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Abstract. We consider the absolute value equations (AVEs) with a certain tensor product
structure. Two aspects of this kind of AVEs are discussed in detail: the solvability and
approximate solution. More precisely, first, some sufficient conditions are provided which
guarantee the unique solvability of this kind of AVEs. Furthermore, a new iterative method
is constructed for solving AVEs and its convergence properties are investigated. The validity
of established theoretical results and performance of the proposed iterative scheme are
examined numerically.
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1. Introduction

This paper is mainly concerned with the solution of absolute value equation (AVE)

in the form

(1.1) Ax − |x| := (Il ⊗ In ⊗A+ Il ⊗B ⊗ Im + C ⊗ In ⊗ Im)x− |x| = b,

where the coefficient matrices A ∈ R
m×m, B ∈ R

n×n, C ∈ R
l×l and the right-hand

side b ∈ R
t are given and the vector x = (x1, x2, . . . , xt)

⊤ ∈ R
t is unknown with

t = mnl. The notation |x| ∈ R
t stands for the vector whose ith component is the

absolute value of xi for i = 1, 2, . . . , t. In this work, the matrices A, B and C are

assumed to be positive definite but not necessarily symmetric.

The absolute value equations (AVEs) play an important role in study of linear and

convex quadratic programming, linear complementary problems and other areas of

optimization, scientific computing and engineering, see [1], [20], [21], [22], [27], [30] for

c© Institute of Mathematics, Czech Academy of Sciences 2022.

DOI: 10.21136/AM.2022.0169-21 657

http://dx.doi.org/10.21136/AM.2022.0169-21


more details. So far, several research works were devoted to discussing the (unique)

solvability of AVEs in the literature, see [18], [19], [28], [29] and the references therein

for more details. In general, it is well-known that the condition ‖A−1‖ < 1 ensures

the existence of a unique solution for Ax − |x| = b. The subject of establishing

necessary and/or sufficient conditions for solvability of AVEs, based on the Kronecker

product structure of their coefficient matrices, has been also receiving increasing

interest recently. For instance, Hashemi [10] presented sufficient condition for the

unique solvability of the matrix equation

(1.2) AXB + C|X |D = E,

which is mathematically equivalent to the following generalized AVE:

(B⊤ ⊗A)x+ (D⊤ ⊗ C)|x| = e.

Here x = vec(X) and e = vec(E), where the notation “vec(·)” stands for the vector-
ization operator which converts a given matrix into a column vector. More recently,

two new sufficient conditions for the unique solvability of (1.2) were also established

by Wang and Li [26].

Studying the performance of iterative techniques for solving AVEs can be regarded

an active area of research, for more details see [14], [15], [18], [23], [24], [25], [30], [33]

and the references therein. In particular, the Picard iteration for solving Ax−|x| = b

is given by

(1.3) x(k+1) = A−1(|x(k)|+ b), k = 0, 1, 2, . . . ,

see [23] for more details. Using an iterative scheme as the act of A−1 is more ben-

eficial in comparison with employing direct solver when the coefficient matrix A
is ill-conditioned or has a large size. Bai and Yang [4] proposed the Picard-HSS

iteration method to solve a class of nonlinear systems which is derived by apply-

ing the Hermitian and skew-Hermitian splitting (HSS) method [3] at each step of

the Picard iteration for implementing the inverse of A. The Picard-HSS iteration
method was further exploited for solving AVEs in [24]. Alternative class of iterative

methods, incorporating the Picard iterative method, was further analyzed for solving

Ax− |x| = b in [8], [9], [14], [25]. More precisely, in these works, the main problem

is first rewritten into an equivalent linear system A1z = b, where

A1 =

[ A −I

−D(x) I

]

.
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Then, iterative methods were extracted from the block splittings of the (precondi-

tioned) coefficient matrix A1 and their convergence properties were scrutinized. In

particular, Ke [14] presented the following iterative method:

(1.4)

{

x(k+1) = A−1(y(k) + b),

y(k+1) = (1− τ)y(k) + τ |x(k+1)|,

where the initial guess x(0) is given and y(0) = |x(0)|. More recently, Shams et al. [25]
developed the iterative scheme

(1.5)

{

x(k+1) = A−1(y(k) + b),

y(k+1) = (1− τ)|x(k) |+ τ |x(k+1)|,

for k = 0, 1, 2, . . ., where the initial guess x(0) is given and y(0) = |x(0)|. Both iterative
methods (1.4) and (1.5) construct the sequence {(x(k); y(k))}∞k=0 as approximations

of (x∗; |x∗|), where the parameter τ is a prescribed positive constant.
In the first part of this paper, we derive some sufficient conditions, which are

computationally cheap when A has tensor product structure. Basically, we establish
some bounds for the norm of A−1 with respect to coefficient matrices A, B and C

in (1.1) under certain conditions. The second part is devoted to presenting an it-

erative scheme for solving AVEs. We mention here that for iterative method (1.5),

a strategy to choose suitable parameter τ is provided by Shams et al. [25], whereas

the optimum values of τ in iterative method (1.4) were only found experimentally.

