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Abstract. We propose a lower bound sequence for the minimum eigenvalue of Hadamard
product of an M -matrix and its inverse, in terms of an S-type eigenvalues inclusion set
and inequality scaling techniques. In addition, it is proved that the lower bound sequence
converges. Several numerical experiments are given to demonstrate that the lower bound
sequence is sharper than some existing ones in most cases.
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1. Introduction

M -matrices play an important role in various fields of science and engineering.

Many problems in biology, physics, mathematics, and social sciences are closely

related to the M -matrices, such as economic value model matrices and coefficient

matrices of inverse network analysis and linear complementarity problems in opti-

mization.

Denote the set of all n × n real matrices by R
n×n, and N denotes the set

{1, 2, . . . , n}. Let A = (aij) ∈ R
n×n. If A satisfies aij 6 0, i, j ∈ N , i 6= j, then A is

a Z-matrix. The set of all n× n Z-matrices is represented by Zn. The matrix A is

a nonsingular M -matrix if and only if A ∈ Zn and A can be written as A = sI −B,

where B is a nonnegative matrix (i.e., all elements are not negative), and s > ̺(B).

The work was supported by the National Natural Science Foundation of China (grant
No. 11971413).

c© Institute of Mathematics, Czech Academy of Sciences 2021.

DOI: 10.21136/CMJ.2021.0092-21 663

http://dx.doi.org/10.21136/CMJ.2021.0092-21


The set of all n× n nonsingular M -matrices is denoted by Mn, see [1]. We denote

τ(A) = min{Re(λ) : λ ∈ σ(A)},

where σ(A) denotes the spectrum of the matrix A.

For two real matrices A = (aij), B = (bij) ∈ R
n×n, the Hadamard product of A

and B is A ◦B ≡ (aijbij). It is proved that A ◦B−1 is anM -matrix if both A and B

are M -matrices, see [5], [6].

The question of whether a real matrix may be symmetrized via multiplication by

a positive diagonal matrix, is reduced to the corresponding issue forM -matrices and

related to Hadamard products. Fiedler et al. in [4] pointed out a measure τ(A◦A−1),

which is the minimum real eigenvalue of A ◦A−1. In addition, they showed that

(1.1) 0 < τ(A ◦A−1) 6 1

for a nonsingular M -matrix A. Subsequently, Fiedler and Markham in [5] proved

that

(1.2) τ(A ◦A−1) >
1

n
,

and proposed the following conjecture:

(1.3) τ(A ◦A−1) >
2

n
.

We introduce some notations that will be very useful in explaining some existing

results. Suppose A = (aij), A
−1 = B = (bij). For any i, j, k ∈ N , j 6= i, t =

0, 1, 2, . . . , denote

Ri =
∑

j 6=i

|aij |, di =
Ri

|aii|
, sji =

|aji|+
∑

k 6=j,i |ajk|dk

|ajj |
, si = max

j 6=i
{sij},

rji =
|aji|

|ajj | −
∑

k 6=j,i |ajk|
, ri = max

j 6=i
{rji}, mji =

|aji|+
∑

k 6=j,i |ajk|ri

|ajj |
,

uji =
|aji|+

∑

k 6=j,i |ajk|mki

|ajj |
, ui = max

j 6=i
{uij}, p

(0)
ji = min{sji,mji},

p
(t)
i = max

j 6=i
{p

(t)
ij }, h

(t)
i = max

j 6=i

{

|aji|

|ajj |p
(t)
ji −

∑

k 6=j,i |ajk|p
(t)
ki

}

,

v
(t)
ji =

|aji|+
∑

k 6=j,i |ajk|p
(t)
ki h

(t)
i

|ajj |
, gji =

|aji|+
∑

k 6=j,i |ajk|fkili

|ajj |
, gi = max

j 6=i
{gij},

p
(t+1)
ji =

|aji|+
∑

k 6=j,i |ajk|v
(t)
ki

|ajj |
, qji =

|aji|+
∑

k 6=j,i |ajk|ski

|ajj |
, qi = max

j 6=i
{qij},

fji =
|aji|+

∑

k 6=j,i |ajk|qki

|ajj |
, lji =

|aji|

|ajj |fji −
∑

k 6=j,i ‖ajk|fki
, li = max

j 6=i
{lji}.
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Li et al. in [8] testified the conjecture (1.3) and obtained the result

(1.4) τ(A ◦A−1) > min
i∈N

{ aii − siRi

1 +
∑

j 6=i sji

}

,

which depends only on the entries of matrix A instead of the dimension of matrix A.

