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Abstract. The irregularity of a graph G = (V, E) is defined as the sum of imbalances
|du — dv| over all edges uv € E, where dy denotes the degree of the vertex u in G. This
graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of
a graph. In this paper, we completely determine the extremal values of the irregularity of
connected graphs with n vertices and p pendant vertices (1 < p < n — 1), and characterize
the corresponding extremal graphs.
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1. INTRODUCTION

We consider finite, undirected, and simple graphs throughout this paper. Let G be
a graph with the vertex set V(G) and edge set E(G). For a nonempty set U C V(G),
denote by G[U] the graph induced by the vertices in U. Let G — uv denote the graph
obtained from G by deleting an edge uv € E(G), and if vw ¢ E(G), let G + vw
denote the graph obtained from G by adding an edge between the vertices v and w.
For a vertex v in G, denote by N¢(v) the set of vertices that are adjacent to v and
by dg(v) the degree of v, which is equal to [Ng(v)|. We call v a pendant vertez if
dg(v) = 1. We also write A(G) for the maximum degree of the vertices in G and let
A3(GQ) :== max({dg(v): v € V(G)} \ {A(G)}).

A clique (or an independent set) of G is a set of mutually adjacent (or nonadjacent,
respectively) vertices in G. As usual, let S,, and P, be the star and the path on n
vertices, respectively. For 1 < k < %n — 1, we denote by D,, ;, the graph obtained by
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joining the centers of Si11 and S;,_,—1 with an edge, which is usually named a double
tree, see Figure 1. For 1 < w < n—1, let CS,, ., be the graph obtained by joining
each vertex of a clique of order w with each vertex of an independent set of order
n —w, which is usually called a complete split graph. We also use H, s ; to denote the
graph obtained by joining the center of S;1; with each vertex of C'S,,_s_1+, where
1<s<n—-3and 1 <t<n—s—2,see Figure 1.

Figure 1. The graphs D,, j, and Hp s ;-

In 1997, Albertson in [3] defined the imbalance of an edge e = uv € E(G) as
imbg(e) = |dg(u) — dg(v)| and the irregularity of a graph G as

irr(G) = Y imbg(e) = Y |da(u) —da(v)].

ecE(G) w€eE(G)

The idea of imbalance of an edge appeared implicitly in [4] where it was related to
Ramsey problems with repeated degrees. For a connected graph G, irr(G) = 0 if
and only if G is regular, and for an irregular graph G, irr(G) is a measure of the
defect of regularity of G. It should be also mentioned that the irregularity of a graph
has found many applications in chemical graph theory, where it was met under the
names the Albertson index (see [11], [19]), the misbalance deg index (see [21]), and
the third Zagreb index, see [8].

For a general graph G on n vertices, Albertson in [3] first gave an asymptotically
tight upper bound: irr(G) < 24n>. This upper bound was later improved by Abdo

<
et al. (see [1]) as irr(G) < |_%27TLJ [42n]([42n] — 1), with the equality holding if and
only if G = €S, |1,,, see also [20]. Hansen and Mélot in [12] also characterized
the graphs with n vertices and m edges and having the maximal irregularity. Nasiri
and Fath-Tabar in [16] determined all the connected graphs with the second-minimal
irregularity. Henning and Rautenbach in [13] characterized the structure of bipartite
graphs having the maximal irregularity with given sizes of the partite sets and a given
number of edges, they also derived a corresponding result for bipartite graphs with
given sizes of the partite sets and gave an upper bound on the irregularity of these

graphs. Luo and Zhou in [15], [22] determined the maximal values and corresponding
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extremal graphs of the irregularity of several classes of graphs, including the trees and
unicyclic graphs with a fixed matching number or fixed number of pendant vertices.
For some other results about graph irregularity, one can refer to [2], [5], [6], [7], [9],
[10], [14], [17], [18] and the references cited therein.

0

Figure 2. A graph in F14 6

In this paper, we focus on the extremal values and the corresponding extremal
graphs of the irregularity of connected graphs with given order and given number of
pendant vertices. For two positive integers n and p with 1 <p <n—1, let

I, ={G: G is a connected graph of order n with p pendant vertices}.