In continuation of the results presented in [25], here, our goals are both extending

the convergence interval to include (possibly) negative values of τ and examining

inexact solvers as the act of A−1. To do so, given a parameter τ , we consider the

following block splitting for A1, where A = M −N :

A1 =

[
M 0

−τD(x) I

]

−
[

N I

(1− τ)D(x) 0

]

and construct a new iterative scheme.

The remainder of this paper is organized as follows: Before ending this section,

we present some notations used throughout this work. In Section 2, we derive some

sufficient conditions which guarantee the unique solvability of AVEs whose coefficient

matrices have the mentioned tensor product structure. A new iterative scheme for

solving AVEs is proposed in Section 3 and its convergence properties are discussed.

In Section 4, some numerical results are reported to numerically confirm the estab-

lished theoretical results and demonstrate that the proposed method is feasible for

solving (1.1). We finish the paper with some concluding remarks in Section 5.
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Notations. Given an arbitrary real matrix W , the notation σmax(W ) (σmin(W ))

refers to the maximum (smallest nonzero) singular value of W . If the matrix W is

a square matrix with real eigenvalues, its minimum and maximum eigenvalues are

denoted by λmin(W ) and λmax(W ), respectively. The notation ̺(W ) stands for the

spectral radius of W . The symmetric and skew-symmetric parts of a square matrix

W are respectively given by

(1.6) H(W ) :=
1

2
(W +W⊤) and S(W ) :=

1

2
(W −W⊤).

In the sequel, W = H(W ) + S(W ) is called symmetric and skew-symmetric (SS)

splitting. Throughout this paper, the norm ‖·‖ refers to vector/matrix 2-norm (i.e.,
‖x‖2 = x⊤x for all real vectors x and ‖W‖2 = ̺(WW⊤)). Moreover, we write (x; y)

to denote the vector [x⊤y⊤]⊤.

2. Solvability of AVEs with tensor product structure

The coefficient matrix A in (1.1) is of size “mnl”, which can be very large even

for moderate values of m,n and l. Therefore, checking the condition ‖A−1‖ < 1 is

challenging in general cases and may be too expensive. Here, we derive two types of

computationally cheap sufficient conditions which guarantee ‖A−1‖ < 1. To present

the first sufficient condition, we need to prove the following two simple propositions.

Proposition 2.1. Let A be nonsingular and A = M −N be a splitting of A such

that ‖M−1‖+ ‖M−1N‖ < 1. Then ‖A−1‖ < 1.

P r o o f. Evidently, we have A = M −N = M(I −M−1N). It is not difficult to

verify that

A−1 = (I −M−1N)−1M−1 =

( ∞∑

k=0

(M−1N)k
)

M−1,

which implies

‖A−1‖ 6

( ∞∑

k=0

‖M−1N‖k
)

‖M−1‖ =
‖M−1‖

1− ‖M−1N‖ .

Now the assertion can be deduced from the assumption immediately. �

Proposition 2.2. Let A be nonsingular and A = M−N be a splitting of A. IfM
is a symmetric positive definite matrix and λmin(M) > 1 + ‖N‖, then ‖A−1‖ < 1.
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P r o o f. According to the assumption, we have

λmin(M) =
1

λmax(M−1)
=

1

‖M−1‖ > 1 + ‖N‖.

Consequently, from the last inequality we can observe that

‖M−1‖(1 + ‖N‖) = ‖M−1‖+ ‖M−1‖‖N‖ < 1,

which concludes ‖M−1‖ + ‖M−1N‖ < 1. Now the conclusion follows from the

previous proposition. �

In this work, we mainly assume that A, B and C are positive definite matrices, i.e.,

the matrices H(A), H(B) and H(C) are symmetric positive definite. In this case,

we use Proposition 2.2 to obtain a sufficient condition for solvability of AVEs in the

form (1.1). To present the condition, we need to recall the subsequent proposition

proved by Beik et al. [5], Proposition 3.6.

Proposition 2.3. LetA = Il⊗In⊗A+Il⊗B⊗Im+C⊗In⊗Im. Then the spectral

norm of its skew-symmetric part is given by ‖S(A)‖ = ‖S(A)‖+ ‖S(B)‖+ ‖S(C)‖.
R em a r k 2.4. It is immediate to observe that A = H(A) + S(A), where

H(A) = Il ⊗ In ⊗H(A) + Il ⊗H(B)⊗ Im +H(C)⊗ In ⊗ Im,(2.1)

S(A) = Il ⊗ In ⊗ S(A) + Il ⊗ S(B)⊗ Im + S(C)⊗ In ⊗ Im.(2.2)

When H(A), H(B) and H(C) are symmetric positive definite matrices, one can

immediately conclude that H(A) is symmetric positive definite. In view of Proposi-

tions 2.2 and 2.3, we can conclude that if

λmin(H(A)) + λmin(H(B)) + λmin(H(C)) > 1 + ‖S(A)‖+ ‖S(B)‖+ ‖S(C)‖,

then ‖A−1‖ < 1.

