(t))− g(t)xF (t),

ẋS(t) = h(xF (t), xS(t)),

t ∈ [0, T ], with the initial conditions xF (0) = xF 0 and xS(0) = xS0. Let f ∈ C1(R),

g ∈ C1([0, T ]), h ∈ C1(R,R) be continuously differentiable functions (h in both

variables) and let g(t) be positive for t ∈ [0, T ].

2.1. Quasi-steady-state approximation for a class of mass-action models.

In this subsection, we define a QSS approximation of the general system (2.1).

Definition 2.1. Let Assumption 2.1 be satisfied. Then the quasi-steady-state

approximation of the fast variable xF (t) is defined as

(2.5) xqss
F (t) =

f(xS(t))

g(t)

and the reduced ODE system for the slow variable xS(t) is defined via the standard

QSSA as

(2.6) ẋS(t) = h(xqss

F (t), xS(t)).

2.2. Delayed quasi-steady-state approximation (D-QSSA). The standard

QSSA method for model reduction is valid only when the timescale of fast species

is significantly shorter than the timescale of the other (presumably) slow species.

Analyzing the error of the standard QSSA method, Vejchodský et al. [22] noted that

in the original system, the fast variables always need a certain amount of time to

reach their quasi-steady-states, i.e., to get a slow invariant manifold. Therefore, if

the quasi-steady-state changes (due to the change in the slow variables), the cor-

responding fast variable should reach the new value of the quasi-steady-state with

a certain time delay, while, if the original system is reduced by the QSSA, the fast

variables stay in their quasi-steady-states and the time delay is neglected. Thus,

Vejchodský et al. propose to solve the discrepancy between the original and reduced

systems by introducing time delays to the standard QSSA. This novel approach is

called the delayed quasi-steady-state assumption (D-QSSA). As follows, we provide

a definition of D-QSSA for the general system (2.1).

834



Definition 2.2. Let Assumption 2.1 be satisfied. Then the delayed quasi-steady-

state approximation of the fast variable xF (t) is defined as

(2.7) xdqss
F (t) =

f(xS(t− τ(t)))

g(t− τ(t))
,

where τ(t) is generally a function of t, called a delay, and the reduced delayed ODE

system for the slow variable xS(t) is defined via the delayed QSSA as

(2.8) ẋS(t) = h(xdqss

F (t), xS(t)).

R em a r k 2.1. Note that the term τ(t) = 1/g(t) is used for the delay in [22] but

an arbitrary function can be considered in Definition 2.2. In this paper, we further

concentrate on the constant values of delay τ .

R em a r k 2.2. For times t < τ(t), the quantity t−τ(t) is negative. Thus, in order

that the D-QSSA approximation be defined, the slow variable xS and the function g

must be defined for negative values. It suffices to make an arbitrary extension, e.g.,

xS(t) = xS(0) and g(t) = g(0) for t 6 0. The same is applied if the initial time is

generally t0 > 0. In this case xS(t) = xS(t0) and g(t) = g(t0) whenever t 6 t0.

R em a r k 2.3. The theorems concerning the equivalence of the D-QSSA method

to the first-order correction of QSSA (up to terms cubic in the delay τ) as well as

the theorems dealing with the D-QSSA error estimates, i.e., differences between

the solution of the non-reduced system and its D-QSSA approximations, are pre-

sented in [22], e.g., Theorem 3.2 states that the reduced system via D-QSSA

(2.8) approximates the invariant (slow) manifold of the system (2.4) up to terms

quadratic in τ [22]. Furthermore, Vejchodský et al. in [22] claim that “in case of

constant and small τ the D-QSSA is equivalent to the standard QSSA (or SPM)

and the delay can be avoided. If the delay is not small, then there is no the-

oretical reason for the application of QSSA; however, the D-QSSA still has the

potential to yield acceptable accuracy,” as it will be shown in Section 3 on our

numerical example.

2.3. Looking for an optimal delay of the D-QSSA technique. In the origi-

nal works of D-QSSA authors, see [21], [22], the delay τ(t) = 1/g(t) was used. How-

ever, it generally depends on other (slow) system components, which causes some

numerical issues when solving delayed differential equations by a computer algebra

system.
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Thus, the natural question is to consider a constant delay τ (independent of time t).

This problem was treated in our publication [13], where the constant delay was used

for simulating the states of a compartmental model for the action of pregnane X

receptor causing the xenobiotic metabolizing enzyme induction [4], [10].

Consider again the delayed quasi-steady-state approximation of the fast variable

xF (t) and the reduced delayed ODE system for the slow variable xS(t) but with

a constant delay τ as follows (see Definition 2.2),

xdqss
F (t) =

f(xS(t− τ))

g(t− τ)
,(2.9)

ẋS(t) = h(xdqss
F (t), xS(t)).(2.10)

The solution of (2.10) is denoted as xdqss

S (t). However, as it depends on the delay τ ,

we sometimes write xdqss
S (t, τ).

Next, we prove that xdqss

S (t, τ) depends continuously on the delay τ .

Lemma 2.1. Let Assumption 2.1 be satisfied and let τ ∈ [0, T ]. Let xdqss
F (t) (see

(2.9)) be a D-QSS approximation of xF (t) and let x
dqss

S (t, τ) be a solution of the re-

duced delayed ODE system (2.10). Let xdqss
S (t, τ) be continuous for t ∈ [0, T ] and let

Remark 2.2 hold. Then xdqss
S (t, τ) is a continuous function with respect to τ ∈ [0, T ].

P r o o f. For the sake of simplification of the notation, let xS stand for x
dqss
S .