Cheng et al. in [3] improved result (1.4) indicating the following result:

(1.5) τ(A ◦A−1) > min
i∈N

{ aii − uiRi

1 +
∑

j 6=i uji

}

.

Zhou et al. in [12] proved that

(1.6) τ(A ◦A−1) > 1− ̺2(JA),

where DA = diag(aii), CA = DA −A, JA = D−1
A CA.

Zhao et al. in [11] improved results (1.4) and (1.5), showing the following conclu-

sion:

(1.7) τ(A ◦A−1) > min
i∈N

{

aii − p
(t)
i Ri

1 +
∑

j 6=i p
(t)
ji

}

, t = 1, 2, . . .

Chen in [2] obtained the result

(1.8) τ(A ◦A−1) > min
i6=j

1

2

{

aiibii + ajjbjj −

[

(aiibii − ajjbjj)
2

+ 4

(

qi
∑

k 6=i

|aki|bii

)(

qj
∑

k 6=j

|akj |bjj

)]1/2}

.

Huang et al. in [7] gave three lower bounds as follows, which are difficult to be

compared theoretically:

τ(A ◦A−1) > min
i6=j

1

2

{

aiibii + ajjbjj −

[

(aiibii − ajjbjj)
2(1.9)

+ 4

(

gi
∑

k 6=i

|aki|bii

)(

gj
∑

k 6=j

|akj |bjj

)]1/2}

,

τ(A ◦A−1) > min
i∈N

{

aii −
∑

j 6=i |aji|gji

aii −
∑

k 6=i akiaik/akk

}

,(1.10)

τ(A ◦A−1) > min
i6=j

1

2

{

aiibii + ajjbjj −

[

(aiibii − ajjbjj)
2(1.11)

+ 4

(

bii
∑

k 6=i

|aki|qki

)(

bjj
∑

k 6=j

|akj |qkj

)]1/2}

.
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The content of this paper can be listed as follows: In Section 2, some lemmas

and notations are presented. In Section 3, we exhibit a lower bound sequence for

τ(A ◦A−1) by using S-type eigenvalue inclusion set and a series of inequality scaling

techniques. For the obtained lower bound sequence, we prove its convergence and

give the calculation algorithm. In Section 4, in order to verify the validity and supe-

riority of our results, numerical experiments are carried out by randomly generating

M -matrices.

2. Some lemmas and notations

For convenience, let S denote a nonempty subset of N , n > 2, and let S := N \ S

denote its complement in N . Then for any given matrix A = (aij) ∈ R
n×n, split

each row sum Ri(A) and column sum Ci(A) into two parts, depending on S and S.

In other words, for any i ∈ N , denote

RS
i (A) =

∑

j∈S\{i}

|aij |, RS
i (A) =

∑

j∈S\{i}

|aij |,

CS
i (A) =

∑

j∈S\{i}

|aji|, CS
i (A) =

∑

j∈S\{i}

|aji|.

Lemma 2.1 ([11]). If A = (aij) ∈ Mn is a strictly row diagonally dominant

matrix, then A−1 = (bij) exists, and

bji 6
|aji|+

∑

k 6=j,i |ajk|v
(t−1)
ki

ajj
bii = p

(t)
ji bii 6 p

(t)
j bii, j, i ∈ N, j 6= i, t = 1, 2, . . .

Remark 2.1. As t increases, p
(t)
ij and p

(t)
i will decrease gradually, and 0 6 p

(t)
ij 6

p
(t)
i 6 1, see [11], Lemma 1. By the monotone bounded theorem we know that p

(t)
ij

and p
(t)
i are convergent.

Lemma 2.2 ([11]). If A = (aij) ∈ Mn is a strictly row diagonally dominant

matrix, then A−1 = (bij) exists, and

1

aii
6 bii 6

1

aii −
∑

j 6=i |aji|p
(t)
ji

, i, j ∈ N, t = 1, 2, . . .
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Lemma 2.3 ([11]). If A = (aij) ∈ Mn and B = A−1 = (bij) is a doubly stochastic

matrix, then

bii >
1

1 +
∑

j 6=i p
(t)
ji

, i, j ∈ N, t = 1, 2, . . .