In the rest of this section, we derive an alternative sufficient condition under which

‖A−1‖ < 1. Again, our emphasis is to obtain the condition with respect to coefficient

matrices A, B and C having moderate sizes. To do so, we first establish the following

theorem:

Theorem 2.5. Let A ⊗ B be a non-Hermitian positive definite matrix. If the

inequality

(2.3) σmin(A)σmin(B) > ‖H(B)‖‖S(A)‖+ ‖H(A)‖‖S(B)‖

holds, then

(2.4) λmin(H(A⊗B)) > σmin(A)σmin(B)− (‖H(A)‖‖S(B)‖+ ‖H(B)‖‖S(A)‖).
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P r o o f. For national simplicity, we set HA⊗B := H(A⊗B) and SA⊗B :=

S(A⊗B). Considering the SS splitting of A⊗ B, i.e., A ⊗B = HA⊗B + SA⊗B , we

can see that

A⊗B = HA⊗B(I +H−1
A⊗BSA⊗B),

which results in

(2.5) H−1
A⊗B = (I +H−1

A⊗BSA⊗B)(A
−1 ⊗B−1).

It is known that SA⊗B = S(A)⊗H(B) +H(A)⊗ S(B) and

‖A−1 ⊗B−1‖ =
1

√

λmin(AAT ⊗BBT )
=

1

σmin(A)σmin(B)
.

Hence, one can deduce that

(2.6) ‖SA⊗B‖ 6 ‖S(A)⊗H(B)‖+ ‖H(A)⊗ S(B)‖
6 ‖S(A)‖‖H(B)‖+ ‖H(A)‖‖S(B)‖.

In view of the above inequality, (2.3) implies that 1 − ‖A−1 ⊗B−1‖‖SA⊗B‖ > 0.

Now, by using (2.5), we obtain

‖H−1
A⊗B‖ 6 ‖A−1 ⊗B−1‖(1 + ‖H−1

A⊗B‖‖SA⊗B‖),

which is equivalent to saying that

(2.7)
1− ‖A−1 ⊗B−1‖‖SA⊗B‖

‖A−1 ⊗B−1‖ 6 ‖H−1
A⊗B‖−1.

From (2.7) we derive

(2.8) σmin(A)σmin(B)− ‖SA⊗B‖ =
1

‖A−1 ⊗B−1‖ − ‖SA⊗B‖

=
1− ‖A−1 ⊗B−1‖‖SA⊗B‖

‖A−1 ⊗B−1‖

6
1

‖H−1
A⊗B‖

= λmin(HA⊗B),

where the last equality follows from the fact thatHA⊗B is symmetric. Now from (2.6)

and (2.8), we obtain

σmin(A)σmin(B)− (‖S(A)‖‖H(B)‖+ ‖H(A)‖‖S(B)‖) 6 σmin(A)σmin(B) − ‖SA⊗B‖
6 λmin(HA⊗B),

which completes the proof. �

Evidently, a lower bound for minimum eigenvalue of AA⊤ gives an upper bound

for ‖A−1‖. The following proposition provides an upper bound for λmin(AA⊤).
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Proposition 2.6 ([5], Proposition 2.6). Let A = Il ⊗ In ⊗A+ Il ⊗B⊗ Im +C ⊗
In ⊗ Im. Then

(2.9) λmax(AA⊤) 6 (σmax(A) + σmax(B) + σmax(C))2.

Moreover, assume that A is invertible. Then if B⊤ ⊗ A, C⊤ ⊗ A, and C⊤ ⊗ B are

positive definite, we have

(2.10) λmin(AA⊤) > σ2
min(A) + σ2

min(B) + σ2
min(C).

