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Abstract. This paper introduces the application of asynchronous iterations theory within
the framework of the primal Schur domain decomposition method. A suitable relaxation
scheme is designed, whose asynchronous convergence is established under classical spec-
tral radius conditions. For the usual case where local Schur complement matrices are not
constructed, suitable splittings based only on explicitly generated matrices are provided.
Numerical experiments are conducted on a supercomputer for both Poisson’s and linear
elasticity problems. The asynchronous Schur solver outperformed the classical conjugate-
gradient-based one in case of computing node failures.
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1. Introduction

Asynchronous iterative methods are gaining more and more attention in the sci-

entific computing field, especially for numerical simulation on large heterogeneous

computing platforms where performance issues related to the communication la-

tency, load balancing and fault-tolerance are particularly exacerbated. Indeed, so

far, the asynchronous iterative model constitutes the only parallel computational

model which does not require global serial data management, hence, does not suffer
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from Amdahl’s speedup asymptotic limit [1]. On practical aspects, then, since global

synchronization never needs to be performed, such a model provides us with a quite

straightforward fault-resilience ability and less sensitivity to both communication

delays and unbalanced load.

Asynchronous iterations arose as a generalization of classical fixed-point iterations,

both in linear and nonlinear frameworks (see, e.g., [8], [4]). Therefore, regarding

domain decomposition methods, their application mainly targeted the overlapping

Schwarz framework (see, e.g., [3], [11], [22], [23]). Recently, asynchronous nonoverlap-

ping decomposition has been addressed within the frameworks of optimized Schwarz

methods (see, e.g., [19]), the parareal time-decomposed time integration method (see

[15]) and the Jacobi-based sub-structuring approach (see [20]). In this paper, we ad-

dress the design of an asynchronous iterative model within the primal Schur domain

decomposition framework which originally features no fixed-point iterative scheme.

Precisely, considering p joined nonoverlapping subdomains, we address a Schur

complement inversion problem of the form

p∑

i=1

R(i)⊤S(i)R(i)z =

p∑

i=1

R(i)⊤d(i)

defined on the joint interface between the subdomains. To design an asynchronous

fixed-point iterative scheme within such a framework, two main issues are to be han-

dled. First, a classical asynchronous iterative model would require a decomposition

of the form

z = [z1, . . . , zp]
⊤,

while the primal nonoverlapping domain decomposition rather induces

z = z(1) = . . . = z(p).

Second, it can happen that the entries of the matrices S(i) are not explicitly known,

which would prevent us from being able to consider classical matrix splittings re-

quiring, for instance, the diagonal entries of

p∑

i=1

R(i)⊤S(i)R(i).

We propose here both a suitable asynchronous iterative model and practical applica-

ble matrix splittings. General convergence conditions are provided, which consist of

spectral radius bounds usually associated to asynchronous fixed-point methods. Con-

vergent splittings of symmetric positive definite (SPD) matrices have been studied

at a more general scope, e.g., in [2], where it is shown that constructing a convergent

splitting of an SPD matrix can be achieved by constructing a convergent splitting of a
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related, easily deduced M-matrix. A generalization of this result is due to [25], where

the deduced matrix is an H-matrix. In [7], some splitting conditions ensure both

convergence and asynchronous convergence of two-stage multi-splitting methods for

Hermitian PD matrices. The approach in [25] consists of scaling up the diagonal

entries of the given SPD matrix A until a strictly diagonally dominant matrix Â is

obtained, which, therefore, is an H-matrix. Then, a convergent splitting Â = M̂− N̂

implies a convergent splitting A = M̂ − N . We therefore provide here examples of

asynchronously convergent splittings of H-matrices, and resort to diagonal scaling

in numerical experiments when necessary.

The paper is organized as follows. Section 2 recalls general notions involved in

the convergence analysis of the new method, general asynchronous iterative models

and the primal Schur domain decomposition framework. Our main results are in

Section 3, where we formulate the relaxation-based iterative scheme and establish its

asynchronous convergence conditions, including a practical class of matrix splitting.

Experimental results in Section 4 target Poisson’s and linear elasticity problems on

a portion of 3D helicoid domain. The conclusions follow in Section 5.

2. Preliminary notions

2.1. Convergence analysis tools.

Notation 2.1. A = (ai,j)i,j∈N denotes a finite matrix A whose entry on its ith
row and jth column is denoted as ai,j , i ranging from 1 to its number of rows and j

ranging from 1 to its number of columns. The analogous notation x = (xi)i∈N is

used for column vectors.

Definition 2.1. Let A = (ai,j)i,j∈N be a square matrix and let x = (xi)i∈N and

w = (wi)i∈N > 0 be vectors with as many entries as the number of rows in A. The
weighted maximum norm ‖·‖w∞ is defined as

‖x‖w∞ := max
i

1

wi

|xi|, ‖A‖w∞ := max
i

1

wi

∑

j

|ai,j |wj .

Notation 2.2. ̺(A) denotes the spectral radius of a matrix A.

Notation 2.3. |A| denotes the entry-wise absolute value of a matrix A.

Lemma 2.1. Let A be a square matrix. Then,

̺(|A|) < 1 ⇔ ∃w > 0: ‖A‖w∞ < 1.

P r o o f. See, e.g., Corollary 6.1 in [5]. �
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Notation 2.4. For any two matrices A and B with the same numbers of rows and
columns, comparisons of the type A < B mean entry-wise comparisons and A > 0

therefore denotes an (entry-wise) non-negative matrix.

Lemma 2.2. For any two square matrices A and B, |A| 6 B ⇒ ̺(A) 6 ̺(B).
P r o o f. See, e.g., Theorem 2.21 in [24]. �

Definition 2.2 (M-matrix). An M-matrix A is a square matrix for which there
exists a real number α such that

αI −A > 0, α > ̺(αI −A),

where I denotes the identity matrix.

R em a r k 2.1 (see, e.g., [10]). An M-matrix A = (ai,j)i,j∈N can equivalently be

defined as a non-singular square matrix such that
{
ai,j 6 0, i 6= j,

A−1 > 0.

Definition 2.3 (Comparison matrix). Let A = (ai,j)i,j∈N be a square matrix.

Its comparison matrix 〈A〉 = (ãi,j)i,j∈N is given by
{
ãi,i := |ai,i|,
ãi,j := −|ai,j|, i 6= j.

Definition 2.4 (H-matrix). An H-matrix A is a matrix such that 〈A〉 is an
M-matrix.