Lemma 2.4 ([10]). For a given A = (aij) ∈ R
n×n and a nonempty subset S,

define the Gershgorin-type discs

(2.1) ΓS
i (A) := {z ∈ C : |z − aii| 6 CS

i (A)} (any i ∈ S)

and the sets

(2.2) V S
i,j(A) := {z ∈ C : (|z − aii| − CS

i (A))(|z − ajj | − CS
j (A)) 6 CS

i (A)C
S
j (A)}

(any i ∈ S, any j ∈ S). Then all the eigenvalues of A lie in the region

(2.3) ES(A) =

(

⋃

i∈S

ΓS
i (A)

)

∪

(

⋃

i∈S, j∈S

V S
i,j(A)

)

,

which is called the S-type eigenvalue inclusion set.

Remark 2.2. See [10]. Let

Si = {i} (i ∈ N),

G(A) =
⋃

i∈N

{z : |z − aii| 6 Ri(A)},

K(A) =
⋃

i6=j

{z : |z − aii||z − ajj | 6 Ri(A)Rj(A)}.

Then

σ(A) ⊆
⋂

∅6=S⊆N

ES(A) ⊆
⋂

i∈N

ESi(A) ⊆ K(A) ⊆ G(A).

This means that we use a more precise eigenvalue inclusion set than the one used in

other corresponding papers.

Lemma 2.5. Let S denote a nonempty subset ofN . For a given A = (aij) ∈ R
n×n

and positive real constants p1, p2, . . . , pn, all the eigenvalues of A lie in the region:
(

⋃

i∈S

{

z : |z − aii| 6 pi
∑

k∈S\{i}

|aki|

pk

})

⋃

(

⋃

i∈S,j∈S

{

z :

(

|z − aii| − pi
∑

k∈S\{i}

|aki|

pk

)(

|z − ajj | − pj
∑

k∈S\{j}

|akj |

pk

)

6 pi
∑

k∈S

|aki|

pk
pj

∑

k∈S

|akj |

pk

})

.
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P r o o f. Since D−1AD has the same eigenvalues as A when D is nonsingular, we

apply Lemma 2.4 to D−1AD and thereby obtain additional eigenvalue inclusion sets

for A. A particularly convenient choice is D = diag(p1, p2, . . . , pn) with all pi > 0.

Applying Lemma 2.4 to D−1AD = [pjaij/pi] we get the result we want. �

3. Main result

In this section, a superior lower bound for τ(A ◦ A−1) is given. Moreover, the

present authors verify the validity and superiority of the lower bound. Without

loss of generality, we assume that A−1 is a doubly stochastic matrix. Otherwise,

there exist two positive diagonal matrices D1 and D2 such that D1A
−1D2 is dou-

bly stochastic, see [10]. The matrix B = D−1
2 AD−1

1 is an M -matrix and satisfies

τ(B ◦ B−1) = τ(A ◦ A−1) in virtue of B ◦ B−1 = (D−1
2 AD−1

1 ) ◦ (D1A
−1D2) =

(D1D
−1
2 )(A ◦A−1)(D1D

−1
2 )−1.

To facilitate the formulation in the following theorems, we introduce the notation

HS
i (t) := aiibii − p

(t)
i biiC

S
i (A),

sometimes abbreviated as HS
i .

Theorem 3.1. Let S denote a nonempty subset of N , n > 2. If A = (aij) ∈ Mn

and B = A−1 = (bij) is a doubly stochastic matrix, then for t = 1, 2, . . . ,

τ(A ◦A−1)

> max
∅6=S⊆N

min
i∈S, j∈S

1

2
{HS

i +HS
j − [(HS

i −HS
j )

2 + 4p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A)]

1/2}

= Ωt.

P r o o f. Firstly, we assume that A is irreducible. Since B = A−1 is a doubly

stochastic matrix, we obtain that Ae = e, A⊤e = e, and A is a nonsingularM -matrix,

so we can conclude that

aii = Ri(A) + 1 = Ci(A) + 1 and aii > 1, i ∈ N.

We have

p
(t)
i = max

j 6=i
{p

(t)
ij } = max

j 6=i

{

|aij |+
∑

k 6=i,j |aik|v
(t−1)
kj

|aii|

}

, i ∈ N, t = 1, 2, . . .

Since A is an irreducible matrix and due to Remark 2.1, we know that 0 < p
(t)
i 6 1.