Under some stronger assumptions than those used in the above proposition, we

can establish a sharper upper bound for λmin(AA⊤) in comparison with (2.10). To

this end, we use the result established in Theorem 2.5. Basically, we assume that

the following three conditions holds:

σmin(A)σmin(B) > ‖H(B)‖‖S(A)‖+ ‖H(A)‖‖S(B)‖,(2.11a)

σmin(A)σmin(C) > ‖H(C)‖‖S(A)‖+ ‖H(A)‖‖S(C)‖,(2.11b)

σmin(C)σmin(B) > ‖H(C)‖‖S(B)‖+ ‖H(B)‖‖S(C)‖.(2.11c)

Proposition 2.7. Assume that A = Il ⊗ In ⊗A+ Il ⊗B ⊗ Im + C ⊗ In ⊗ Im is

invertible and the matrices B⊤ ⊗ A, C⊤ ⊗ A, and C⊤ ⊗ B are positive definite. If

inequalities (2.11a)–(2.11c) are satisfied, then

(2.12)

λmin(AA⊤)

> (σmin(A) + σmin(B) + σmin(C))2 − 2(‖H(A)‖‖S(B)‖+ ‖H(B)‖‖S(A)‖)
− 2(‖H(B)‖‖S(C)‖+ ‖H(C)‖‖S(B)‖)− 2(‖H(C)‖‖S(A)‖+‖H(A)‖‖S(C)‖).

P r o o f. From (2.4) we obtain

λmin(AA⊤)

> σ2
min(A) + σ2

min(B) + σ2
min(C) + 2λmin(H(I ⊗B⊤ ⊗A))

+ 2λmin(H(C⊤ ⊗ I ⊗A)) + 2λmin(H(C⊤ ⊗B ⊗ I))

> σ2
min(A) + σ2

min(B) + σ2
min(C)

+ 2σmin(A)σmin(B)− 2(‖H(A)‖‖S(B)‖+ ‖H(B)‖‖S(A)‖)
+ 2σmin(B)σmin(C)− 2(‖H(B)‖‖S(C)‖+ ‖H(C)‖‖S(B)‖)
+ 2σmin(C)σmin(A)− 2(‖H(C)‖‖S(A)‖+ ‖H(A)‖‖S(C)‖)

= (σmin(A) + σmin(B) + σmin(C))2 − 2(‖H(A)‖‖S(B)‖+ ‖H(B)‖‖S(A)‖)
− 2(‖H(B)‖‖S(C)‖+ ‖H(C)‖‖S(B)‖)− 2(‖H(C)‖‖S(A)‖+ ‖H(A)‖‖S(C)‖).

Now the result follows immediately. �
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R em a r k 2.8. Under hypotheses of Proposition 2.7, if

(2.13) σmin(A) + σmin(B) + σmin(C) >
√
1 + 2T ,

where
T = ‖H(A)‖‖S(B)‖+ ‖H(B)‖‖S(A)‖+ ‖H(B)‖‖S(C)‖

+ ‖H(C)‖‖S(B)‖+ ‖H(A)‖‖S(C)‖+ ‖H(C)‖‖S(A)‖,

then λmin(AA⊤) > 1, which ensures that ‖A−1‖ < 1.

We end this part by briefly discussing the case when the solution set of (1.1) is

empty. To do so, similarly to [10], we first need a monotonicity property given in

the following lemma; see [11].

Lemma 2.9. Let A and B be two m× n matrices. If |A| 6 B, then ‖A‖ 6 ‖B‖.

The above lemma leads us to the following result which determines a simple suf-

ficient condition for the nonexistence of solutions to (1.1) with nonnegative right-

hand side.

Proposition 2.10. Let b > 0 and σmax(A)+σmax(B)+σmax(C) < 1. Then linear

system (1.1) has no solution.

P r o o f. Assume by contradiction that x∗ is a solution of (1.1). Since the right-

hand side of (1.1) is nonnegative, we have |x∗| 6 Ax∗. Adding the norm to both

sides of |x∗| 6 Ax∗ and using Lemma 2.9, in view of the assumption and the fact

that ‖A‖ 6 σmax(A) + σmax(B) + σmax(C), we get ‖x∗‖ 6 ‖A‖‖x∗‖ < ‖x∗‖, which
is a contradiction. �

3. An iterative method and its convergence analysis

This section mainly deals with developing a new iterative method for solving AVEs

with unique solution. For deriving the method, in the first part, we do not limit the

results to the special tensor (Kronecker) product structure of the coefficient matrix.

We briefly discuss the implementation of the proposed method in tensor framework

for solving AVEs in the form (1.1) in a separate subsection.

3.1. Proposed iterative method. Using the splitting A = M −N , we aim to

construct the sequence of approximations for (x∗; |x∗|), where x∗ is a unique solution

of Ax−|x| = b, i.e., Ax∗−|x∗| = b. Basically, the sequence {(x(k); y(k))} is produced
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(k = 0, 1, 2, . . .) using the following iterative scheme in which τ is a prescribed real

constant:

(3.1)

{

x(k+1) = M−1(Nx(k) + y(k) + b),

y(k+1) = τ |x(k+1)|+ (1− τ)|x(k)|,

where the initial guess x(0) is given and y(0) = |x(0)|.
For notational simplicity, in the sequel, we set ν = ‖M−1‖, ω = ‖M−1N‖ and

E(k) = (e
(k)
x ; e

(k)
y ) with e

(k)
x = x∗ − x(k) and e

(k)
y = |x∗| − y(k), where x(k) is the kth

approximation of x∗ determined by (3.1). It is immediate to see that

e(k+1)
x = M−1Ne(k)x +M−1e(k)y ,

e(k+1)
y = τ(|x∗| − |x(k+1)|) + (1− τ)(|x∗| − |x(k)|).