R em a r k 2.2 (see, e.g., [25]). According to, e.g., Theorem 5’ in [9], an H-matrix

A = (ai,j)i,j∈N can equivalently be defined as a generalized strictly diagonally dom-

inant matrix, i.e.,

∃u = (uj)j∈N > 0: ∀ i, |ai,i|ui >
∑

j 6=i

|ai,j |uj.

Definition 2.5 (H-splitting). LetM be a non-singular matrix. An H-splitting

A = M−N of a matrix A is a splitting such that 〈M〉 − |N | is an M-matrix.

Lemma 2.3. If A = M−N is an H-splitting, then

̺(|I −M−1A|) < 1

with I denoting the identity matrix.

P r o o f. This is straightforward from the proof of Theorem 3.4 (c) in [12]. �
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Notation 2.5. Let x = (xi)i∈N and y = (yi)i∈N be two vectors of the same size.

Then, max(x, y) denotes their entry-wise maximum, i.e., the vector with entries

given by

(max(x, y))i := max{xi, yi}.

Definition 2.6 (|·|-contraction). Let E be a vector space. A |·|-contracting
function (contracting with respect to the absolute value operator |·|)

F : Em → E, m ∈ N,

is a function for which there exists a matrix T > 0 with ̺(T ) < 1 such that

∀X,Y ∈ Em, |F(X)−F(Y )| 6 T max(|x(1) − y(1)|, . . . , |x(m) − y(m)|)

with X := (x(1), . . . , x(m)) and Y := (y(1), . . . , y(m)).

2.2. Asynchronous iterations framework. Let

(2.1) Ax = b

be a linear system of n equations, let A = M −N be a splitting of A, and let f be

the associated function defined by

(2.2) f(x) = (I −M−1A)x+M−1b,

where I denotes the identity matrix. Then, one verifies

Ax = b ⇔ x = f(x),

which allows for a fixed-point formulation of the problem (2.1). Classical fixed-point

iterations generate a sequence {xk}k∈N such that

(2.3) xk+1 = f(xk),

which is expected to converge toward the solution x∗ of (2.1) for any given x0.

Equivalently, considering a decomposition

x = [x1, . . . , xp]
⊤, f(x) = [f1(x), . . . , fp(x)]

⊤, p 6 n,

the iterative model (2.3) can be reformulated as

xk+1
i = fi(x

k
1 , . . . , x

k
p) ∀ i ∈ {1, . . . , p}.
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Asynchronous iterations arose from the free steering model which allows for consid-

ering that a global iteration consists of any update of an arbitrary subset

P (k) ⊆ {1, . . . , p}

of components of xk (see, e.g., [21]). Additionally, if one no longer explicitly per-

forms such global iterations, then any component may be updated concurrently to

its read access, and therefore, any update xk+1
i is potentially based on outdated com-

ponents x
τ i
j (k)

j , j ∈ {1, . . . , p}, i.e., with τ ij(k) 6 k. The corresponding asynchronous

iterative model is thus given by (see, e.g., [6])

(2.4) xk+1
i =

{
fi(x

τ i
1
(k)

1 , . . . , x
τ i
p(k)

p ) ∀ i ∈ P (k),

xk
i ∀ i /∈ P (k),

where it is however assumed that every component is infinitely often updated, i.e.,

(2.5) ∀ i ∈ {1, . . . , p}, card{k ∈ N : i ∈ P (k)} = ∞,

and that access delays to updated components are bounded, so as to have

(2.6) ∀ i, j ∈ {1, . . . , p}, lim
k→∞

τ ij(k) = ∞.

In [4], nonlinear fixed-point problems of the form

x = f̃(x, x, . . . , x), f̃ : Em → E, m ∈ N,

are introduced to analyze Newton asynchronous iterations. It yielded a generalization

of (2.4) into

(2.7) xk+1
i =

{
f̃i(x

τ i
1,1(k)

1 , . . . , x
τ i
p,1(k)

p , . . . , x
τ i
1,m(k)

1 , . . . , x
τ i
p,m(k)

p ) ∀ i ∈ P (k),

xk
i ∀i /∈ P (k),

so that (2.4) corresponds to the case m = 1.

Theorem 2.1 ([8], Chazan and Miranker (1969)). The asynchronous iterative

model (2.4) is convergent for any x0, {P (k)}k∈N and τ ij with i, j ∈ {1, . . . , p} if and
only if

̺(|I −M−1A|) < 1.

P r o o f. See [8]. �

Theorem 2.2 (Baudet [4]). The asynchronous iterative model (2.7) is convergent

if f̃ is |·|-contracting.
P r o o f. See [4]. �
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2.3. Domain decomposition framework. Let

(2.8)



A

(1)
II 0 A

(1)
IΓ

0 A
(2)
II A

(2)
IΓ

A
(1)
ΓI A

(2)
ΓI A

(1)
ΓΓ +A

(2)
ΓΓ





x
(1)
I

x
(2)
I

xΓ


 =




b
(1)
I

b
(2)
I

b
(1)
Γ + b

(2)
Γ




be a linear problem defined on two nonoverlapping (sub)domains Ω1 and Ω2 joined

by an interface Γ with the respective solutions x
(1)
I , x

(2)
I and xΓ. By eliminating

either x
(2)
I or x

(1)
I , it yields either

[
A

(1)
II A

(1)
IΓ

A
(1)
ΓI A

(1)
ΓΓ +A

(2)
ΓΓ −A

(2)
ΓI A

(2)
II

−1
A

(2)
IΓ

] [
x
(1)
I

xΓ

]
=

[
b
(1)
I

b
(1)
Γ + b

(2)
Γ −A

(2)
ΓI A

(2)
II

−1
b
(2)
I

]

or

[
A

(2)
II A

(2)
IΓ

A
(2)
ΓI A

(1)
ΓΓ +A

(2)
ΓΓ −A

(1)
ΓI A

(1)
II

−1
A

(1)
IΓ

] [
x
(2)
I

xΓ

]
=

[
b
(2)
I

b
(1)
Γ + b

(2)
Γ −A

(1)
ΓI A

(1)
II

−1
b
(1)
I

]
,

which are two ways of solving the same initial problem. Then, from each of these

two parallel points of view i ∈ {1, 2}, and considering that data related to j ∈ {1, 2},
j 6= i, are unknown, one sets up two different equations

[
A

(1)
II A

(1)
IΓ

A
(1)
ΓI A

(1)
ΓΓ + Λ

(1)
ΓΓ

] [
x
(1)
I

x
(1)
Γ

]
=

[
b
(1)
I

b
(1)
Γ + λ

(1)
Γ

]

and [
A

(2)
II A

(2)
IΓ

A
(2)
ΓI A

(2)
ΓΓ + Λ

(2)
ΓΓ

] [
x
(2)
I

x
(2)
Γ

]
=

[
b
(2)
I

b
(2)
Γ + λ

(2)
Γ

]
,

which solutions, for any choice of Λ
(1)
ΓΓ and Λ

(2)
ΓΓ , are those of the global problem (2.8)

if and only if (see, e.g., Theorem 2.1 in [18])

{
x
(1)
Γ = x

(2)
Γ ,

λ
(1)
Γ − Λ

(1)
ΓΓx

(1)
Γ = −(λ

(2)
Γ − Λ

(2)
ΓΓx

(2)
Γ ).