Let t ∈ [0, T ] and take arbitrary delays τ1, τ2 ∈ [0, T ], τ1 6= τ2. Then xS(t, τ1) and

xS(t, τ2) satisfy

ẋS(t, τi) = h
(f(xS(t− τi, τi))

g(t− τi)
, xS(t, τi)

)
, i = 1, 2,

see (2.9)–(2.10). As t− τ2 = t− τ1 + τ1 − τ2 and xS(t̃, τ), ẋS(t̃, τ) are continuous for

t̃ ∈ [−T, T ] (continuity of ẋS follows from Assumption 2.1), then using the Taylor

expansion of xS(t− τ2, τ2) in t− τ1, we obtain

xS(t− τ2, τ2) = xS(t− τ1 + τ1 − τ2, τ2) = xS(t− τ1, τ2) + ẋS(τ̂x, τ2)(τ1 − τ2),

where τ̂x = t− τ1 + ϑx(τ1 − τ2), ϑx ∈ (0, 1). Substituting into f(xS(t − τ2, τ2)) and

using the Taylor expansion in xS(t− τ1, τ2), we obtain

(2.11) f(xS(t− τ2, τ2)) = f(xS(t− τ1, τ2) + ẋS(τ̂x, τ2)(τ1 − τ2))

= f(xS(t− τ1, τ2)) +Df(x̂)ẋS(τ̂x, τ2)(τ1 − τ2) ≡ f̃ ,

where x̂ = xS(t − τ1, τ2) + ϑf (ẋS(τ̂x, τ2)(τ1 − τ2)), ϑf ∈ (0, 1), and Df denotes the

differential of f .
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Similarly, using the Taylor expansion of 1/g(t− τ2) in t− τ1 we obtain

(2.12)
1

g(t− τ2)
=

1

g(t− τ1 + τ1 − τ2)
=

1

g(t− τ1)
−

g′(τ̂g)

g2(τ̂g)
(τ1 − τ2) ≡ g̃,

where τ̂g = t− τ1 + ϑg(τ1 − τ2), ϑg ∈ (0, 1).

Substituting (2.11) and (2.12) into ẋS(t, τ2), we obtain

ẋS(t, τ2) = h
(f(xS(t− τ2, τ2))

g(t− τ2)
, xS(t, τ2)

)
= h(f̃ g̃, xS(t, τ2)).

Thus, there exist functions F(xS , τ̂x, x̂, τ̂g), H(xS , τ̂x, x̂, τ̂g) such that

ẋS(t, τ2) = h
(f(xS(t− τ1, τ2))

g(t− τ1)
+ F(xS , τ̂x, x̂, τ̂g)(τ1 − τ2), xS(t, τ2)

)

= h
(f(xS(t− τ1, τ2))

g(t− τ1)
, xS(t, τ2)

)
+H(xS , τ̂x, x̂, τ̂g)(τ1 − τ2),

where F , H contain remaining terms, i.e.,

F(xS , τ̂x, x̂, τ̂g) =
Df(x̂)ẋS(τ̂x, τ2)

g(t− τ1)
− f(xS(t− τ1, τ2))

g′(τ̂g)

g2(τ̂g)

−Df(x̂)ẋS(τ̂x, τ2)
g′(τ̂g)

g2(τ̂g)
(τ1 − τ2)

and H(xS , τ̂x, x̂, τ̂g) = h(F(xS , τ̂x, x̂, τ̂g)). Then

ẋS(t, τ1)− ẋS(t, τ2) = h
(f(xS(t− τ1, τ1))

g(t− τ1)
, xS(t, τ1)

)
− h

(f(xS(t− τ1, τ2))

g(t− τ1)
, xS(t, τ2)

)

−H(xS , τ̂x, x̂, τ̂g)(τ1 − τ2).

Put e(t) = xS(t, τ1)− xS(t, τ2). Then using the Taylor expansion, we obtain

ė(t) = −H(xS , τ̂x, x̂, τ̂g)(τ1 − τ2) + h
(f(xS(t− τ1, τ1))

g(t− τ1)
, xS(t, τ1)

)

− h
(f(xS(t− τ1, τ1)− e(t− τ1))

g(t− τ1)
, xS(t, τ1)− e(t)

)

= D1h(ŵ1, ŵ2)
1

g(t− τ1)
Df(xS(t− τ1, τ1))e(t− τ1) +D2h(ŵ1, ŵ2)e(t)

−H(xS , τ̂x, x̂, τ̂g)(τ1 − τ2),

where

ŵ1 =
f(xS(t− τ1, τ1))

g(t− τ1)
− ϑ1

e(t− τ1)

g(t− τ1)
, ŵ2 = xS(t, τ1)− ϑ2e(t), ϑi ∈ (0, 1), i = 1, 2,
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Dih, i = 1, 2, denote the derivatives of h with respect to the first and the sec-

ond variable, and Df denotes the differential of f . Thus, there exist functions

A1(xS , ŵ1, ŵ2),A2(xS , ŵ1, ŵ2) such that

ė(t) = A1(xS , ŵ1, ŵ2)e(t− τ1) +A2(xS , ŵ1, ŵ2)e(t)−H(xS , τ̂x, x̂, τ̂g)(τ1 − τ2).

We prove that there exists C > 0 such that

|e(t)| 6 C|τ1 − τ2| ∀ t ∈ [0, T ].

Note that e(t̃) = 0 for t̃ ∈ [−max{τ1, τ2}, 0] ⊆ [−T, 0], because (see Remark 2.2)

(2.13) e(t̃) = xS(t̃, τ1)− xS(t̃, τ2) = xS(0)− xS(0) = 0.

It is easy to see that there exists kT ∈ N such that T ∈ [kT τ1, (kT + 1)τ1]. Using

the method of steps [19], the Gronwall inequality, and the induction for intervals

[(k − 1)τ1, kτ1], k = 1, . . . , kT , we obtain:

k = 1: The values e(t−τ1) for t ∈ [0, τ1] are fixed, see (2.13), thus by the Gronwall

lemma, there exists C1 > 0 such that

|e(t)| 6 C1|τ1 − τ2| for t ∈ [0, τ1].

k  k + 1: Having a solution for t ∈ [(k − 1)τ1, kτ1], we seek a solution for

t ∈ [kτ1, (k + 1)τ1]. The values e(t) for t ∈ [(k − 1)τ1, kτ1] are known, therefore, the

values e(t−τ1) for t ∈ [kτ1, (k+1)τ1] are also known, and thus |e(t−τ1)| 6 Ck|τ1−τ2|.

Using the Gronwall lemma, there exists Ck+1 > 0 such that

|e(t)| 6 Ck+1|τ1 − τ2| for t ∈ [kτ1, (k + 1)τ1].