Note that I'y, ,—1 = {Sp} and 'y, p_o = {Dpp: 1 <k < %n — 1}. Moreover, let

~

¢ 3 ={GeTl,,: A(G)=3and G[Vc(;g)] is connected},
where V(i) = {v € V(G): dg(v) = i}, see Figure 2 for illustration. Note that the
graphs in I‘( np all have the same irregularity regardless of the distribution of the
vertices of degree 2 and the internal structure, as every path from a pendant vertex
to a degree 3 vertex whose internal vertices are all of degree 2 contributes 2 to the
irregularity. The main results of this paper are as follows:

Theorem 1. Let G €Ty, ,, where n and p are positive integers such that 1 < p <
n — 1.
(i) If p=n—1, then
irr(G) < n* —3n+2

with equality if and only if G = S,,.
(if) If p=n—2, then
irr(G) < n? —5n+6

with equality if and only if G = D,, ;.
(ii) If 1 < p < n — 3, then

irr(G) <k —2n—p—2)k2 +[(n—p—1D(n—p—4) + 1k + (n —2)(n — 1)
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with equality if and only if G = H,, , 1, where k = max{1, L%(n—p— 1] —1+¢€},
and

> ifn—p—1=0 (mod 3), then e = 0;

> ifn—p—1=1 (mod 3), then ¢ € {0,1};

> ifn—p—1=2 (mod 3), then e = 1.

Theorem 2. Let G €T, ,, where n and p are positive integers such that 1 < p <
n—1. If G 2 P,, then irr(G) > 2p, with equality if and only if G € ﬂlg;,

The proofs of Theorems 1 and 2 are given in the following section.

2. PROOFS

We first present the proof of Theorem 1. To this end, we need to establish two
auxiliary results in advance.

Lemma 3. Let f(z) = 2% —2(0 — 1)2? + (0> = 30 + 1)z + (n — 2)(n — 1) be
a continuous function on the closed interval [1, 6], where n and 6 are positive integers
such that 3 < 8 < n — 2. Then the function f(z) attains its maximum uniquely at

v =max{1,1(20 -2 - V2 +60+1)}.
Proof. Consider the derivative of the function f(z) on [1,6],
fl(x) =32 —4(0 — D)z + 6% — 30 + 1,
whose two zero points are

20—-2—-0?2+60+1 20 —2+V02+6+1

T = 3 and 1z = 3

Note that 1 < 1if3 <0 <5and 21 > 1if 6 < 0 < n—2. Clearly, f(z) must attain
its maximum at 1, 6, z1(> 1), or z2. Moreover, for 3 < 8 < n — 2, we have

f(1) —f(0) =2
f() = fla2) =

—~

2(0% — 30 +2) >0,

[2(V02+0+1-0)6>+ (519+2\/M— 159)0
2(v/02 + 60+ 1+55)] >

<m+29_51)92 (262 + 6 + 1 +159)8

flw) = f(1) = [
2(V02+60+1-55)] >0;

o+ E%IH
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one might check that the third inequality holds for 3 < € < 12 by direct calculation
and for 6 > 13 by the fact that

f@ﬁ—fﬂ)>§;@vﬂ%+9+1+20—m)>g;@a—m)>o

This proves that f(z) attains its maximum uniquely at x = max{1,z;}, as desired,
completing the proof of Lemma 3. 0

Lemma 4. Let G € I, ,, where n and p are positive integers such that 1 < p <
n —3. If G has the maximal irregularity, then A(G) =n—1 and A2(G) =n—p—1.

Proof. For convenience, let d, = dg(v) for any vertex v € V(G), and let uy
and ug be two vertices of G such that d,, = A(G) and d,, = Az(G), respectively.
We first show that A(G) = n — 1. By contradiction, we suppose that A(G) < n — 2.
Clearly, there is a vertex v; nonadjacent to the vertex u; (that is, uyv1 ¢ E(G)). We
consider the following two cases:

Case 1: Ng(v1) € Ng(up). In this case, there exists a vertex u ¢ Ng(uq) such
that viu € E(G). Let G1 = G — v1u + uiv1 + uyu. Obviously, G; has p pendant
vertices. However,

irr(Gy) —irr(G) = (duy +2 —dy, ) + (duy +2—dy) — |doy, — dy]

+ Z [(dm +2- dz) - (du1 - dm)]
zENG(u1)

=4d,, +4—dy, —dy — |dy, — dy|
> 4d,,, +4 — 2max{d,,,d,} > 0,

which contradicts the assumption that G has the maximal irregularity.