Then, again, by eliminating x
(1)
I and x

(2)
I , one reaches an equivalent problem defined

on Γ by

(A
(1)
ΓΓ −A

(1)
ΓI A

(1)
II

−1
A

(1)
IΓ + Λ

(1)
ΓΓ)x

(1)
Γ = b

(1)
Γ + λ

(1)
Γ −A

(1)
ΓI A

(1)
II

−1
b
(1)
I ,

(A
(2)
ΓΓ −A

(2)
ΓI A

(2)
II

−1
A

(2)
IΓ + Λ

(2)
ΓΓ)x

(2)
Γ = b

(2)
Γ + λ

(2)
Γ −A

(2)
ΓI A

(2)
II

−1
b
(2)
I ,

x
(1)
Γ = x

(2)
Γ ,

λ
(1)
Γ − Λ

(1)
ΓΓx

(1)
Γ = −(λ

(2)
Γ − Λ

(2)
ΓΓx

(2)
Γ ).
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Let us finally identify the local Schur complements

S
(i)
ΓΓ := A

(i)
ΓΓ −A

(i)
ΓIA

(i)
II

−1
A

(i)
IΓ, i ∈ {1, 2},

and put

d
(i)
Γ := b

(i)
Γ −A

(i)
ΓIA

(i)
II

−1
b
(i)
I , i ∈ {1, 2}.

Then, eliminating the unknowns λ
(i)
Γ , i ∈ {1, 2}, leads to

x
(1)
Γ = x

(2)
Γ ,

S
(1)
ΓΓx

(1)
Γ + S

(2)
ΓΓx

(2)
Γ = d

(1)
Γ + d

(2)
Γ

and, hence, to each of the identical equations

(2.9) (S
(1)
ΓΓ + S

(2)
ΓΓ )x

(1)
Γ = d

(1)
Γ + d

(2)
Γ ,

(S
(1)
ΓΓ + S

(2)
ΓΓ )x

(2)
Γ = d

(1)
Γ + d

(2)
Γ ,

where

SΓΓ := S
(1)
ΓΓ + S

(2)
ΓΓ

is the global Schur complement from (2.8).

To generalize (2.8) to p subdomains, Boolean matrices R
(i)
ΓlΓ
, i ∈ {1, . . . , p}, are

considered to denote the mappings between the whole interface Γ and its restricted

parts Γl that subdomains are locally acting on. We then actually have

A
(i)
IΓ = A

(i)
IΓl

R
(i)
ΓlΓ

, A
(i)
ΓI = R

(i)
ΓΓl

A
(i)
ΓlI

, A
(i)
ΓΓ = R

(i)
ΓΓl

A
(i)
ΓlΓl

R
(i)
ΓlΓ

,

b
(i)
Γ = R

(i)
ΓΓl

b
(i)
Γl

with

R
(i)
ΓΓl

= R
(i)
ΓlΓ

⊤

and, further,

S
(i)
ΓΓ = R

(i)
ΓΓl

S
(i)
ΓlΓl

R
(i)
ΓlΓ

, d
(i)
Γ = R

(i)
ΓΓl

d
(i)
Γl
,

with

S
(i)
ΓlΓl

:= A
(i)
ΓlΓl

−A
(i)
ΓlI

A
(i)
II

−1
A

(i)
IΓl

, d
(i)
Γl

:= b
(i)
Γl

−A
(i)
ΓlI

A
(i)
II

−1
b
(i)
I .

The interface problem (2.9) is therefore generalized as

SΓΓxΓ = dΓ

with

SΓΓ :=

p∑

i=1

S
(i)
ΓΓ, dΓ :=

p∑

i=1

d
(i)
Γ .
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3. Asynchronous primal Schur method

3.1. Iterative scheme. Let us consider, as in (2.9), p identical equations

p∑

j=1

S
(j)
ΓΓx

(i)
Γ =

p∑

j=1

d
(j)
Γ , i ∈ {1, . . . , p}.

A splitting SΓΓ = MΓΓ−NΓΓ of each of them leads to p identical iterative procedures

x
(i),k+1
Γ =

(
IΓΓ −M−1

ΓΓ

p∑

j=1

S
(j)
ΓΓ

)
x
(i),k
Γ +M−1

ΓΓ

p∑

j=1

d
(j)
Γ , i ∈ {1, . . . , p},

with IΓΓ denoting the identity matrix defined on Γ. Let us, then, consider p matri-

ces I
(i)
ΓΓ, i ∈ {1, . . . , p}, such that

p∑

i=1

I
(i)
ΓΓ = IΓΓ.

We thus have

x
(i),k+1
Γ =

( p∑

j=1

I
(j)
ΓΓ −M−1

ΓΓ S
(j)
ΓΓ

)
x
(i),k
Γ +M−1

ΓΓ

p∑

j=1

d
(j)
Γ , i ∈ {1, . . . , p}.

Then, as these are equivalent iterations, we also have

x
(1),k
Γ = . . . = x

(p),k
Γ ∀ k,

which allows us to replace x
(i),k
Γ by any x

(j),k
Γ and get

x
(i),k+1
Γ =

p∑

j=1

(I
(j)
ΓΓ −M−1

ΓΓS
(j)
ΓΓ )x

(j),k
Γ +M−1

ΓΓ

p∑

j=1

d
(j)
Γ

=

p∑

j=1

I
(j)
ΓΓx

(j),k
Γ +M−1

ΓΓ (d
(j)
Γ − S

(j)
ΓΓx

(j),k
Γ ).