Let τ(A ◦ B) = λ. It is not hard to get 0 < λ 6 1 6 aiibii, i ∈ N . Thus, for any
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given positive integer t, by Lemma 2.5, either there exists i ∈ S such that

(3.1) |λ− aiibii| 6 p
(t)
i

∑

k∈S\{i}

|aki|bki

p
(t)
k

,

or there exists i ∈ S, j ∈ S such that

(3.2)

(

|λ− aiibii| − p
(t)
i

∑

k∈S\{i}

|aki|bki

p
(t)
k

)(

|λ− ajjbjj | − p
(t)
j

∑

k∈S\{j}

|akj |bkj

p
(t)
k

)

6 p
(t)
i

∑

k∈S

|aki|bki

p
(t)
k

p
(t)
j

∑

k∈S

|akj |bkj

p
(t)
k

6 p
(t)
i

∑

k∈S

|aki|p
(t)
ki bii

p
(t)
k

p
(t)
j

∑

k∈S

|akj |p
(t)
kj bjj

p
(t)
k

(by Lemma 2.1)

6 p
(t)
i bii

∑

k∈S

|aki|p
(t)
j bjj

∑

k∈S

|akj |

= p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A).

By inequality (3.1) we know that

(3.3) λ > aiibii − p
(t)
i

∑

k∈S\{i}

|aki|bki

p
(t)
k

> aiibii − p
(t)
i

∑

k∈S\{i}

|aki|p
(t)
ki bii

p
(t)
k

> aiibii − p
(t)
i

∑

k∈S\{i}

|aki|bii

= aiibii − p
(t)
i CS

i (A)bii

> min
i∈S

{aiibii − p
(t)
i CS

i (A)bii}.

Since 0 < λ 6 akkbkk, k ∈ N , by inequality (3.2), we conclude that

(3.4) p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A)

>

(

|λ− aiibii| − p
(t)
i

∑

k∈S\{i}

|aki|bki

p
(t)
k

)(

|λ− ajjbjj | − p
(t)
j

∑

k∈S\{j}

|akj |bkj

p
(t)
k

)

=

(

aiibii − λ− p
(t)
i

∑

k∈S\{i}

|aki|bki

p
(t)
k

)(

ajjbjj − λ− p
(t)
j

∑

k∈S\{j}

|akj |bkj

p
(t)
k

)

=

(

λ− aiibii + p
(t)
i

∑

k∈S\{i}

|aki|bki

p
(t)
k

)(

λ− ajjbjj + p
(t)
j

∑

k∈S\{j}

|akj |bkj

p
(t)
k

)

.
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By Lemma 2.1, similarly to (3.2), it is true that

(3.5) p
(t)
i

∑

k∈S\{i}

|aki|bki

p
(t)
k

6 p
(t)
i biiC

S
i (A), p

(t)
j

∑

k∈S\{j}

|akj |bkj

p
(t)
k

6 p
(t)
j bjjC

S
j (A).

Let

HS
i = aiibii − p

(t)
i biiC

S
i (A), HS

j = ajjbjj − p
(t)
j bjjC

S
j (A),

KS
i = aiibii − p

(t)
i

∑

k∈S\{i}

|aki|bki

p
(t)
k

, KS
j = ajjbjj − p

(t)
j

∑

k∈S\{j}

|akj |bkj

p
(t)
k

.

From (3.5), KS
i > HS

i > 0, KS
j > HS

j > 0. Then inequality (3.4) can be simplified as

(3.6) (λ−KS
i )(λ−KS

j ) 6 p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A),

which is a one-variable quadratic inequality. For convenience, denote

λ1 =
1

2
{KS

i +KS
j − [(KS

i −KS
j )

2 + 4p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A)]

1/2},

λ2 =
1

2
{KS

i +KS
j + [(KS

i −KS
j )

2 + 4p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A)]

1/2}.

It is not difficult to obtain that (3.6) is equivalent to (λ − λ1)(λ − λ2) 6 0. Due to

λ1 < λ2, we conclude that

(3.7) λ > λ1 =
1

2
{KS

i +KS
j − [(KS

i −KS
j )

2 + 4p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A)]

1/2}.