Consequently, we obtain

‖e(k+1)
x ‖ 6 ω‖e(k)x ‖+ ν‖e(k)y ‖,

‖e(k+1)
y ‖ 6 |τ |(ω‖e(k)x ‖+ ν‖e(k)y ‖) + |1− τ |‖e(k)x ‖.

Or equivalently, we can observe that

(3.2)

[ ‖e(k+1)
x ‖

‖e(k+1)
y ‖

]

6

[
ω ν

|1− τ |+ |τ |ω |τ |ν

]

︸ ︷︷ ︸

G

[ ‖e(k)x ‖
‖e(k)y ‖

]

.

Notice that lim
k→∞

Gk = 0 if and only if ̺(G) < 1. Therefore, if ̺(G) < 1, then the

proposed iterative method is convergent for any initial guess. Using this fact, we

establish an interval for τ under which the proposed method converges. To this end,

we need the following lemma from [31].

Lemma 3.1. Consider the quadratic equation x2 − bx+ c = 0, where b and c are

real numbers. Both roots of the equation are less than one in modulus if and only if

|c| < 1, |b| < 1 + c.

Theorem 3.2. Let A = M − N and Ax − |x| = b have a unique solution such

that M is invertible and ν + ω < 1, where ν = ‖M−1‖ and ω = ‖M−1N‖. The iter-
ative scheme (3.1) converges to the solution of Ax− |x| = b for any initial guess x(0)

if the parameter τ belongs to the following interval I

(3.3) I =
(ω + ν − 1

2ν
,
1 + ν − ω

2ν

)

.
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P r o o f. Setting E(k) = (‖e(k)x ‖; ‖e(k)y ‖), from (3.2) we get E(k+1) 6 GE(k). To

conclude the assertion, we only need to verify that the spectral radius of G is strictly
lower than one, i.e., ̺(G) < 1 when τ ∈ I. Let λ be an arbitrary eigenvalue of G
with the corresponding eigenvector [x̃; ỹ]. As a result, we have

[
ω ν

|1− τ |+ |τ |ω |τ |ν

] [
x̃

ỹ

]

= λ

[
x̃

ỹ

]

.

Or equivalently,

νỹ = (λ− ω)x̃,(3.4)

(|1− τ | + |τ |ω)x̃+ |τ |νỹ = λỹ.(3.5)

Without loss of generality, since x̃ is necessarily nonzero, we may assume that

‖x̃‖ = 1. Multiplying both sides of (3.5) by ν and substituting νỹ from (3.4)

into (3.5), we derive

(|1− τ | + |τ |ω)νx̃ + |τ |(λ − ω)νx̃ = λ(λ − ω)x̃.

It is immediate to see that λ satisfies the following quadratic equation:

λ2 − λ(ω + |τ |ν) − |1− τ |ν = 0.

By the assumption, we have (ω + ν − 1)/(2ν) < τ < (1 + ν − ω)/(2ν). Notice that

(1 + ν − ω)/(2ν) < 1 + 1/ν and 1− 1/ν < (ω + ν − 1)/(2ν), which imply that

|1− τ | < 1

ν
.

In view of the above relation, to conclude the result from Lemma 3.1, we only need

to show that

ω + |τ |ν < 1− ν|1− τ |.
In fact, we need to verify that

ω + τν < 1− ν(τ − 1) for τ > 1,(3.6a)

ω + τν < 1− ν(1− τ) for 0 < τ < 1,(3.6b)

ω − τν < 1− ν(1− τ) for τ < 0.(3.6c)

Inequalities (3.6a) and (3.6c) are respectively deduced from the assumption that

τ <
1 + ν − ω

2ν
and

ω + ν − 1

2ν
< τ.

Equation (3.6b) is a direct conclusion of ω + ν < 1. �

Notice that the iterative method (3.1) reduces to (1.5) for M = A. In this case
the following theorem is established in [25], Theorem 2.8.
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Theorem 3.3. Let A be a nonsingular matrix such that ν = ‖A−1‖ < 1. The

iterative scheme (1.5) converges to the unique solution of Ax− |x| = b for any initial

guess x(0) if

(3.7) 0 < τ <
1 + ν

2ν
.

We end this section by starting that Theorem 3.2 gives a wider convergence interval

than (3.7). In fact, setting ω = 0 in (3.3), one can reach the following convergence

interval for iterative method (1.5):

1− ν

2ν
< τ <

1 + ν

2ν
.