The corresponding parallel iterative scheme is thus given by

(3.1)





y
(i),k
Γ := I

(i)
ΓΓx

(i),k
Γ +M−1

ΓΓ (d
(i)
Γ − S

(i)
ΓΓx

(i),k
Γ ),

x
(i),k+1
Γ =

p∑

j=1

y
(j),k
Γ ∀ i ∈ {1, . . . , p},
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which exhibits communication only for the vectors y
(j),k
Γ with j 6= i. This therefore

generalizes to an asynchronous iterative scheme

(3.2)





y
(i),k
Γ := I

(i)
ΓΓx

(i),k
Γ +M−1

ΓΓ (d
(i)
Γ − S

(i)
ΓΓx

(i),k
Γ ),

x
(i),k+1
Γ =





p∑

j=1

y
(j),τ i

j (k)

Γ ∀ i ∈ P (k),

x
(i),k
Γ ∀ i /∈ P (k),

which lies in the framework of the general model (2.7) with f̃ := f (i) being, for each

process i ∈ {1, . . . , p}, given by

(3.3) f (i)(x
(1)
Γ , . . . , x

(p)
Γ ) =

p∑

j=1

I
(j)
ΓΓx

(j)
Γ +M−1

ΓΓ (d
(j)
Γ − S

(j)
ΓΓx

(j)
Γ ),

and satisfying

SΓΓxΓ = dΓ ⇔ xΓ = f (i)(xΓ, . . . , xΓ).

While the first equation in both (3.1) and (3.2) is defined on the whole interface Γ,

in practice, it can be operated in each local subspace Γl if, for instance, MΓΓ is

diagonal. Indeed, if MΓΓ is diagonal, then one satisfies

y
(i),k
Γ = I

(i)
ΓΓx

(i),k
Γ +M−1

ΓΓ (d
(i)
Γ − S

(i)
ΓΓx

(i),k
Γ )

= R
(i)
ΓΓl

I
(i)
ΓlΓl

R
(i)
ΓlΓ

x
(i),k
Γ +M−1

ΓΓ (R
(i)
ΓΓl

d
(i)
Γl

−R
(i)
ΓΓl

S
(i)
ΓlΓl

R
(i)
ΓlΓ

x
(i),k
Γ )

= R
(i)
ΓΓl

I
(i)
ΓlΓl

x
(i),k
Γl

+M−1
ΓΓ (R

(i)
ΓΓl

d
(i)
Γl

−R
(i)
ΓΓl

S
(i)
ΓlΓl

x
(i),k
Γl

)

= R
(i)
ΓΓl

I
(i)
ΓlΓl

x
(i),k
Γl

+M−1
ΓΓR

(i)
ΓΓl

(d
(i)
Γl

− S
(i)
ΓlΓl

x
(i),k
Γl

)

= R
(i)
ΓΓl

I
(i)
ΓlΓl

x
(i),k
Γl

+R
(i)
ΓΓl

R
(i)
ΓlΓ

M−1
ΓΓR

(i)
ΓΓl

(d
(i)
Γl

− S
(i)
ΓlΓl

x
(i),k
Γl

)

= R
(i)
ΓΓl

[I
(i)
ΓlΓl

x
(i),k
Γl

+R
(i)
ΓlΓ

M−1
ΓΓR

(i)
ΓΓl

(d
(i)
Γl

− S
(i)
ΓlΓl

x
(i),k
Γl

)],

which leads to

y
(i),k
Γl

:= I
(i)
ΓlΓl

x
(i),k
Γl

+R
(i)
ΓlΓ

M−1
ΓΓR

(i)
ΓΓl

(d
(i)
Γl

− S
(i)
ΓlΓl

x
(i),k
Γl

), x
(i),k+1
Γ =

p∑

j=1

R
(j)
ΓΓl

y
(j),k
Γl

.

3.2. Convergence conditions.

Lemma 3.1. Let

F : Em×n 7→ En, F := [F (1), . . . ,F (n)]⊤, n,m ∈ N,

be a function derived from n given functions

F (i) : Em 7→ E, i ∈ {1, . . . , n}.

Then, F is |·|-contracting if F (i) is |·|-contracting for all i ∈ {1, . . . , n}.
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P r o o f. We conduct the proof for n = 2 and m = 2. The generalization to any n

and m is apparent. According to Definition 2.6, let T (1) and T (2) be the matrices of

contraction of F (1) and F (2), respectively, which satisfy

T (1) > 0, ̺(T (1)) < 1, T (2) > 0, ̺(T (2)) < 1.

Let us consider two arbitrary vectors

X := (x(1,1), x(1,2), x(2,1), x(2,2)), Y := (y(1,1), y(1,2), y(2,1), y(2,2))

with x(i,j), y(i,j) ∈ E, where i, j ∈ {1, 2}. Then, we have

|F(X)−F(Y )| =
[ |F (1)(x(1,1), x(1,2))−F (1)(y(1,1), y(1,2))|
|F (2)(x(2,1), x(2,2))−F (2)(y(2,1), y(2,2))|

]

6

[
T (1)max(|x(1,1) − y(1,1)|, |x(1,2) − y(1,2)|)
T (2)max(|x(2,1) − y(2,1)|, |x(2,2) − y(2,2)|)

]

=

[
T (1) 0

0 T (2)

] [
max(|x(1,1) − y(1,1)|, |x(1,2) − y(1,2)|)
max(|x(2,1) − y(2,1)|, |x(2,2) − y(2,2)|)

]

=

[
T (1) 0

0 T (2)

]
max

(∣∣∣∣
[
x(1,1)

x(2,1)

]
−
[
y(1,1)

y(2,1)

]∣∣∣∣ ,
∣∣∣∣
[
x(1,2)

x(2,2)

]
−
[
y(1,2)

y(2,2)

]∣∣∣∣
)

and, hence,

T > 0, ̺(T ) < 1, T =

[
T (1) 0

0 T (2)

]
,

which thus concludes the proof. �

Theorem 3.1. The asynchronous primal Schur method (3.2) is convergent if

(3.4) ̺

( p∑

i=1

|I(i)ΓΓ −M−1
ΓΓ S

(i)
ΓΓ|

)
< 1.