Case 2: Ng(v1) € Ng(up). In this case, for any vertex z € Ng(v1), we have
d, > 2. We further consider the following subcases.

Subcase 2.1: d, < d,, for any vertex z € Ng(v1). Let Go = G + u1v;. One can
see that G still has p pendant vertices. However, we have

irr(Ge) — irr(G) = [(du, + 1) — (dy, +1)]
+ Y (e + 1= dy) = (duy — da)]

zENG(u1)
+ Z [(dU1 +1- dy) - (dU1 - dy)]
yENg(v1)
= 2d,, >0,

which again contradicts the maximality of G.
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Subcase 2.2: There is (at least) one vertex w € Ng(vy) so that dy, > d,. If dy, > 3,
then let G5 = G—viw—+wviuy. Clearly, Gs has p pendant vertices. However, we obtain

irr(Gs) — irr(G) = (duy, +1 = dy,) + [(du, +1) = (dw — 1)] = (duy — duw)
- (dw - dv1) + Z [(dm +1- dm) - (dul - dz)]
z€Ng(u1)—{w}
+ Z (|dw_1_dy|_|dw_dy|)
YENg(w)—{u1,v1}
> 2dy, —2d,+4 >0,

a contradiction.

If d, = 2, then d,, = 1. Suppose that w’ is a vertex in Ng(u;) — {w} such
that d, > d, for any vertex z € Ng(u1) — {w}. Then, we have d,s > 2 (since
1<p<n—23). Let G4 = G — viw + viug + ww'. Clearly, G4 still has p pendant
vertices. However, we get

(Ga) — irr(G) = (duy +1— 1) + (duy +1 = 2) + [(du, +1) — (dur + 1)]
+(dw’+1_2)_(du1 _dw’)_(dul _2)_(2_1)
+ > [(du, +1 = dz) = (du, — da)]
zENg(u1)—{w,w’}
+ > (Idw +1 = dy| = |du — dy)
yENg(w')—{u1}
> 2d,, — 2> 0,

a contradiction as well. This proves that A(G) =n — 1.

Since G has p pendant vertices, there is exactly one vertex of degree n — 1 in G.
We further prove that As(G) =n —p — 1. Again by contradiction, we suppose that
Ay(G)<n—p—2.Let U ={v e V(G): d, #1, d, # n—1}. Clearly, |U| =n—p—1
and there is a vertex vg in U nonadjacent to the vertex ug (that is, ugve ¢ E(Q)).
We consider the following two cases:

Case 3: Ng(v2) € Ng(uz). In this case, there exists a vertex u ¢ Ng(ug) such
that vau € E(G). Let G5 = G — vau + ugv2 + ugu. Obviously, G5 has p pendant
vertices. However,

irr(Gs) — irr(Q) = (duy +2 — dy) + (duy + 2 — dy,) — |du, — du
+n—1=(du, +2)]— (n—1—du,)
+ Z [(du2 +2 - dgc) - (duz - dﬂc)]

zENg(uz)—{u1i}
> 4d,, — 2max{d,,,d,} >0,

which contradicts the assumption that G has the maximal irregularity.
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Case 4: Ng(v2) C Ng(ue). In this case, let G¢ = G — vaw + vaus, where w €
N¢g(v2)—{u1}. Note that d,, > 3 and hence Gj still has p pendant vertices. However,
we obtain

irr(Gg) —irr(G) = [duy, + 1 — (dow — D] + (duy + 1 — dy,) — (duy, — duwy)
—|dw = dp, | + [0 =1 = (du, +1)] = (n = 1 = du,)
+n—1—(dp—-1)]=-(n—=1=dy)

+ Yo (i + 1= dy) = (duy — da)]
zENG(u2)—{u1,w}
+ Z (|dw_1_dy|_|dw_dy|)

YyENG (w)—{u1,u2,v2}
> 2dy, +4 — 2max{dy,,d,} > 0,

a contradiction, as desired. This proves that Ay(G) =n—p— 1.
The proof of Lemma 4 is thus completed. O

We are now ready to give the proof of Theorem 1.