This last inequality for k = kT together with the definition of e(t) imply that

|e(t)| = |xS(t, τ1)− xS(t, τ2)| 6 C|τ1 − τ2| ∀ t ∈ [0, T ]

which implies continuity of xS(t, τ) with respect to the delay τ ∈ [0, T ]. �

Now we are in a position to state the main theorem concerning the existence of

an optimal constant delay.

Theorem 2.1. Let Assumption 2.1 be satisfied. Let x̄(t) be a solution of the

system (2.4). Choose arbitrary numbers 0 < τ 6 τ < T and a fixed constant delay

τ ∈ [τ , τ ]. Let xdqss

F (t) (see (2.9)) be a D-QSS approximation of xF (t) with this τ .
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Let xdqss
S (t) be a solution of the reduced delayed ODE system (2.10), continuous for

t ∈ [0, T ]. Put xdqss(t) =
(
xdqss

F

⊤

(t), xdqss

S

⊤

(t)
)⊤
. Then there exists at least one

value τ∗ ∈ [τ , τ ] minimizing the error between x̄(t) and xdqss(t), i.e.,

(2.14) τ∗ = argmin
τ

‖x̄(t)− xdqss(t)‖2 subject to 0 < τ 6 τ 6 τ < T,

where ‖·‖ denotes the vector L2[0, T ]-norm.

P r o o f. The discrepancy between the solution x̄(t) of the non-reduced sys-

tem (2.4) and the solution xdqss(t) of the reduced system (2.9)–(2.10) for a constant

delay τ can be naturally formulated as a minimization problem in the form (2.14)

where τ is a minimization parameter. Natural requirements for optimal τ are pos-

itiveness and boundedness from above by a suitable value (here a maximum time

value T ). Since f(t) and g(t) are continuous and g(t) is positive, xdqss
F (t) is con-

tinuous, and since xdqss
S (t) is also continuous, the whole xdqss(t) is continuous for

t ∈ [0, T ]. Moreover, xdqss

S (t) is continuous with respect to τ due to Lemma 2.1.

These properties ensure that the norm in (2.14) is well defined and thus there exists

at least one solution τ∗ ∈ [τ , τ ] satisfying (2.14). �

In case the system (2.4) is solved numerically using, e.g., the Euler method, let

0 = t0, t1, . . . , tm = T be a time discretization with a time step ∆t. The optimal

delay defined in (2.14) depends on the exact solution x̄(t) of the non-reduced system.

As this solution is typically unavailable, it is usually replaced by a numerical approxi-

mation or measured data. In the case of measured data, we assume that they may be

available only for some points tk, k ∈ K ⊂ {0, . . . ,m}. Let xdqss(tj), j = 0, . . . ,m,

be a D-QSS approximation at time steps t0, . . . , tm. Then the minimization problem

analogous to (2.14) can be formulated as

(2.15) τ∗ = argmin
τ

m∑

j=0

[x̄(tj)− xdqss(tj)]
2 subject to 0 < τ 6 τ 6 τ < T,

where we set x̄(tk) = xdqss(tk) for k 6∈ K in case the measured data are used.

Definition 2.3. The value τ∗ which is a solution of the minimization problems

(2.14) or (2.15) is called the optimal delay and the corresponding solution

(2.16) xodqss
F (t) =

f(xS(t− τ∗))

g(t− τ∗)

is called the optimal delayed quasi-steady-state approximation (OD-QSSA) of the

fast variable xF (t). The reduced optimal delayed ODE system for the slow vari-

able xS(t) is defined via the optimal delayed QSSA as

(2.17) ẋS(t) = h(xodqss

F (t), xS(t)).
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3. Numerical example

In this section, two previously defined model reduction methods are examined

on a relatively simple example. Namely, the standard QSSA (2.6), as well as its

refinement D-QSSA (2.8), are applied to a chemical reaction network with mass

conservation property, encompassing mass transport (by a diffusion process) between

an outer and inner compartment containing enzymatic reactions, see Table 1.

While the transport process is governed by Fick’s law3, chemical reactions are

described as

Xin + E
k1

⇄
k
−1

C, C
k2−→ E + P.

Basically, the resulting ODE system models a two-compartment system that is de-

rived as the combination of one ODE describing the transport of a substrate from

outer to the inner compartment with the well-known chemical reaction network lead-

ing to the Michaelis-Menten kinetics [3].

Description of the related process Chem. notation Param.

T1: Substrate transport between compartments Xout ⇀↽ Xin k0

R1: Enzyme E binds to substrate forming Xin + E ⇀↽ C k1
a complex C (reversibly) k−1

R2: Complex breaks down into E and C → E + P k2
product P—altered substrate molecule

Table 1. Enzyme catalyzed reactions with a substrate transport chain.

Param. Value Unit Description

k0 10 sec−1 permeability constant

k1 10 µM−1sec−1 association rate

(forward rate constant)

k−1 10 sec−1 dissociation rate

(reverse rate constant)

k2 0.01 sec−1 association catalytic rate

u0 10 µM initial substrate concentration

e0 1 µM initial enzyme concentration

Table 2. The values, units, and descriptions of model parameters, initial conditions, and
inputs (mostly from [5]).

3 The flow of species X from the outer compartment, e.g., dosing device, to the inner
compartment (where the enzymatic reaction takes place) depends on the difference of
species X concentrations (x1−x2) when the proportionality constant is the first order dif-
fusion coefficient k0 (the so-called permeability constant encompassing the permeability
coefficient and area of the membrane).
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3.1. Enzyme catalyzed reactions with a substrate transport chain: Gov-

erning equations. Let us introduce the following notation for the concentrations

of the respective chemical species,

x(t) =




x1(t)

x2(t)

x3(t)

x4(t)

x5(t)




≡




Xout(t)

Xin(t)

E(t)

C(t)

P (t)




.

Then, based on the law of mass action and Fick’s law, the chemical kinetics of this

system is described by the five equations

ẋ1(t) = −k0x1(t) + k0x2(t),

ẋ2(t) = k0x1(t)− k0x2(t)− k1x2(t)x3(t) + k−1x4(t),

ẋ3(t) = −k1x2(t)x3(t) + k−1x4(t) + k2x4(t),

ẋ4(t) = k1x2(t)x3(t)− k−1x4(t)− k2x4(t),

ẋ5(t) = k2x4(t).