Let a = KS
i −HS

i , b = KS
j −HS

j , c = 4p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A) (a, b and c are

all nonnegative), then we will show that

(3.8) KS
i +KS

j − [(KS
i −KS

j )
2 + c]1/2 > HS

i +HS
j − [(HS

i −HS
j )

2 + c]1/2,

that is

(3.9) a+ b+ [(HS
i −HS

j )
2 + c]1/2 > [(HS

i + a−HS
j − b)2 + c]1/2.

equation (3.9) is equivalent to

(3.10) (a+ b)2 + 2(a+ b)[(HS
i −HS

j )
2 + c]1/2 + (HS

i −HS
j )

2 + c

> (HS
i −HS

j + a− b)2 + c

= (HS
i −HS

j )
2 + 2(HS

i −HS
j )(a− b) + (a− b)2 + c.
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Then (3.10) can be simplified as

(3.11) (a+ b)2 + 2(a+ b)[(HS
i −HS

j )
2 + c]1/2 > (a− b)2 + 2(a− b)2(HS

i −HS
j ).

Through item by item comparison, it is easy to conclude that (3.11) is true, there-

fore (3.10), (3.9) and (3.8) all hold. Hence, by (3.7) and (3.8), we obtain that

(3.12) λ >
1

2
{HS

i +HS
j − [(HS

i −HS
j )

2 + 4p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A)]

1/2}

> min
i∈S,j∈S

1

2
{HS

i +HS
j − [(HS

i −HS
j )

2 + 4p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A)]

1/2}.

We get two lower bounds (3.3) and (3.12) on λ, but there is concrete evidence to

suggest that

(3.13) min
i∈S

{aiibii − p
(t)
i CS

i (A)bii} = min
i∈S

{HS
i }

> min
i∈S,j∈S

1

2
{HS

i +HS
j − [(HS

i −HS
j )

2 + 4p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A)]

1/2}.

Then we will prove (3.13). For any given i ∈ S, j ∈ S, if HS
i 6 HS

j holds, then

1

2
{HS

i +HS
j − [(HS

i −HS
j )

2 + 4p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A)]

1/2}

6
1

2
{HS

i +HS
j − [(HS

i −HS
j )

2]1/2} = HS
i .

Otherwise, HS
i > HS

j , then

1

2
{HS

i +HS
j − [(HS

i −HS
j )

2 + 4p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A)]

1/2}

6
1

2
{HS

i +HS
j − [(HS

i −HS
j )

2]1/2} = HS
j < HS

i .

Therefore, (3.13) holds.

Whenever a nonempty subset S is given, there is a corresponding eigenvalue in-

clusion set. So τ(A ◦A−1) > Ωt is obtained.

If A is reducible, without loss of generality, we may assume that A has the block

upper triangular form

A =









A11 A12 . . . A1s

A22 . . . A2s

. . . . . .

Ass









with irreducible diagonal blocks Aii, i = 1, 2, . . . , s. Obviously, τ(A ◦ A−1) =

min
16i6s

(Aii ◦ A−1
ii ). Thus, reducible matrix A is reduced to irreducible diagonal

blocks Aii. The result of Theorem 3.1 also holds. �
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Theorem 3.2. The sequence {Ωt} obtained from Theorem 3.1 is increasing on

{t : t = 1, 2, . . .}, consequently, it is convergent.

P r o o f. Let

(3.14) G(t) = 4p
(t)
i biiC

S
i (A)p

(t)
j bjjC

S
j (A),

Γ(t) = HS
i (t) +HS

j (t)− [(HS
i (t)−HS

j (t))
2 +G(t)]1/2.

From Remark 2.1, we have p
(t)
ij and p

(t)
i are decreasing on {t : t = 1, 2, . . .}. Hence,

HS
i (t) is increasing and G(t) is decreasing on {t : t = 1, 2, . . .}. For any given positive

integer t1 and t2 (t1 < t2), we assume that

(3.15) HS
i (t2) = HS

i (t1) + ε, HS
j (t2) = HS

j (t1) + δ, G(t2) = G(t1)− θ,

where ε, δ and θ are nonnegative. From (3.14) and (3.15), we obtain that

Γ(t2)− Γ(t1) = ε+ δ + [(HS
i (t1)−HS

j (t1))
2 +G(t1)]

1/2

− [(HS
i (t2)−HS

j (t2))
2 +G(t2)]

1/2

= ε+ δ + [(HS
i (t1)−HS

j (t1))
2 +G(t1)]

1/2

− [(HS
i (t1) + ε−HS

j (t1)− δ)2 +G(t1)− θ]1/2.