Proof of Theorem 1. Clearly, (i) follows from the fact that I';, ,—1 = {Sn}.

For (ii), noting that Iy, o = {Dpr: 1 <k < %n — 1}, we have

irr(G) = 2k? = 2k(n —1) +n* =3n+2 < n? —5n + 6,

with equality if and only if k =1, i.e., G = Dy, ;.
For (iii), we can suppose that G(€ I',, ) has the maximal irregularity. Then we
have the following claim.

Claim 5. G=ZHy,pp, 1<k<n—p—2.

Proof of Claim 5. By Lemma 4, we know that A(G) = n — 1 and Ay(G) =
n—p—1 Forl <i<n—1,let VC(;) ={z € V(Q): d, =i}. It is easy to see that
|Vc(:1)| =p and |Vc(;n71)| = 1. Moreover, let ¢ = |Vc(;n7p71)| and let

W =V(G) — VP uvr gy,

Notethat 1< ¢g<n—-p—-3org=n—p—1.

Ifg=n—p—1,then [W|=n—p—q—1=0 and hence W = (); in this case, we
have G = H,,  n—p—2.

If ¢ = n—p—3, then |IW| = 2. Moreover, sincen—p—1>d, > ¢+1=n—p—2 for
any vertex z € W, W must be an independent set, implying that G = H,, p, ,—p—3.

If1 <qg<n-—p-4,then |W| > 3. We can also prove that W must be an
independent set, which implies that G = H,, ,,. Indeed, by letting u be a vertex
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in W such that d,, = max{d,: z € W}, we just need to show that d, = ¢+ 1. By
contradiction, we can now suppose that d, > ¢+ 1. Let W =W — (Ng(u) U {u}).

Since ¢+1 < d, <n—p—1, we have 1 < |W’| < |W|—2. We consider the following
two cases.

Case 1: W’ is not an independent set. In this case, there is an edge vw such that

v,w € W'. Let G; = G —vw+uv. Clearly, G; still has p pendant vertices. However,
we obtain

irr(Gy) —irr(G) = (du + 1 — dy) — |dy — dy|
Fn—1—dy+1)—(n—1—dy)]
+ln—1-dy—1) = (n—1-dy)]
+aln—p-—1-dv+1)—(n—p—1-dy)]
+qln—p-—1-di—1)—(n—p—1-dy)]
+ Y [(du+1—do) = (dy— do)]

IENG(u)ﬁW

+ Z (ldw_l_dy|_|dw_d:c|)

yENg(w)NW —{v}
> 2d, + 2 — 2max{d,,dy}
> 0,

which contradicts the assumption that G has the maximal irregularity.
Case 2: W' is an independent set.

Subcase 2.1: There is an edge vw such that v € W’ and w € Ng(u) N W. Let
G2 = G — vw + vu. Clearly, G2 has p pendant vertices. However,

irr(Ga) — irr(Q) = (du + 1 — dy) + [(du + 1) — (du — 1)] — (du — du)
—ldy —dy| +(n—=1—dy—1) = (n—1-dy)
+(n=1—dy+1)—(n—1—dy)
+qln—p-—1-di—1)—(n—p—1-dy)]
+alln—p—1-dy+1)—(n—p—1-dy)]

+ Y [[dut1-dy) — (du — do)]
zENg(u)NW —{w}
+ > (Idw =1 = dy| = |dw — dy)

yENg(w)NW —{u,v}
> 2d, +4 — 2max{d,, d,}
>0,

which again contradicts the maximality of G.
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Subcase 2.2: There is no edge vw such that v € W’ and w € Ng(u) N W. If
q < %(n —p—1)—1, let A = |W’| and let G3 be the graph obtained from G by
joining the vertex u with each vertex in W’. Clearly, G35 has p pendant vertices and

dy +p+ A+ 1=n. However, we get

irr(Gs) —irr(G) =

>

a contradiction.