P r o o f. Let us consider arbitrary vectors x
(j)
Γ , y

(j)
Γ with j ∈ {1, . . . , p}, defined

on Γ, and XΓp := (x
(1)
Γ , . . . , x

(p)
Γ ), YΓp := (y

(1)
Γ , . . . , y

(p)
Γ ). Then, according to (3.3),

we have, for any i ∈ {1, . . . , p},

|f (i)(XΓp)− f (i)(YΓp)| =
∣∣∣∣

p∑

j=1

I
(j)
ΓΓ (x

(j)
Γ − y

(j)
Γ )−M−1

ΓΓ S
(j)
ΓΓ (x

(j)
Γ − y

(j)
Γ )

∣∣∣∣

6

p∑

j=1

|I(j)ΓΓ −M−1
ΓΓ S

(j)
ΓΓ ||x

(j)
Γ − y

(j)
Γ |

6

p∑

j=1

|I(j)ΓΓ −M−1
ΓΓ S

(j)
ΓΓ |

p
max
j=1

|x(j)
Γ − y

(j)
Γ |.

Given (3.4), each f (i) is therefore |·|-contracting, and the application of Lemma 3.1
concludes the proof according to Theorem 2.2. �
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Assumption 3.1. Let the matrices I
(i)
ΓΓ −M−1

ΓΓ S
(i)
ΓΓ = (q

(i)
l,t )l,t∈N, i ∈ {1, . . . , p},

be entry-wise of non-different signs, i.e.,

q
(i)
l,t < 0 ⇒ q

(j)
l,t 6 0, q

(i)
l,t > 0 ⇒ q

(j)
l,t > 0, i, j ∈ {1, . . . , p}.

Corollary 3.1. Under Assumption 3.1, the asynchronous primal Schur method

(3.2) is convergent if ̺(|IΓΓ −M−1
ΓΓSΓΓ|) < 1.

P r o o f. Under Assumption 3.1, we have

p∑

i=1

|I(i)ΓΓ −M−1
ΓΓ S

(i)
ΓΓ| =

∣∣∣∣
p∑

i=1

I
(i)
ΓΓ −M−1

ΓΓ S
(i)
ΓΓ

∣∣∣∣ = |IΓΓ −M−1
ΓΓ SΓΓ|,

hence, Theorem 3.1 can be applied directly. �

3.3. Some practical convergence cases.

Notation 3.1. Let A = (ai,j)i,j∈N be a rectangular matrix and let w = (wj)j∈N

and v = (vi)i∈N > 0 be two vectors having as many entries as the number of columns

and the number of rows in A, respectively. We denote by |A|wv the vector with entries
given by the weighted row-sums

(|A|wv )i :=
1

vi

∑

j

|ai,j |wj .

Notation 3.2. Let w = (wi)i∈N and v = (vi)i∈N > 0 be two vectors. We denote

by w/v the entry-wise division of w by v, i.e., the vector with entries given by

(w/v)i :=
wi

vi
.

R em a r k 3.1. Notation 3.1 and Notation 3.2 induce

‖A‖w∞ = max
i

|A|ww, |A|wv = (|A|w)/v =
∑

j

wj |Aj |/v,

where Aj denotes the jth column of A.

Lemma 3.2. Let A = (ai,j)i,j∈N and B = (bj,l)j,l∈N be two matrices such that

the number of columns in A equals the number of rows in B. Let z = (zj)j∈N > 0,

v = (vi)i∈N > 0 and w = (wl)l∈N be three vectors having as many entries as the

number of columns in A, the number of rows in A and the number of columns in B,
respectively. Let, at last, u = (uj)j∈N be the vector with as many entries as the

number of rows in B and given by uj := 1 for all j. Then, we have

|B|wz < u ⇒ |AB|wv < |A|zv.
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P r o o f. According to Remark 3.1, we have

|AB|wv =
∑

l

wl|(AB)l|/v,

where (AB)l is the lth column of the product AB. Since the entries of the matrix
AB = (ci,l)i,l∈N are given by

ci,l :=
∑

j

ai,jbj,l,

we can also write

(AB)l =
∑

j

bj,lAj ,

where Aj is the jth column of A. These imply that

|AB|wv =
∑

l

wl

∣∣∣∣
∑

j

bj,lAj

∣∣∣∣/v

6
∑

l

wl

∑

j

|bj,lAj |/v

=
∑

l

∑

j

wl|bj,l||Aj |/v

=
∑

l

∑

j

wl

|bj,l|
zj

zj|Aj |/v

=
∑

j

(∑

l

wl

|bj,l|
zj

)
zj |Aj |/v.

Referring to Notation 3.1, which gives the entries of the vector |B|wz as

(|B|wz )j :=
∑

l

wl

|bj,l|
zj

,

we can further write

|AB|wv 6
∑

j

(|B|wz )jzj|Aj |/v,

which implies, for the entries of the vectors |AB|wv and |Aj |/v,

(|AB|wv )i 6
∑

j

(|B|wz )jzj(|Aj |/v)i.
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If, therefore, |B|wz < u, then we have, still considering vectors entries,

(|B|wz )j < 1 ∀ j,
(|B|wz )jzj(|Aj |/v)i < zj(|Aj |/v)i ∀ j ∀ i,

(|AB|wv )i 6
∑

j

(|B|wz )jzj(|Aj |/v)i <
∑

j

zj(|Aj |/v)i ∀ i,

|AB|wv <
∑

j

zj |Aj |/v.

Finally, according to Remark 3.1,

|A|zv =
∑

j

zj|Aj |/v,

which thus concludes the proof. �

Corollary 3.2. Let A be a square matrix block-decomposed as

A =




0 . . . 0 A1,m

...
. . .

...
...

0 . . . 0 Am−1,m

Am,1 . . . Am,m−1 Am,m


 , m ∈ N.

Then, we have

̺(|A|) < 1 ⇒ ̺

(
|Am,m|+

m−1∑

i=1

|Am,iAi,m|
)

< 1.

P r o o f. Let us consider, for m = 2,

A =

[
0 A1,2

A2,1 A2,2

]
.

According to Lemma 2.1,

̺(|A|) < 1 ⇒ ∃w > 0: ‖A‖w∞ < 1.

Let such a vector w be decomposed as

w = [w1 w2 ]
⊤
,

and let u1 := (1, 1, . . . , 1)⊤ and u2 := (1, 1, . . . , 1)⊤ be the respective size-correspond-

ing vectors. Then, recalling that from Remark 3.1 we have

‖A‖w∞ = max
l

|A|ww
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with l ranging from one to the number of entries of w, we also deduce, for the first

and the second block-lines of A, that

max
l1

|A1,2|w2

w1
< 1, max

l2
(|A2,1|w1

w2
+ |A2,2|w2

w2
) < 1,

|A1,2|w2

w1
< u1, |A2,1|w1

w2
+ |A2,2|w2

w2
< u2

with l1 and l2 ranging from one to the number of entries of w1 and w2, respectively.