We will prove that Γ(t2)− Γ(t1) > 0, i.e.,

(3.16) ε+ δ + [(HS
i (t1)−HS

j (t1))
2 +G(t1)]

1/2

> [(HS
i (t1) + ε−HS

j (t1)− δ)2 +G(t1)− θ]1/2,

which is equivalent to

(3.17) (ε+ δ)2 + (HS
i (t1)−HS

j (t1))
2 +G(t1)

+ 2(ε+ δ)[(HS
i (t1)−HS

j (t1))
2 +G(t1)]

1/2

> (HS
i (t1) + ε−HS

j (t1)− δ)2 +G(t1)− θ

= (HS
i (t1)−HS

j (t1))
2 + (ε− δ)2

+ 2(HS
i (t1)−HS

j (t1))(ε− δ) +G(t1)− θ.

And (3.17) is equivalent to

(3.18) (ε+ δ)2 + 2(ε+ δ)[(HS
i (t1)−HS

j (t1))
2 +G(t1)]

1/2

> (ε− δ)2 + 2(HS
i (t1)−HS

j (t1))(ε− δ)− θ.
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Thanks to ε, δ, θ and G(t) being nonnegative, we have

(ε+ δ)2 > (ε− δ)2,(3.19)

2(ε+ δ) > 2(ε− δ),(3.20)

[(HS
i (t1)−HS

j (t1))
2 +G(t1)]

1/2 > (HS
i (t1)−HS

j (t1)),(3.21)

θ > 0.(3.22)

By (3.19), (3.20), (3.21) and (3.22), we conclude that (3.18) is valid, therefore (3.17)

and (3.16) also hold. Hence, we obtain that Γ(t2) − Γ(t1) > 0. In other word, as t

increases, Γ(t) will increase gradually. Finally, we know that Ωt is increasing on

{t : t = 1, 2, . . .}. Any term in the sequence {Ωt} is a lower bound of τ(A ◦ A−1),

so Ωt is convergent in virtue of monotone bounded theorem. �

Next, an algorithm of Ωt is given as follow:

Algorithm 1: an algorithm of Ωt

Input: a nonsingularM -matrix A = (aij) whose inverse matrix is a doubly stochas-

tic matrix, and t0;

Output: Ωt0

1: compute Ri =
∑

j 6=i

|aij |;

2: compute di =
Ri

|aii|
;

3: compute sji =
|aji|+

∑

k 6=j,i |ajk|dk

|ajj |
and rji =

|aji|

|ajj | −
∑

k 6=j,i |ajk|
;

4: compute si = max
j 6=i

{sij} and ri = max
j 6=i

{rji};

5: compute mji =
|aji|+

∑

k 6=j,i |ajk|ri

|ajj |
;

6: compute p
(0)
ji = min{sji,mji};

7: for t = 0: t0

8: compute p
(t)
i = max

j 6=i
{p

(t)
ij } and h

(t)
i = max

j 6=i

{

|aji|

|ajj |p
(t)
ji −

∑

k 6=j,i |ajk|p
(t)
ki

}

;

9: compute v
(t)
ji =

|aji|+
∑

k 6=j,i |ajk|p
(t)
ki h

(t)
i

|ajj |
;

10: compute p
(t+1)
ji =

|aji|+
∑

k 6=j,i |ajk|v
(t)
ki

|ajj |
;

11: end for

12: compute Ωt0 ;

13: return that Ωt0 .
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For a given positive integer t0, the corresponding lower bound Ωt0 can be obtained.

And t0 can be chosen as small as possible according to the need of different precision.

For example, t0 is selected so that |Ωt0 − Ωt0−1| 6 10−8, which is a condition for

cycle termination.

4. Numerical example

In this section, the following examples are given to demonstrate the superiority of

our result.

Example 4.1. Let us see the following simple M -matrix given in [7]:

A =









4 −1 −1 −1

−2 5 −1 −1

0 −2 4 −1

−1 −1 −1 4









.

We know that B = A−1 = (bij) is a doubly stochastic matrix because Ae = e and

A⊤e = e. By direct calculations with MATLAB R2016a, we get the following results.

Theorem Lower bound

Theorem 3.1 of [3] 0.6624

Theorem 3.1 of [8] 0.8250

Corollary 2 of [4] 0.8364

Theorem 3.2 of [5] 0.8456

Theorem 2 of [9] 0.8904

Theorem 3 of [9] 0.6874

Theorem 4 of [9] 0.8811

Table 1. Lower bounds for τ (A ◦A
−1).