The system of differential equations describing the process under study can be

expressed in the form (2.1), where the constant matrix (the linear part of the sys-

tem) reads

(3.1) A =




−k0 k0 0 0 0

k0 −k0 0 k−1 0

0 0 0 k−1 + k2 0

0 0 0 −(k−1 + k2) 0

0 0 0 k2 0




and the vector representing non-linear (quadratic or bilinear) and constant parts

(3.2) b(x(t)) =




0

−k1 · x2(t) · x3(t)

−k1 · x2(t) · x3(t)

k1 · x2(t) · x3(t)

0




.

The initial conditions are

(3.3) x(0) = (u0 0 e0 0 0 )⊤ .

The values of model parameters (initial conditions and parameter values) are

summarized in Table 2.
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R em a r k 3.1. Reaction networks frequently possess subsets of reactants that

remain constant at all times, i.e., they are referred to as conserved species. For the

studied system we observe that ẋ3(t)+ ẋ4(t) = 0 and ẋ1(t)+ ẋ2(t)+ ẋ4(t)+ ẋ5(t) = 0,

i.e., the conservation property reads

(3.4) x3 + x4 = e0, x1 + x2 + x4 + x5 = u0.

The existence of relations (3.4) signifies not only the possibility to reduce the

number of state variables, but it also induces the reformulation of the governing

equations for species concentration using negative M-matrices thanks to the fact

that all five state variables are involved in relations (3.4). This relatively unknown

property was studied in several works of Bohl and Marek, see, e.g., [1], [2], [12].

In what follows, we will study the nine models described in detail in the following

subsections and comparing them with the full system.

3.2. Model simplification using the conservation properties. Due to the

two relations (3.4), the system (3.1)–(3.3) can be simplified as follows. Since x3(t) =

e0 − x4(t), we can (i) replace the state variable x3(t) by x4(t) in all equations, and

(ii) the corresponding ODE with ẋ3(t) can be omitted. Moreover, we can consider

only three equations, because the last variable x5(t) can be easily computed from

the second relation in (3.4). Thus, the full (non-reduced) system can be equivalently

reformulated using (only) three variables x1, x2, x4:

ẋ1(t) = −k0x1(t) + k0x2(t),

ẋ2(t) = k0x1(t)− k0x2(t) + k−1x4(t)− k1x2(t)(e0 − x4(t)),

ẋ4(t) = −(k−1 + k2)x4(t) + k1x2(t)(e0 − x4(t)),

or

(3.5) ẋ(t) = Āx(t) + b̄(x(t)),

where

x(t) = (x1(t) x2(t) x4(t) )
⊤ ,

and

Ā =




−k0 k0 0

k0 −(k0 + e0k1) k−1

0 e0k1 −(k−1 + k2)


 , b̄(x(t)) =




0

k1x2(t)x4(t)

−k1x2(t)x4(t)


 .
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The initial conditions are

(3.6) x(0) = (u0 0 0 )
⊤
.

The state variables x1 and x4 can be considered as fast variables xF , since they

satisfy all assumptions for fast variables mentioned in [21]. The functions f1(xS(t)),

g1(t) for x1(t) and f4(xS(t)), g4(t) for x4(t), respectively, see (2.4), have the form

f1(xS(t)) = k0x2(t), g1(t) = k0,

f4(xS(t)) = e0k1x2(t), g4(t) = k−1 + k2 + k1x2(t).

It is well known that the QSS approximation is derived for larger times (to enable

the fast variable to get to its steady-state), and hence it may not satisfy the original

initial condition. This happens in system (3.5) if x1 is considered as a fast variable.

Indeed, setting ẋ1(t) = 0, i.e.,

ẋ1(t) = −k0x1(t) + k0x2(t) ≡ 0,

the QSS approximation leads to

xqss
1 (t) =

f1(xS(t))

g1(t)
= x2(t),

conflicting the initial conditions x1(0) = u0 > 0 and x2(0) = 0 (it cannot hold

xqss
1 (0) = x2(0)). Therefore, we introduce a parameter tQ, 0 < tQ < T , and derive

the QSS approximation in the sense of Definition 2.1 for t > tQ only. For t ∈ [0, tQ],

we use the conservation property (3.4), initial conditions (3.3), and define the “QSS”

approximation as

xqss
1 (t) = u0 − x2(t)− x4(t),

in order that x5(t) were non-negative for t ∈ [0, tQ] and satisfied the initial condition

x5(0) = 0. Note that in the case xqss
1 (t) = x1(0) = u0 for all t ∈ [0, tQ], the value

x5(t) = u0 − x1(t)− x2(t) − x4(t) = −x2(t)− x4(t) would be negative, which is not

possible for our chemical network system. The discontinuity of xqss
1 (t) for t = tQ

does not mind, because we are primarily interested in the quasi-steady-state solution

xqss
1 (t) for t > tQ. Moreover, in the section Numerical results, we optimize the

parameter tQ, which can be in some sense viewed as an optimization of the jump

between xqss
1 (tQ) and x2(tQ). Thus,

xqss
1 (t) = u0 − x2(t)− x4(t), t 6 tQ,(3.7)

xqss
1 (t) = x2(t), t > tQ.(3.8)
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The same idea can be applied when x4 is a fast variable. But in this case

ẋ4(t) = e0k1x2(t)− (k−1 + k2)x4(t)− k1x2(t)x4(t) ≡ 0,

the QSS approximation is

(3.9) xqss
4 (t) =

f4(xS(t))

g4(t)
=

e0k1x2(t)

k−1 + k2 + k1x2(t)
,

and there is no conflict with the initial conditions xqss
4 (0) = x2(0) = x4(0) = 0. Thus,

we can define the QSS approximation (3.9) for all t > 0 and no tQ is needed.

Lemma 3.1. Let x1 be a fast variable of the ODE system (3.5)–(3.6). Choose

tQ > 0 and consider the QSS approximations (3.7)–(3.8) of x1(t). Further, let the

system (3.5) be solved using the Euler method at time points t1, t2, . . . with a constant

time step ∆t = tj − tj−1. Then:

(1) If tQ < ∆t, then the zero solutions xi(tj) = 0 for all i = 1, . . . , 5 and for all

j = 1, 2, . . ., are obtained.