Lemma 3.2 therefore ensures

|A2,1A1,2|w2

w2
< |A2,1|w1

w2
,

|A2,1A1,2|w2

w2
+ |A2,2|w2

w2
< |A2,1|w1

w2
+ |A2,2|w2

w2
< u2,

|(|A2,1A1,2|+ |A2,2|)|w2

w2
< u2,

max
l2

|(|A2,1A1,2|+ |A2,2|)|w2

w2
< 1,

‖(|A2,1A1,2|+ |A2,2|)‖w2

∞ < 1,

which concludes the proof for m = 2, given that

̺(|A2,1A1,2|+ |A2,2|) 6 ‖(|A2,1A1,2|+ |A2,2|)‖w2

∞ .

The generalization to m ∈ N easily follows if we have, for each block-line i ∈
{1, . . . ,m− 1} and the last one, m,

|Ai,m|wm

wi
< ui,

m−1∑

j=1

|Am,j |wj

wm
+ |Am,m|wm

wm
< um.

�

Let us now consider

(3.5) A :=




A
(1)
II 0 . . . 0 A

(1)
IΓ

0 A
(2)
II

. . .
...

...
...

. . .
. . . 0 A

(p−1)
IΓ

0 . . . 0 A
(p)
II A

(p)
IΓ

A
(1)
ΓI . . . A

(p−1)
ΓI A

(p)
ΓI AΓΓ



, AΓΓ :=

p∑

i=1

A
(i)
ΓΓ,

(3.6) M :=




A
(1)
II 0 . . . 0 0

0 A
(2)
II

. . .
...

...
...

. . .
. . . 0 0

0 . . . 0 A
(p)
II 0

0 . . . 0 0 MΓΓ



.
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Assumption 3.2. Let the matrices I
(i)
ΓΓ−M−1

ΓΓA
(i)
ΓΓ, i ∈ {1, . . . , p}, be such that

p∑

i=1

|I(i)ΓΓ −M−1
ΓΓA

(i)
ΓΓ| =

∣∣∣∣
p∑

i=1

I
(i)
ΓΓ −M−1

ΓΓA
(i)
ΓΓ

∣∣∣∣.

Theorem 3.2. Under Assumption 3.2, the asynchronous primal Schur method

(3.2) is convergent if ̺(|I −M−1A|) < 1.

P r o o f. Under Assumption 3.2,

p∑

i=1

|I(i)ΓΓ −M−1
ΓΓA

(i)
ΓΓ| = |IΓΓ −M−1

ΓΓAΓΓ|,

hence, we have

p∑

i=1

|I(i)ΓΓ −M−1
ΓΓ S

(i)
ΓΓ| =

p∑

i=1

|I(i)ΓΓ −M−1
ΓΓ (A

(i)
ΓΓ −A

(i)
ΓIA

(i)
II

−1
A

(i)
IΓ)|

6

p∑

i=1

|I(i)ΓΓ −M−1
ΓΓA

(i)
ΓΓ|+ |M−1

ΓΓA
(i)
ΓIA

(i)
II

−1
A

(i)
IΓ|

= |IΓΓ −M−1
ΓΓAΓΓ|+

p∑

i=1

|M−1
ΓΓA

(i)
ΓIA

(i)
II

−1
A

(i)
IΓ|.

Note, on another side, that

I −M−1A =




0 . . . 0 −A
(1)
II

−1
A

(1)
IΓ

...
. . .

...
...

0 . . . 0 −A
(p)
II

−1
A

(p)
IΓ

−M−1
ΓΓA

(1)
ΓI . . . −M−1

ΓΓA
(p)
ΓI IΓΓ −M−1

ΓΓAΓΓ


 ,

hence, Corollary 3.2 ensures

̺(|I −M−1A|) < 1 ⇒ ̺

(
|IΓΓ −M−1

ΓΓAΓΓ|+
p∑

i=1

|M−1
ΓΓA

(i)
ΓIA

(i)
II

−1
A

(i)
IΓ|

)
< 1.

It follows, according to Lemma 2.2, that

̺

( p∑

i=1

|I(i)ΓΓ −M−1
ΓΓ S

(i)
ΓΓ|

)
6 ̺

(
|IΓΓ −M−1

ΓΓAΓΓ|+
p∑

i=1

|M−1
ΓΓA

(i)
ΓIA

(i)
II

−1
A

(i)
IΓ|

)
< 1.

Theorem 3.1 therefore applies, which concludes the proof. �

Assumption 3.3. LetW
(i)
ΓΓ > 0, i ∈ {1, . . . , p}, be matrices of weighting factors

such that

A
(i)
ΓΓ = W

(i)
ΓΓ ◦AΓΓ, I

(i)
ΓΓ = W

(i)
ΓΓ ◦ IΓΓ,

where the operator ◦ denotes the entry-wise product.
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Corollary 3.3. Under Assumption 3.3, the asynchronous primal Schur method

(3.2) is convergent if MΓΓ is diagonal and

̺(|I −M−1A|) < 1.

P r o o f. Under Assumption 3.3, if MΓΓ is diagonal, then

I
(i)
ΓΓ −M−1

ΓΓA
(i)
ΓΓ = W

(i)
ΓΓ ◦ IΓΓ −M−1

ΓΓ (W
(i)
ΓΓ ◦AΓΓ) = W

(i)
ΓΓ ◦ (IΓΓ −M−1

ΓΓAΓΓ).

Note that
p∑

i=1

A
(i)
ΓΓ = AΓΓ ⇒

p∑

i=1

W
(i)
ΓΓ = (1)ΓΓ,

where (1)ΓΓ denotes the matrix on Γ with all entries set to 1. It follows that

p∑

i=1

|I(i)ΓΓ −M−1
ΓΓA

(i)
ΓΓ| = |IΓΓ −M−1

ΓΓAΓΓ|,

hence, Assumption 3.2 is satisfied, which makes Theorem 3.2 applicable. �

Corollary 3.4. Under Assumption 3.2, the asynchronous primal Schur method

(3.2) is convergent if A is an H-matrix and

〈MΓΓ〉 − |MΓΓ −AΓΓ| = 〈AΓΓ〉.