It is immediate to see that [0, (1 + ν)/(2ν)] ⊂ [(1− ν)/(2ν), (1 + ν)/(2ν)].

3.2. Implementing the proposed method in tensor framework. In this

part, we briefly discuss the implementation of proposed method in tensor form; for

more details on the employing iterative method in tensor framework see [6], [12],

[13], [17]. First, we need to recall the following product between a matrix and

tensor.

Definition 3.4 (Kolda and Bader [16]). The i-mode (matrix) product of a tensor

X ∈ R
s1×s2×...×sN with a matrix U ∈ R

pi×si is denoted by X ×i U and is of size

s1 × . . .× si−1 × pi × si+1 × . . .× sN ,

and its elements are defined as

(X ×i U)
w1...wi−1jwi+1...wN

=

si∑

wi=1

xw1w2...wN
ujwi

with 1 6 wk 6 sk and 1 6 j 6 pi for k = 1, 2, . . . , N .

In fact, the following tensor equation is mathematically equivalent to (1.1):

(3.8) X ×1 A+ X ×2 B + X ×3 C − |X | = B.

For the right-hand side vector b in (1.1), we have b = vec(B). In fact, the vector b

corresponds to the vectorization of mode-1 unfolding (matricization) of tensor B

in (3.8); for more details see [16]. The inverse act of “vec(·)” mapping is denoted by
“unvec(·)”.
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For notational simplicity, we use the following linear operator:

M : R
m×n×l → R

m×n×l,(3.9)

X 7→ M(X ) := X ×1 A+ X ×2 B + X ×3 C.

Notice that (1.1) can be reformulated as follows:

(3.10) M(X )− |X | = B.

It is not difficult to observe that iterative method (3.1) can be equivalently applied

for solving (3.8) instead of (1.1). In the sequel, we rewrite the proposed method based

on the tensor format. To do so, one can first consider the succeeding splittings

A = M1 −N1, B = M2 −N2 and C = M3 −N3.

Then, for k = 1, 2, . . . the algorithm can be implemented in the following two steps.

Step 1. Find the new approximation by solving the Sylvester tensor equation

(3.11) Xk+1 ×1 M1 + Xk+1 ×2 M2 + Xk+1 ×3 M3 = F(Xk) + Yk + B,

where F(Xk) = Xk ×1 N1 +Xk ×2 N2 +Xk ×3 N3 and X0 is given and Y0 = |X0|.
Step 2. Set Yk+1 = τ |Xk+1|+ (1 − τ)|Xk|.
In this work, we are mainly interested in the case where coefficient matrices A, B

and C are positive definite matrices whose symmetric parts are dominant to their

skew-symmetric part. Therefore, in Section 4, we only present our experimental

reports for the case whereM1, M2 and M3 are respectively symmetric parts of A, B

and C.

In practice, we solve the Sylvester tensor equation (3.11) inexactly by using conju-

gate gradient method. Invoking the idea used for applying inexact HSS method [3],

for more efficient implementation, we first find the approximate solution Zk of the

Sylvester tensor equation

Z ×1 M1 + Z ×2 M2 + Z ×3 M3 = Rk + Yk − |Xk|,

where Rk = B − M(Xk) + |Xk|. Then the new approximation is computed by
Xk+1 = Zk +Xk. The proposed approach is summarized in Algorithm 2. Similarly

to the observations made in [6], our numerical experiments illustrate that this kind

of reformulation helps to apply the method efficiently using a loose inner tolerance

(being larger than outer tolerance). In particular, the proposed algorithm provides a

suitable approximation when η 6 0.01 for our test problems. Therefore, we set η =

0.01 in Algorithm 1 since the smaller choice for η results in more computational costs.
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Algorithm 1. Conjugate gradient based on tensor format (CG−BTF) [6].

Input: Coefficients A, B, C, the right-hand side B, the initial guess X0 and toler-

ance η.

Compute R0 = B −M(X0). Set δ = 1 and P0 = R0.

begin
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

while δ > η do
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

αj = 〈Rj ,Rj〉/〈M(Pj),Pj〉;
Xj+1 = Xj + αjPj ;

Rj+1 = Rj − αjM(Pj);

βj = 〈Rj+1,Rj+1〉/〈Rj,Rj〉;
Pj+1 = Rj+1 + βjPj ;

δ = ‖Rj+1‖/‖Rj‖;
end

end

Algorithm 2. Proposed method for solving (1.1) in tensor framework.

Input: Tolerances ε and η, the initial guess X (0) ∈ R
m×n×l, coefficient matrices

A ∈ R
m×m, B ∈ R

n×n and C ∈ R
l×l and the right-hand side B = unvec(b).