(2) If tQ > ∆t, then the non-zero solutions xi(tj), i = 1, . . . , 5, j = 1, 2, . . ., are

obtained.

P r o o f. Let no tQ be considered. As x1 is a fast variable, then setting ẋ1(t) = 0,

the first equation in (3.5) implies that xqss
1 (t) = x2(t) holds for every t. We obtain

the reduced system

ẋ2(t) = −e0k1x2(t) + k−1x4(t) + k1x2(t)x4(t),(3.10)

ẋ4(t) = e0k1x2(t)− (k−1 + k2)x4(t)− k1x2(t)x4(t).

Solving this system for t = t1 using the Euler method leads to a linear system with

a regular matrix and a zero right-hand side (due to zero initial conditions for x2(0)

and x4(0)). Thus, a zero solution x2(t1) = x4(t1) = 0 is obtained and a QSSA

approximation xqss
1 (t1) = x2(t1) = 0 as well. The conservation properties (3.4) lead

to zero solutions x4(t1) = x5(t1) = 0. Repeating this process for all tj , j = 2, 3, . . . ,

we obtain zero solutions xi(t) = 0, i = 1, . . . , 5 for all t.

On the other hand, let us define the QSS approximation (3.8) for t > tQ and

use (3.7) for t 6 tQ instead. The case t 6 tQ implies that x
qss
1 (t1) = u0 − x2(t1) −

x4(t1) and we obtain a reduced system

ẋ2(t) = − (k0 + e0k1)x2(t) + k−1x4(t) + k1x2(t)x4(t)(3.11)

+ k0(u0 − x2(t)− x4(t)),

ẋ4(t) = e0k1x2(t)− (k−1 + k2)x4(t)− k1x2(t)x4(t).
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Solving this system for t = t1 with the use of the Euler method leads to a linear

system with a regular matrix and a non-zero right-hand side (due to a non-zero

constant term k0u0). Thus, a non-zero solution x2(t1), x4(t1) is obtained.

When t > tQ, we obtain the system (3.10). The use of the Euler method leads to

a linear system with a regular matrix and a non-zero right-hand side (due to the non-

zero initial conditions for x2(tQ) and x4(tQ)). Thus, a non-zero solution x2(tQ+∆t),

x4(tQ + ∆t) is obtained and a QSSA approximation xqss
1 (tQ + ∆t) = x2(tQ + ∆t)

as well. The conservation properties (3.4) lead to non-zero solutions x4(tQ + ∆t),

x5(tQ + ∆t). Repeating this process for the next time step, we obtain non-zero

solutions xi(t), i = 1, . . . , 5, for all t > tQ. �

3.3. Reduced models—3 different ODEs for the standard QSSA. Starting

from (3.5), x1 and x4 can be considered as fast variables and then using Definition 2.1

and Lemma 3.1 we deal with the three possibilities that are described in detail in

the following three subsections.

3.3.1. QSSA1—the fast variable is x1(t). Letting ẋ1(t) = 0 in (3.5) then with

an appropriate value tQ, we obtain the QSS approximation for x1(t) and reduced

ODEs for x2(t), x4(t):

⊲ For t 6 tQ:

(3.12) xqss
1 (t) = u0 − x2(t)− x4(t),

ẋ2(t) = − (k0 + e0k1)x2(t) + k−1x4(t) + k1x2(t)x4(t)

+ k0(u0 − x2(t)− x4(t)),

ẋ4(t) = e0k1x2(t)− (k−1 + k2)x4(t)− k1x2(t)x4(t).

The initial conditions at t = 0 are (see (3.6))

x2(0) = x4(0) = 0.

⊲ For t > tQ:

(3.13) xqss
1 (t) = x2(t),

ẋ2(t) = −e0k1x2(t) + k−1x4(t) + k1x2(t)x4(t),

ẋ4(t) = e0k1x2(t)− (k−1 + k2)x4(t)− k1x2(t)x4(t).

The initial conditions at t = tQ are the solutions x2(tQ), x4(tQ) from the sys-

tem (3.12).
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3.3.2. QSSA4—the fast variable is x4(t). Letting ẋ4(t) = 0 in (3.5), we obtain

the QSS approximation for x4(t)

(3.14) xqss
4 (t) =

e0k1x2(t)

k−1 + k2 + k1x2(t)

and the reduced ODEs for x1(t), x2(t)

ẋ1(t) = −k0x1(t) + k0x2(t),

ẋ2(t) = k0x1(t)− k0x2(t)−
e0k1k2x2(t)

k−1 + k2 + k1x2(t)
.

The initial conditions are (see (3.6))

x1(0) = u0, x2(0) = 0.

3.3.3. QSSA14—the fast variables are x1(t), x4(t). Both reductions are ful-

filled (after some initial transition time), i.e., it holds (3.12) for t 6 tQ and (3.13) for

t > tQ together with (3.14) as well. Thus, after setting ẋ1(t) = ẋ4(t) = 0, only one

ODE for x2(t) governs the process. The QSS approximations for x1(t), x4(t) and the

equation for x2(t) after substitution are the following:

⊲ For t 6 tQ:

xqss
1 (t) = u0 − x2(t)− xqss

4 (t),(3.15)

xqss
4 (t) =

e0k1x2(t)

k−1 + k2 + k1x2(t)
,

ẋ2(t) = −
e0k1k2x2(t)

k−1 + k2 + k1x2(t)
− k0x2(t) + k0(u0 − x2(t)− xqss

4 (t)).

The initial condition at t = 0 is (see (3.6))

x2(0) = 0.

⊲ For t > tQ:

xqss
1 (t) = x2(t),(3.16)

xqss
4 (t) =

e0k1x2(t)

k−1 + k2 + k1x2(t)
,

ẋ2(t) = −
e0k1k2x2(t)

k−1 + k2 + k1x2(t)
.

The initial condition at t = tQ is the solution x2(tQ) from equation (3.15).
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3.4. Reduced model based on D-QSSA. Starting from (3.5), three possibil-

ities for the delayed QSS approximation are again considered. Using Definition 2.2

and Lemma 3.1, we derive the equations with initial conditions in a similar way like

in Subsection 3.3. As the delay we use the value τ(t) = 1/g(t) as in [22].