P r o o f. The matrices A andM being of the forms (3.5) and (3.6), it follows from

Definition 2.3 of comparison matrices that

〈MΓΓ〉 − |MΓΓ −AΓΓ| = 〈AΓΓ〉 ⇒ 〈M〉 − |M −A| = 〈A〉.

By Definition 2.4 of H-matrices, 〈A〉 is an M-matrix, hence, by Definition 2.5, A =

M − (M −A) is an H-splitting. Lemma 2.3 therefore ensures that

̺(|I −M−1A|) < 1,

hence, Theorem 3.2 applies. �

Corollary 3.5. Under Assumption 3.3, the asynchronous primal Schur method

(3.2) is convergent if A is an H-matrix, MΓΓ is diagonal, and

〈MΓΓ〉 − |MΓΓ −AΓΓ| = 〈AΓΓ〉.

P r o o f. This directly follows from Corollaries 3.3 and 3.4. �
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Notation 3.3. For any square matrix A, diagA denotes the diagonal matrix
obtained by setting all off-diagonal entries of A to 0.

R em a r k 3.2. For any square matrix A,

M = diagA ⇒ 〈M〉− |M−A| = 〈A〉.

R em a r k 3.3. For any real square matrix A and any real diagonal matrixM,

M > diagA > 0 ⇒ 〈M〉− |M−A| = 〈A〉.

4. Experimental results

4.1. Implementation aspects. We followed asynchronous implementation

guidelines from [17] for handling interface data updates, and from [16], [17], [13]

for detecting the convergence of the solver. Using the Message Passing Interface

(MPI) standard, several message reception requests per neighbor are kept active

at the same time, so that several new interface data can be received during the

computation phase. The communication phase consists of updating the interface

buffers using the content of the corresponding communication buffers, then checking

the completion of previously initiated requests, upon which new requests are trig-

gered. Similarly, message sending buffers are updated from the content of the newly

computed local solution, then message sending requests are triggered if the previous

ones have completed. Algorithm 1 gives an overview of the asynchronous primal

Schur solver, where the weighting matrix I(i) corresponds to

I(i) :=

[
I 0

0 I
(i)
ΓlΓl

]
.

The function call Synchronize(r
(i)
Γl
) exchanges interface data and performs the

update

r
(i)
Γl

:= R
(i)
ΓlΓ

p∑

j=1

R
(j)
ΓΓl

r
(j)
Γl

.

The function ASynchronize(.) applies the same update without blocking for com-

munication, and managing requests as previously described. The function ISyn-

chronize(.) is non-blocking as well but more similar to MPI non-blocking collective

routines such as IAllReduce(.). The update is performed once all of the interface

data is available, then the returned request object is marked as having completed.
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Such non-blocking synchronization is derived from the snapshot-based convergence

detection [16], [17], while being able to rely on such residual error computed without

the exact snapshot-based protocol is due to [13].

Algorithm 1 Asynchronous primal Schur solver

1: r(i) := b(i) −A(i)x(i)

2: Synchronize(r
(i)
Γl
)

3: r⊤r := AllReduce(r(i)
⊤
I(i)r(i), SUM)

4: ‖r‖ :=
√
r⊤r

5: k := 0

6: k(i) := 0

7: convdetect phase := 0

8: while ‖r‖ > ε and k < k max do

9: x
(i)
I := Solve(A

(i)
II , b

(i)
I −A

(i)
IΓl

x
(i)
Γl
)

10: x
(i)
Γl
:= I

(i)
ΓlΓl

x
(i)
Γl

+R
(i)
ΓlΓ

M−1
ΓΓR

(i)
ΓΓl

(b
(i)
Γl

−A
(i)
ΓlI

x
(i)
I −A

(i)
ΓlΓl

x
(i)
Γl
)

11: ASynchronize(x
(i)
Γl
)

12: k(i) := k(i) + 1

13: if convdetect phase = 0 then

14: r(i) := b(i) −A(i)x(i)

15: req := ISynchronize(r
(i)
Γl
)

16: convdetect phase := 1

17: end if

18: if convdetect phase = 1 and Test(req) then

19: req := IAllReduce(r(i)
⊤
I(i)r(i), r⊤r, SUM)

20: convdetect phase := 2

21: end if

22: if convdetect phase = 2 and Test(req) then

23: ‖r‖ :=
√
r⊤r

24: convdetect phase := 0

25: k := k + 1

26: end if

27: end while

4.2. Problems and settings. As numerical experiment, we consider a right

helicoid domain shown in Figure 1 left, whose dimensions consist of its height h = 1m

in the z-axis direction, its width w = 1 m in the x-axis direction and its length

l = π/4 denoting the total rotation covered. Figure 2, for instance, shows a helicoid

of length 3π.
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Figure 1. (left) Experimental domain: right helicoid of length π/4, (right) 3D partitioning
scheme.

Figure 2. Right helicoid of length 3π.

A last characteristic is the raising factor of the helicoid while rotating, which is set

here to 0.25. See, e.g., [14] for geometrical equations fully describing different types

of helicoid. The partitioning of the geometry is made along each of its dimensions,

as shown in Figure 1 right.

Both Poisson’s problem

−∆u = g

and linear elasticity

−div σ(u) = g

are investigated with a uniform volume source (or load) and prescribed solution

u = 0, on either the inner and outer sides of the helicoid, or its starting and ending

sides (see Figure 3). In the linear elasticity case, a concrete material is considered

with Young’s modulus E = 32.5 GPa and Poisson’s ratio ν = 0.18.
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Figure 3. Boundary prescription: (left) inner and outer sides, (right) starting and ending
sides.

In each subdomain, the stiffness matrix and right-hand-side vector are generated

by P1 finite-element approximation. According to Remark 3.3, splitting matrices

MΓΓ = αdiagAΓΓ, α > 1,

are applied with α := 1 for Poisson’s problem and α := 1.4 for the linear elasticity

problem.

The experimental environment consists of an SGI ICE X cluster with 30 computing

nodes, where each node contains two 12-cores Intel Haswell Xeon CPUs at 2.30 GHz

and 58 GB RAM allocated, leading to a maximum of 720 processor cores available.

The nodes are interconnected through an FDR Infiniband network (56 Gb/s), and

communication is handled by the SGI-MPT middleware which implements the MPI

standard. Each processor core is mapped onto one MPI process, which is mapped

onto one subdomain.