Compute R(0) = B + |X (0)| −M(X (0)). Set Y (0) = |X (0)|.
begin
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

for k = 0, 1, 2, . . . do
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Find approximate solution Zk by solving Sylvester tensor equation

Z ×1 H(A) + Z ×2 H(B) + Z ×3 H(C) = Rk + Yk − |Xk|
using Algorithm 1 and tolerance η;

Set Xk+1 = Zk + Xk;

Set Yk+1 = (1− τ)|Xk |+ τ |Xk+1|;
Compute Rk+1 = B + |Xk+1| −M(Xk+1);

if ‖Rk+1‖ 6 ε‖R0‖ then

| Stop.

end
end

end

Following the discussions in [25], Subsection 2.2, we observed that the parameter

(3.12) τ∗ =
2

1 +
√
1− ν

,

for ν = 1/(λmin(H(A)) + λmin(H(B)) + λmin(H(C))), gives an appropriate approxi-

mation for optimum value of parameter τ in the proposed method when ν < 1 and

λmin(H(A)) + λmin(H(B)) + λmin(H(C)) > ‖S(A)‖+ ‖S(B)‖+ ‖S(C)‖.
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4. Numerical experiments

All of the following reported numerical experiments were performed on a 64-bit

3.50 GHz core i7 processor and 24.00GB RAM using some matlab codes from MAT-

LAB R2018a. The iterative methods for solving (1.1) are implemented in tensor

framework using the tensor Toolbox, see [2], [16] for more details.

As pointed earlier, we apply the proposed iterative method in tensor form. To this

end, we solve the absolute value equation (3.10) using Algorithm 2 setting η = 0.01 as

tolerance for inner iterations. Two test problems were considered and the right-hand

side B is constructed so that the tensor X ∗ is the exact solution of (3.10), where

X
∗
ijk =

(−1)ijk

(n+ 1)3
ijk for i, j, k = 1, . . . , n.

The initial guess X0 is taken to be zero vector and the algorithm is terminated once

‖M(Xk)− |Xk| − B‖
‖B‖ 6 10−12,

where Xk is the k-th approximate solution. For more details, we further report the

relative error associated with the obtained approximate solution in tables, i.e.,

Err :=
‖X ∗ − Xk‖

‖X ∗‖ .

It should be said that the values of τ∗ in Tables 2, 3 and 5 are computed by (3.12). We

further recall that the proposed method is rescued to the (inexact) Picard iteration

for τ = 1.

E x am p l e 4.1. The Sylvester tensor equation in the formM(X ) = B appears

in the discretization of a 3D convection-diffusion partial differential equation by

standard finite differences on a uniform grid for the diffusion term and a second-order

convergent scheme (Fromm’s scheme) for the convection term with the coefficient

matrices

(4.1) Ai =
1

h2










2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2










+
ci
4h











3 −5 1

1 3 −5
. . .

. . .
. . .

. . . 1

1 3 −5

1 3











,

see [6], Example 5.4 for more details. Here, we are interested in solving AVEs of

the form (3.8), whose coefficient matrices A = A1, B = A2 and C = A3 are n × n

matrices given by (4.1). We report the obtained numerical results for two cases.
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Case 1. We set c1 = 1, c2 = 2 and c3 = 3. Here, the proposed method is superior

to the (inexact) Picard-HSS method significantly for n = 20, 30 and n = 40 in terms

of both the number of required iteration numbers and the CPU-time for convergence.

More precisely, we observed that the (inexact) Picard-HSS does not work properly

for dimensions greater than 50. Therefore, we do not report the performance of

Picard-HSS method. The numerical results for the proposed approach are disclosed

for some values of τ . Our observations show that the optimum value of τ can be

negative, see Table 1 for more details.

n = 100 n = 120 n = 140

τ Iter CPU ERR Iter CPU ERR Iter CPU ERR
1.0 32 120.9322 5.9155e−10 32 227.2430 5.1886e−10 31 408.9474 9.5242e−10

0.5 30 110.9425 5.1228e−10 30 212.4999 4.4501e−10 29 384.1434 8.6469e−10

−0.9 25 91.0535 2.5205e−10 24 166.5939 5.2736e−10 24 310.3702 4.8487e−10

−2.1 21 73.4839 1.6930e−10 20 145.5711 4.2906e−10 20 260.3470 3.7966e−10

−3.5 19 63.7312 1.1892e−10 19 132.8229 6.0510e−11 18 220.1260 2.2163e−10

−4.1 21 71.6981 6.6745e−10 21 139.7254 4.8588e−11 20 255.09134 1.7343e−10

Table 1. Numerical results for Example 4.1 (Case 1).

Case 2. In this case we set c1 = 0.01, c2 = 0.02 and c3 = 0.03. In Tables 2 and 3,

we respectively present the numerical results with respect to ν = 0.1 and ν = 0.5.