3.4.1. D-QSSA1—the fast variable is x1(t). We arrive at the D-QSSA approx-

imation of x1(t) using the value tQ and equations for x2(t), x4(t) after substitution

as follows:

⊲ For t 6 tQ:

(3.17)

xdqss
1 (t) = u0 − x2(t)− x4(t),

ẋ2(t) = − (k0 + e0k1)x2(t) + k−1x4(t) + k1x2(t)x4(t) + k0(u0 − x2(t)− x4(t)),

ẋ4(t) = e0k1x2(t)− (k−1 + k2)x4(t)− k1x2(t)x4(t).

The initial conditions at t = 0 are (see (3.6))

x2(0) = x4(0) = 0.

⊲ For t > tQ:

(3.18) xdqss
1 (t) = x2(t− τ), τ =

1

k0
= const.,

ẋ2(t) = − (k0 + e0k1)x2(t) + k−1x4(t) + k1x2(t)x4(t) + k0x2(t− τ),

ẋ4(t) = e0k1x2(t)− (k−1 + k2)x4(t)− k1x2(t)x4(t).

The initial conditions at t = tQ are the solutions x2(tQ), x4(tQ) from the sys-

tem (3.17). The value x2(tQ) is also taken in case t− τ < tQ, see Remark 2.2.

3.4.2. D-QSSA4—the fast variable is x4(t). The D-QSS approximation of

x4(t) is defined as

(3.19) xdqss
4 (t) =

e0k1x2(t− τ(t))

k−1 + k2 + k1x2(t− τ(t))
, τ(t) =

1

k−1 + k2 + k1x2(t)
.

Substituting into the equations for x1(t), x2(t), we obtain

ẋ1(t) = −k0x1(t) + k0x2(t),

ẋ2(t) = k0x1(t)− (k0 + e0k1)x2(t) + (k−1 + k1x2(t))x
dqss
4 (t)

= k0x1(t)− (k0 + e0k1 − k1x
dqss
4 (t))x2(t) + k−1x

dqss
4 (t).

The initial conditions at t = 0 are (see (3.6))

x1(0) = u0, x2(0) = 0.

The value x2(t− τ(t)) = 0 is also taken in case t− τ(t) < 0, see Remark 2.2.
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3.4.3. D-QSSA14—the fast variables are x1(t), x4(t). This case is again sep-

arated using the value tQ leading to the D-QSS approximations of x1(t), x4(t) and

one ODE for x2(t) after substitution as follows:

⊲ For t 6 tQ:

xdqss
1 (t) = u0 − x2(t)− xdqss

4 (t),(3.20)

xdqss
4 (t) =

e0k1x2(t− τ4(t))

k−1 + k2 + k1x2(t− τ4(t))
, τ4(t) =

1

k−1 + k2 + k1x2(t)
,

ẋ2(t) = k0x
dqss
1 (t)− (k0 + e0k1)x2(t) + k−1x

dqss
4 (t) + k1x2(t)x

dqss
4 (t)

= − (k0 + e0k1 − k1x
dqss
4 (t))x2(t) + k−1x

dqss
4 (t)

+ k0(u0 − x2(t)− xdqss
4 (t)).

The initial condition at t = 0 is (see (3.6))

x2(0) = 0.

⊲ For t > tQ:

xdqss
1 (t) = x2(t− τ1), τ1 =

1

k0
= const.,(3.21)

xdqss
4 (t) =

e0k1x2(t− τ4(t))

k−1 + k2 + k1x2(t− τ4(t))
, τ4(t) =

1

k−1 + k2 + k1x2(t)
,

ẋ2(t) = − (k0 + e0k1 − k1x
dqss
4 (t))x2(t) + k−1x

dqss
4 (t) + k0x2(t− τ1).

The initial condition at t = tQ is the solution x2(tQ) from equation (3.20). The value

x2(tQ) is also taken in case t− τ1 < tQ or t− τ4(t) < tQ, see Remark 2.2.

R em a r k 3.2. An algebraic relation (slow manifold) between substrate concen-

trations is expected in both compartments. Fig. 1 (made in the software Wolfram

Mathematica) shows two parametric plots in phase plane x1(t) vs. x2(t) and x2(t)

vs. x4(t), respectively. On the left, the dynamics begins from the initial state [10, 0]

in the right down corner and the slow invariant manifold can be detected for the

fast variable x1 (x1 = x2), which is valid for the interval x1 ∈ (0, 5) (i.e., after

an initial fast transition ending at the time instant tQ). Another slow invariant

manifold (or x4-nullcline) can be detected in the right part of Fig. 1 for the fast

variable x4. Here, the dynamics begins from the initial state [0, 0] in the bottom left

corner and the slow invariant manifold is described by the Michaelis-Menten relation:

xqss
4 (t) = e0k1x2(t)/(k−1 + k2 + k1x2(t)). Although the difference is hardly visible

in certain time intervals, there are the initial and final parts where both trajectories

clearly differ.
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Figure 1. Left: The parametric plot in the phase plane x1(t) vs. x2(t) for the full
non-reduced system (solid black line) and for three D-QSSA4 approxima-
tions where the value of D-QSSA4 delay is growing from up to down: τ1 =
1/(k−1 + k2 + k1u0) ≈ 0.02 (thin orange line), τ2 = 0.05 (dashed red line),
τ2 = 0.1 (dashed blue line).
Right: The parametric plot in the phase plane x2(t) vs. x4(t) for the full non-
reduced system (solid black line) and the slow invariant manifold (dashed red
line) given by the relation x4(t) = e0k1x2(t)/(k−1 + k2 + k1x2(t)) = e0x2(t)/
(KM + x2(t)) derived from the QSSA4 (ẋ4 = 0), where KM = (k−1 + k2)/k1 is
the so-called Michaelis constant.

3.5. Reduced model based on OD-QSSA with the optimal constant

delay τ∗. This case is the same as the case described in Subsection 3.4. The only

difference is that the optimal constant delay τ∗ computed from (2.15) is used in-

stead of the delay τ(t) = 1/g(t). Here the exact solution x̄(tj) in (2.15)—the values

x̄i(tj), j = 0, 1, . . . ,m, i = 1, 4, are supposed to be the values computed using the

non-reduced model (full system) (3.1)–(3.3). The meaning of tQ is the same as in

the previous subsections.