Itg>in—p—1)—1,

[(n—=1—=dy, =) —(n—1-d,)
+A(n—=1-¢-2)—(n—-1-q—1)]
+qln—p-1—-dy—A)—(n—p—1-dy)]
+qA(n-p-1-¢-2)—(n—-p—1-q—1)
+Ady +A—q—2)

+ Y (A —dy) — (du — d)]
zENg(u)NW

A2dy, —4g+ X —5)
An—p—1+4+d, —4qg—5)
Alln —p—1) =3¢ —3]

Y

let G4 be the graph obtained from G by deleting all the

edges of G[W — W']. Clearly, G4 still has p pendant vertices. However,

irr(Gy) — irr(G) =

> dn—p—1-(g+1)—(n—p—1—dy)
weW —-w’

+ > [-1-(g+1)—(n—1-dy)]

weW-w’

5 XY -

weW-W'zeNg(w)NW

> Y (@+)dw—q-1)
weW -w’
_% Y. [dw—q—1)[(n—p—2)—(q+2)]
weW -Ww'
:%[3q—(n—p—1)+5] Z (dw_q_l)
weW -w’
>0,

a contradiction as well. This proves that d, = ¢ + 1 and hence W is an independent

set, which implies that G

= H, p,q- Claim 5 thus follows. O
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We next determine the exact value of k such that irr(H, p ;) attains its maximum.

If p = n — 3, then by the definition of H,, , 1, we have 1 <k <n—p—2 =1, that
is, k =1=max{1,[3(n —p—1)] — 1 +¢}, where € € {0,1}.

If1 <p<n-—4,bysetting d =n—p—1, we have 3 < § < n — 2. Moreover, by
some calculations, we have

irr(Hppr)=n—1—(n—p—-D)k+n-1-(k+1)](n—p—-1-k)
+(n—-1-Dp+n—p—-1)—(k+1)](n—p—-1-k)k
=k =200 - D)k + (6> - 30+ Dk + (n—2)(n — 1)

where f(z) = 2 —2(0 —1)2? + (6> - 30+ 1)z + (n—2)(n—1). By Lemma 3, we know
that f(z) attains its maximum uniquely at = = max{1,2(20 —2 — V62 + 6 + 1)}.
When 3 < 6 < 5, we have %(29 —2—+/62+60+1) <1 and hence, f(k) attains its
maximum at k = 1 = max{1, [3(n —p—1)] — 1 + ¢}, where ¢ € {0,1}.
When 6 < 6 < n—2, we have (20 —2 — V62 + 60+ 1) > 1 and hence f(k) attains

its maximum at

20-2—-V02+0+1 r20-2-V02+0+1
m—{ 3 J o QQ’{ 3 W

Observing that (0 —3) < 2(20 —2— V02 + 6+ 1) < 2(0 — 2), we can check that
q1 = |36] — 1 and ¢, = [ $6]. Furthermore, we have

> if 0 =3t then ¢y =t —1, ¢o =t, and f(q1) — f(g2) = 2t > 0;
>if§=3t+1,then s =t —1, g2 =¢, and f(q1) — f(g2) = 0;

>if 0 =3t+2,then gy =t —1, g2 =¢t, and f(q1) — f(g2) = —2(t+1) <O.

Now, by combining the above arguments, we may conclude that

k= {H—Tp—lJ —1—1—52111&){{17 {H_THJ —1+E},

wheree =0ifn—p—1=0 (mod 3),e €{0,1}ifn—p—1=1 (mod 3),and e =1

ifn—p—1=2 (mod 3), as desired.
This completes the proof of Theorem 1. O

Proof of Theorem 2. Suppose that G € I', , (1 < p < n—1). For an integer
1 >1,let Q:=wuguy...u; be a path of length [ in G. We call @) a pendant path of
length [ if dy, > 3, dy, =1, and d,,, = 2 for all § with 1 <7 <1 — 1. It is easy to
check that the contribution of a pendant path @ in G to irr(G) is always d,, — 1.
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On the other hand, since G 2 P,,, every pendant vertex of GG uniquely determines
a pendant path of G and vice versa, which yields that there are exactly p pendant
paths in G. Thus, we have

(2.1) irr(G) =2 p- (dy, — 1) = 2p.

Moreover, noting that all pendant paths (of arbitrary length) have the same
minimal irr-value 2 if and only if their initial vertices have degree 3, we can con-
clude that the equality holds in (2.1) if and only if G has p pendant paths whose
initial vertices have degree 3 and all other vertices not in these p pendant paths
(if exist) have degree 3, that is, G € ﬂf’;

The proof of Theorem 2 is completed. O
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