If we apply Theorem 3.1, we get τ(A ◦A−1) > Ωt, see Table 2.

t 1 2 3 4

Ωt 0.9168 0.9188 0.9190 0.9190

Table 2. The lower bounds of τ (A ◦A
−1) by Theorem 3.1.

The numerical example shows that the bound of Theorem 3.1 is greater than these

corresponding results.
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Example 4.2. The last example is not convincing enough. Next, we construct

randomly 120 4 × 4 M -matrices, whose inverse matrices are doubly stochastic. For

convenience, the idea, how the randommatrices are constructed, is as follows. Firstly,

the diagonal entries of the 3 order principal submatrix are generated randomly.

Secondly, the off-diagonal entries of the 3 order principal submatrix are generated

randomly in the diagonal constraints, Finally, the remaining entries can be calcu-

lated, see Algorithm 2. We compare the new lower bound with Theorems 2–4 of [7],

i.e., (1.9), (1.10) and (1.11), see Figure 1.

Algorithm 2: a 4× 4 M -matrix A is constructed randomly

Output: a 4× 4 M -matrix A, whose inverse matrix is doubly stochastic

1: initialization A = O4×4;

2: [a11, a22, a33] = 10× rand(1, 3) + [2, 2, 2];

3: for i = 1 : 3

4: for j = 1 : 3

5: if i 6= j

6: aij = [2−min(aii, ajj)]×rand(1);

7: end if

8: end for

9: end for

10: for i = 1 : 3

11: ai4 = 1− ai1 − ai2 − ai3;

12: if ai4 > 0

13: return step 3;

14: end if

15: end for

16: for i = 1 : 3

17: a4i = 1− a1i − a2i − a3i;

18: if a4i > 0

19: return step 3;

20: end if

21: end for

22: if A−1 > 0

23: return A;

24: else

25: return step 3;

26: end if
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Figure 1. The lower bound estimations derived from Theorems 2–4 of [7] and Theorem 3.1.

In order to observe conveniently, we arrange incrementally the lower bounds ob-

tained from Theorem 3.1. As can be seen in Figure 1, in most cases, the lower

bounds obtained from Theorem 3.1 (star symbol) are better than the ones obtained

from Theorems 2–4 of [7]. To facilitate our observation, we remove Theorem 3 of [7],

see Figure 2.
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Figure 2. The lower bound estimations derived from Theorems 2–4 of [7] and Theorem 3.1.
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In Figure 2, we increase the number of random M -matrices to 200. And the

conclusion is consistent with what we have said before, i.e., in most cases, the lower

bounds obtained from Theorem 3.1 are better than the ones from Theorems 2 and 4

of [7]. Then we compare the estimate value from Theorem 3.1 with the one from

Theorems 2–4 of [7], by subtracting the latter from the former, see Figures 3–5.
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Figure 3. Subtract the lower bounds given by Theorem 2 of [7] from the lower bounds given
by Theorem 3.1.
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Figure 4. Subtract the lower bounds given by Theorem 3 of [7] from the lower bounds given
by Theorem 3.1.
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Figure 5. Subtract the lower bounds given by Theorem 4 of [7] from the lower bounds given
by Theorem 3.1

In Figures 3–5, we construct randomly 10000M -matrices, respectively. We can see

that most symbols are above the X-axis. It means that the estimated value for lower

bound of τ(A ◦ A−1) from Theorem 3.1 is larger than the one from Theorems 2–4

of [7]. We count the total number of points above the X-axis, so we can figure out the

proportion of points above the X-axis. The result is, that in Figures 2–4, the rates

of points above the X-axis are 1.0000, 0.9984, 0.9545, respectively. The superiority

of Theorem 3.1 is explained.

5. Conclusion

This paper concerns τ(A ◦ A−1), the minimum eigenvalue of Hadamard product

of an M -matrix and its inverse, in which A is a nonsingular M -matrix. By using

S-type eigenvalue inclusion set and the inequality scaling techniques, the lower bound

sequence of τ(A ◦ A−1) is obtained, and the convergence of the sequence is proved

and the algorithm is given. Finally, we illustrate the superiority and validity of the

theorem by numerical experiments with examples presented in other literatures and

randomly generated M -matrices. In conclusion, we obtain a superior lower bound

sequence for τ(A ◦A−1).
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