R em a r k 3.3. Suppose that all the above ODE systems are solved using the

Euler method and the solutions at times t1, . . . , tj , j > 1, are computed. Then,

before computing the solution at time tj+1, in case of the D-QSSA model and a time

dependent delay τ(t), e.g., τ(t) = 1/g(t), all the old values x2(tk−τ(tk)), k = 1, . . . , j,

must be stored because g(tk) can attain arbitrary values. On the other hand, in the

case of the OD-QSSA model, the delay is constant and thus it suffices to store only

the last ⌊(τ/∆t)⌋ values of x2(tk − τ).

3.6. Numerical results (comparison of different model reduction meth-

ods) and some issues related to the setting of an optimal delay. In this sub-

section, we compare the models described in detail above and introduced in Table 3.
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Model Description

Non-reduced full system (3.1)–(3.3)

QSSA1 x1 is a fast variable

QSSA4 x4 is a fast variable

QSSA14 both x1 & x4 are fast

D-QSSA1 x1 is a fast variable, delay τ = 1/g(t), see Definition 2.2

D-QSSA4 x4 is a fast variable, delay τ = 1/g(t), see Definition 2.2

D-QSSA14 both x1 & x4 are fast, delay τ = 1/g(t), see Definition 2.2

OD-QSSA1 x1 is a fast variable, delay τ = const. optimal, see Sec. 2.3

OD-QSSA4 x4 is a fast variable, delay τ = const. optimal, see Sec. 2.3

OD-QSSA14 both x1 & x4 are fast, delay τi = const.i optimal, i = 1, 4

Table 3. Schematic description of the ten models studied.

The models introduced in Table 3 were used to obtain approximate solutions xA(t).

In our numerical experiments we consider a time interval t ∈ [0, T ] and suppose an

equidistant mesh 0 = t0, t1, . . . , tm = T with the time step ∆t = T/m.

To compare the quality of approximate solutions xA(t) with a solution x̄(t) of

the original non-reduced model (full system) (3.1)–(3.3), for each of the five state

variables we used the error metric

(3.22) δi =

√√√√
m∑

j=0

(x̄i(tj)− xA
i (tj))

2

(x̄i(tj))2
, i = 1, . . . , 5.

Then, in order to quantify the integral error for different models (different reduction

methods), the total error value

(3.23) δ =
5∑

i=1

δi

is defined.

In (3.22), the exact solution x̄i(tj), j = 0, 1, . . . ,m, is assumed to be the values

computed using the non-reduced model (full system) (3.1)–(3.3). The values xA
i (tj),

j = 0, 1, . . . ,m, i = 1, . . . , 5, are approximate solutions computed from the models

QSSAk (i.e., xqss(tj)), D-QSSAk (i.e., x
dqss(tj)), and OD-QSSAk (i.e., x

odqss(tj)),

k = 1, 4, 14.

Moreover, we also optimize the value tQ when needed. This leads to a small-scale

optimization process for (i) two variables τ and tQ in the case of OD-QSSA1, (ii) one

variable τ in the case of OD-QSSA4, and (iii) three variables τ1, τ4, and tQ in the

case of OD-QSSA14. The optimization system UFO [11] was used for minimization

purposes.
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We used the values of parameters given in Table 2, T = 0.5, and the time step

∆t = 10−4. The ODEs were solved using the backward Euler method (outer itera-

tion). The resulting non-linear equation for a solution at time tj was solved using

the Newton method (inner iteration).

In Fig. 2 we plot the solutions for the fast variable x1(t), computed using four

strategies (models): the full system, QSSA, D-QSSA, and OD-QSSA. Both the D-

QSSA1 (on the top) and D-QSSA14 (bottom part of the figure) provide unsatisfac-

tory results. Note that on the first graph (solution x1(t) for the fast variable x1), the

QSSA1 curve (dashed blue) nearly coincides with the OD-QSSA1 curve (solid green).
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Figure 2. Solution x1 obtained by using five different strategies: the full system, QSSA
approach, delayed QSSA approach with τ = 1/g(t), and delayed QSSA approach
with the optimal constant delay τ . Upper: QSSA1 nearly coincides with OD-
QSSA1.
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Figure 3. Solution x4 obtained by using five different strategies: the full system, QSSA
approach, delayed QSSA approach with τ = 1/g(t), and delayed QSSA approach
with the optimal constant delay τ .

In Fig. 3 we plot the solutions for x4(t), computed using the same strategies

(models). Again here, the OD-QSSA variant of the D-QSSA technique outperforms

other model reductions, although they provide more satisfactory results than similar

models in Fig. 2.

The QSSA and D-QSSA models give a poor approximation of the solution. It

is clearly visible especially for D-QSSA when x1 (as well as both x1 and x4) is

considered as fast. The equality xdqss
1 (t) = x2(t− τ) does not approximate well the

exact solution. The constant value of delay τ = 1/k0 is bad in this case, and another

value should be found. Better results are obtained for the fast variable x4, where

the delay τ depends on time t.
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Finally, using an optimal constant delay τ , the OD-QSSA model leads to rather

good results. As mentioned in [21], it cannot be expected that this approximation

is good for small t. This phenomenon is clearly seen for t smaller than 0.2. Af-

ter that, for t > 0.2, the OD-QSSA approximation is nearly identical to the exact

solution. Moreover, as we have a more suitable value of the constant delay τ , the

approximation xodqss
1 (t) is now much more accurate than xdqss

1 (t) for τ = 1/k0. An

important question is how to determine this optimal constant value without knowing

the exact solution and no subsequent comparison with the computed ones. This will

be a subject of our future research.