In the sequel, we present execution times t in seconds, numbers of iterations k

and final global residual errors ‖Ax− b‖, where ‖·‖ denotes the Euclidean norm, for
a residual threshold set to 1E–6 as stopping criterion. Comparison is made between

conjugate gradient iterations (CG-Schur) and our relaxation approach (async-Schur),

both combined with the LU-factorization of the local matrices A
(i)
II . In the case of

asynchronous processing, each process i performs a proper number k(i) of iterations,

then kmax := max
i

k(i) is considered here. The final residual error is calculated

synchronously after convergence is detected. Combining the snapshot-based and

protocol-free approaches from [16], [17] and [13], intermediate global residual errors

could be evaluated conjointly to the asynchronous iterations without slowing down

the processes, leading to the consistently quick and accurate convergence detection.
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4.3. Performance assessment. The first observations are made on Poisson’s

problem with Dirichlet boundary conditions set on the inner and outer sides of the

helicoid (see Figure 3 left). Table 1 shows a limit of the problem size n (number

of degrees of freedom) beyond which the performance of the CG-Schur method is

strongly impacted, contrarily to our async-Schur approach which features a relatively

very low increase of its execution time when switching from the subdomain average

size n(i) = 1139 to n(i) = 1572. From there, the async-Schur stays relatively close to

the CG-Schur and even outperforms it for n(i) = 1572.

CG-Schur Async-Schur

n n(i) t (s) k ‖Ax− b‖ t (s) kmax ‖Ax− b‖ t/tCG

72576 793 0.2 135 8.99E–07 5 12101 9.24E–07 22

107584 1139 0.3 146 9.26E-07 6 12079 9.76E–07 23

152352 1572 21 152 9.38E–07 19 15942 8.51E–07 0.89

208080 2104 41 160 9.35E–07 70 28747 9.51E–07 1.69

275968 2744 55 171 9.67E–07 129 16846 9.67E–07 2.34

357216 3501 67 174 8.69E–07 265 17502 9.77E–07 3.97

Table 1. Performance for −∆u = g, u = 0 on the helicoid’s inner and outer sides, 120 cores
(5 nodes).

For average subdomain’s sizes n(i) > 1139, Figure 4 gives a performance overview

when increasing the number of subdomains but keeping a constant problem size n

(weak scaling). This also corresponds to a decreasing ratio n(i)/n.

Considering, however, observations illustrated in Table 1, it remains very likely

that the performance of the async-Schur method depends more on n(i) than on n(i)/n.

200 400 600

Number of CPU cores

0

200

400

600

800

1000

S
ol
v
er
ti
m
e
(s
ec
.)

CG-Schur
Async-Schur

Figure 4. Weak scaling performances for −∆u = g, u = 0 on the helicoid’s inner and outer
sides, problem size n = 833247.
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Such possible close performances of the CG-Schur and the async-Schur make it

interesting to assess the potential impact of failures, given that their probability

increases with the number of computing nodes. According to the speedup values, we

simulate 5 temporary failures successively occurring on different computing nodes,

each time after approximately 90% of the fault-free CG execution time (see Table 2).

CG-Schur Async-Schur

Failed node 120 240 480 720 120 240 480 720

0 56 76 116 138 55 73 111 132

1 113 152 232 275 109 145 220 266

2 169 228 346 412 164 216 330 403

3 225 303 462 550 218 288 441 546

4 280 379 576 687 272 360 552 691

Table 2. The failure occurrence time (in seconds) during solver execution for p ∈ {120, 240,
480, 720}, −div σ(u) = g, u = 0 on the helicoid’s starting and ending sides.

For the 24 subdomains being processed on a node, a failure (and recovery) is sim-

ulated by resetting x
(i),k
Γl
and communication buffers to their initial value. Factoriza-

tion of A
(i)
II is assumed to have been backed up, hence, is not reprocessed. Then, for

the CG, the global iterative procedure has to synchronize and restart, while nothing

needs to be particularly done in case of asynchronous iterations. Table 3 confirms

a small impact on the asynchronous solver, while restarting the CG iterations does

not seem to benefit anyhow from the initial guess partially very close to the solution

(from the fault-free subdomains), no matter what is the proportion of this advanced

part in the global interface vector.

CG-Schur Async-Schur

p | #Nodes Failed n(i) t k ‖Ax− b‖ t kmax ‖Ax− b‖
nodes (s) (s)

120 | 05 100% 1898 347 1901 9.40E–07 344 373817 9.53E–07

240 | 10 50% 1973 471 2451 9.16E–07 456 482740 9.77E–07

480 | 20 25% 2001 710 3136 9.26E–07 689 744514 9.05E–07

720 | 30 17% 2053 847 3613 9.97E–07 886 984099 9.57E–07

Table 3. Performance with 5 node failures for −div σ(u) = g, u = 0 on the helicoid’s
starting and ending sides.

It is a big challenge to make relaxation methods competitive with the CG method.

While still not superior, asynchronous relaxation in the domain decomposition frame-

work constitutes a huge step towards it, compared to its synchronous counterpart.
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We see from the third line of Table 1 that cases can be found where the CG is very

slightly outperformed. While not reported here, a ratio tasync/tCG of 0.94 was also

observed with p = 240 and n(i) = 1449. However, in all of our other experienced

configurations (p > 480 or other prescribed boundaries), the best ratios were found

between 1.1 and 2. As commonly claimed though, Table 3 confirms the possibil-

ity to switch to the async-Schur method in case of high probability or frequency of

node failure.

5. Conclusions

The asynchronous iterations theory was developed as a generalization of classical

relaxation schemes, and, so far, domain decomposition methods are investigated

in their asynchronous version only when they already exhibit an inherent relax-

ation framework. The classical primal Schur method does not directly provide

such a feature, which has made it require, first, to model an applicable relax-

ation scheme within its framework. Second, for the usual context where the local

Schur complement matrices are not actually constructed, suitable matrix split-

tings have been provided, only based on matrices explicitly generated. While

this designed asynchronous primal Schur method constitutes an unusual applica-

tion of the asynchronous iterations theory, its convergence has been established

under classical conditions. Experimental results have shown that, depending on

the size of the subdomains, the relaxation-based asynchronous iterative solver can

be competitive with a conjugate gradient one, especially in case of hardware fail-

ures occurring in iteration loops with no backup of the updated vectors. Being

based on a quite unusual general asynchronous fixed-point theory due to Baudet,

the present work possibly opens new developments in the asynchronous iterative

computing field.
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