We comment that the provided sufficient condition in Proposition 2.2 is satisfied

when ν = 0.5.

n = 100 n = 120 n = 140

τ Iter CPU ERR Iter CPU ERR Iter CPU ERR
1.5000 20 50.8420 1.1515e−09 19 94.1938 1.4560e−13 18 171.7152 2.7201e−09

τ∗ 12 33.5028 3.4878e−10 12 67.5018 3.2424e−13 12 126.6122 2.8514e−10

1.0000 16 41.2511 4.6144e−10 15 75.6591 4.5855e−13 15 143.0978 2.0314e−09

0.5000 24 56.0450 1.0016e−09 24 111.1164 8.0318e−13 23 202.4417 2.4638e−09

Table 2. Numerical results for Example 4.1 with ν = 0.1 and τ
∗ = 1.1028 (Case 2).

n = 100 n = 120 n = 140

τ Iter CPU ERR Iter CPU ERR Iter CPU ERR
1.5000 12 31.9757 2.3834e−10 12 64.3919 1.9634e−10 12 120.6708 1.4693e−10

τ∗ 7 20.2654 4.1149e−10 7 39.3771 3.9156e−10 7 73.3012 4.0106e−10

1.0000 8 21.6383 4.1074e−10 8 42.5056 4.9199e−10 8 79.2318 5.7192e−10

0.5000 12 30.8383 1.0100e−09 12 60.2294 1.0853e−09 12 113.9157 1.1535e−09

Table 3. Numerical results for Example 4.1 with ν = 0.5 and τ
∗ = 1.0175 (Case 2).
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E x am p l e 4.2. We consider AVE (3.8) such that

A = B = C = M + 2rL+
104

(n+ 1)2
In,

where M and L are n × n tridiagonal matrices with M = tridiag(−1, 2,−1), L =

tridiag(0.5, 0,−0.5), and r = 0.01. These matrices are discussed in [32].

n = 100 n = 120 n = 140

τ Iter CPU ERR Iter CPU ERR Iter CPU ERR

1.5 28 3.1587 8.9150e−13 33 6.8105 1.6552e−12 40 14.2699 6.0092e−12

1.2 20 2.2902 3.2688e−13 22 4.5672 1.1576e−12 27 8.6355 3.5663e−12

1 22 2.4406 2.7648e–12 30 5.7939 4.2618e−12 44 14.0218 6.0617e−12

0.8 29 3.2128 1.2308e–12 38 7.4241 3.4098e−12 55 17.5554 4.5999e−12

Table 4. Numerical results for Example 4.2 with respect to different values of τ .

n = 100 n = 120 n = 140

τ (τ∗ = 1.1034) (τ∗ = 1.1656) (τ∗ = 1.2648)
Iter CPU (α, β) Iter CPU (α, β) Iter CPU (α, β)

τ∗ 17 2.0985 (8.6659,2.1945) 21 4.3223 (4.2069,2.1234) 28 10.4853 (2.2815,2.0803)

Table 5. Numerical results for Example 4.2 with respect to τ
∗ and reporting the validity

of the condition in Remark 2.8.

We report the experimentally obtained results corresponding to the proposed

method with respect to different values of τ in Table 4. For more details, in Table 5,

we also disclose the performance of the proposed method for τ∗ and the values of

α := (σmin(A) + σmin(B) + σmin(C))2 and β = 1 + 2T.

As seen, the following sufficient condition in Remark 2.8 holds, i.e., we have

(σmin(A) + σmin(B) + σmin(C)2 > 1 + 2T.

5. Conclusions and future works

We mainly considered the AVEs in the form Ax− |x| = b in which the coefficient

matrix A has a special tensor product structure. The solvability of these AVEs was
studied and two types of computationally inexpensive sufficient conditions were es-

tablished for unique solvability. Moreover, a new iterative technique was proposed

for finding their approximate solutions of AVEs. In general, our proposed method

does not rely on the special tensor structure of A in theoretical point of view. Fur-
thermore, the convergence analysis of the method in our mentioned form had been

left as a project in [FILOMAT 34 (2020), 4171–4188] to be undertaken.
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It was observed both theoretically and numerically that the method can possibly

work well with negative values of its parameter in some cases. Nevertheless, deter-

mining (possibly negative) optimal parameters in these cases needs more research.

In practice, the proposed method was applied inexactly. Although some theoretical

results could be stated similarly to [24], Theorem 1 and [7], Theorem 2.3, analyzing

the inexact implementation of the approach is left for a future project. In addition,

we applied our proposed method under two limitations in practical implementation,

i.e., tensor form of A and symmetric and skew-symmetric splittings of coefficient
matrices A, B and C in (1.1). Omitting any of these restrictions can be considered

a new project in the future.
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