Model δ1 δ2 δ3 δ4 δ5 total δ time1 time2

Non-reduced - - - - - - 1.00 1.00

QSSA1 0.0586 0.0636 0.0696 0.0231 2.3492 2.5641 0.79 0.79

QSSA4 0.0771 0.0943 0.3664 0.1214 187.2839 187.9431 0.69 0.69

QSSA14 0.1117 0.1427 0.3987 0.1321 214.4269 215.2122 0.19 0.19

D-QSSA1 0.3449 0.2792 0.1997 0.0662 626.6338 627.5239 0.92 0.92

D-QSSA4 0.0136 0.0172 0.1423 0.0471 34.2719 34.4921 1.02 1.02

D-QSSA14 0.3557 0.2867 0.2642 0.0875 644.3346 645.3288 0.39 0.39

OD-QSSA1 0.0589 0.0634 0.0696 0.0231 2.3079 2.5229 0.89 1.24

OD-QSSA4 0.0013 0.0039 0.1272 0.0421 9.5216 9.6960 0.89 1.02

OD-QSSA14 0.0618 0.0628 0.1497 0.0496 0.5187 0.8425 0.13 0.31

Table 4. Computed errors δi for each component xi(t) and each model, the total value δ,
and times as the ratio of the individual model to the non-reduced model (time2
are the values with minimization).

Table 4 gives the values δi computed for each component xi(t), i = 1, . . . , 5, and

each considered model. We see that using the optimal τ we obtain the smallest

errors. Also, we can see that the component x5(t) contributes the most to the total

error metric δ which means that x5 is far from the exact solution. Using a suitable

constant delay τ , this can be significantly reduced up to the accepted value.

Moreover, in Table 4, we give time comparison of each model as the ratio of the

individual model to the non-reduced full system model. Values time1 are the times

of computation of the solution x(t) for given values tQ and delay(s), while values

time2 are the times that include the minimization process, i.e., seeking for optimal

tQ and/or optimal delay(s).

From the column time1 we can make some simple and clear conclusions. (i) The

QSSA models do not work with the vector x2(t − τ(t)) and thus they are faster

than other models. (ii) Both D-QSSA1 and OD-QSSA1 models work with a con-

stant delay and thus they are almost equally fast. (iii) Similarly, both OD-QSSA1

and OD-QSSA4 models work with a constant delay and thus they are almost
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equally fast. (iv) This is not the case of D-QSSA1 (constant delay) and D-QSSA4

(delay depends on t) models and thus the former is faster. (v) The D-QSSA4

model, in contrast to the OD-QSSA4 model, computes the delay τ(tj) at each

iteration and thus it is slower. (vi) The same can be said for D-QSSA14 and

OD-QSSA14 models. (vii) The D-QSSA14 model is much faster than D-QSSA1

and D-QSSA4 models as it works only with one differential equation. (viii) The

same can be said for the OD-QSSA14 model compared to OD-QSSA1 and OD-

QSSA4 models. (ix) The OD-QSSA14 model is the fastest as it works only with

one differential equation and constant delays. (x) Seeking the optimal values tQ,

τ1, τ4 is very cheap as it is a small-scale optimization problem (1–3 dimensions)

and thus the models using optimal delay(s) do not consume too much extra time

compared to models using standard delay(s) 1/g(t) (see a small increase of time in

the column time2).

In Table 5 we present the optimal values of tQ and τ , computed using the UFO

system [11], that minimize δ. To compare the results correctly, we first computed

the optimal value tQ and then used the same value in the models QSSA1, QSSA14,

D-QSSA1, and D-QSSA14.

Method tQ Delay τ

QSSA1 used optimal -

QSSA4 - -

QSSA14 used optimal -

D-QSSA1 used optimal 1/k0 = 0.1

D-QSSA4 - 1/(k−1 + k2 + k1x1(t))

D-QSSA14 used optimal τ1 = 1/k0 = 0.1, τ4(t) = 1/(k−1 + k2 + k1x1(t))

OD-QSSA1 0.07344 0.004697

OD-QSSA4 - 0.03343

OD-QSSA14 0.07086 τ1 = 0.0006762, τ4 = 0.02732

Table 5. Optimal values of tQ and delay τ used.

4. Discussion and conclusion

We presented and further developed one relatively novel model reduction technique

for a class of chemical reaction networks. This technique can fill the gap between

merely heuristic QSSA methods (in all their variants) and more theoretical meth-

ods, like singular perturbation methods. The assumptions for D-QSSA are not too

restrictive and D-QSSA is applicable to most chemical systems based on the law of

mass action. While the standard QSSA (or SPM) ignores the time needed by fast
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variables to reach their steady-states, the advantage of D-QSSA is the possibility

of a time delay introduction improving the approximation accuracy. This general

conclusion has been supported by our numerical example presented in Section 3.

Special attention was paid to searching for a constant delay in some sense optimal.

We announce Theorem 2.1 claiming the existence of an optimal delay introduced

when each approximation based on respective QSSA is applied. Numerical results

show that there exists some optimal constant value giving better results than the

original value of delay proposed by Vejchodský et al. [21], [22]. Although the existence

of an optimal constant delay for the D-QSSA technique was already stated in our

recent conference paper [13], in this work, we present a more detailed study of the

same phenomenon. Finding optimal delay(s) is not computationally expensive as

the optimization problem is small-scale; on the other hand, in order to compute an

optimal delay, we need an approximate solution or at least some measured data.

Our ongoing research concerns the dosing regime optimization for different bio-

chemical reaction systems. Namely, we work on the application of the D-QSSA tech-

nique to the previously studied compartmental model for the action of pregnane X

receptor causing the xenobiotic metabolizing enzyme induction [4], [10] with peri-

odic dosing, i.e., the governing ODE system is defined either as (i) a non-autonomous

initial value problem, or (ii) a boundary value problem. Here we aim to compare

both the precision and the computational cost of the respective model solution. We

expect that the times of computation of a suitable optimization procedure are more

favorable for reduced models than for the full model, while the precision issue should

be thoroughly checked. There is one more issue to be examined: the slow-fast vari-

ables separation and the setting of QSSA. While for the Michaelis-Menten enzyme

kinetic network (with one simple diffusion transport between two compartments) the

separation between slow and fast variables is relatively straightforward, for a more

complex biochemical system the possibility of such separation and the application of

order reduction techniques is definitely not so clear. The expected advantage of the

application of the D-QSSA technique is the extension of D-QSSA to the model pa-

rameter domain prohibited for the standard QSSA, as it was stated in [22]: While the

standard QSSA usually causes considerable errors in both the period and amplitude

of oscillations the D-QSSA enables this error to be reduced substantially.
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