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Abstract. This paper aims at the study of the notions of periodic, UU and semiclean
properties in various context of commutative rings such as trivial ring extensions, amalga-
mations and pullbacks. The results obtained provide new original classes of rings subject
to various ring theoretic properties.
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1. Introduction

Throughout the whole paper, we assume that all rings are commutative with

unity. For the convenience of the reader, we fix notation for the rest of the paper.

For a ring A, we denote by U(A), Idem(A), Nilp(A), Jac(A) and Per(A), the mul-

tiplicative group of units of A, the set of all idempotent elements of A, the ideal

of all nilpotent elements of A, the Jacobson radical of A and the set of all periodic

elements of A. An element x of a ring A is nilpotent if there exists a positive integer

n > 1 such that xn = 0, an element a of a ring A is periodic if there exist distinct

positive integers m,n > 0 such that am = an. Note that every idempotent, potent

and nilpotent element is periodic. It is well known that a ring A is periodic if each

x ∈ A satisfies the Chacron criterion (see [7]), that is, there exist a positive integerm

and P (T ) ∈ Z[T ] such that xm = xm+1P (x). It follows that A is periodic if for each

x ∈ A, there exist distinct positive integers m, n for which xn − xm ∈ Nilp(A).

Recall that a ring A is UU (i.e., every Unit is Unipotent) if every unit u ∈ A is

unipotent, that is, u can be expressed as u = 1 + n for some nilpotent element n

of A. Let A be a ring and M be an A-module. The trivial ring extension of A by M
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(also called the idealization of M over A) is the ring R = A ∝ E whose underlying

group is A × M with multiplication given by (a,m)(b, n) = (ab, an + bm) for each

a, b ∈ A and m,n ∈ M . Let (A,B) be a pair of rings, J be an ideal of B and

f : A → B be a ring homomorphism. In this setting, D’Anna, Finocchiaro, and

Fontana introduced in [9], the subring of A×B:

A ⊲⊳f J := {(a, f(a) + j) : a ∈ A, j ∈ J},

called the amalgamation of A with B along J with respect to f . For more details

about trivial ring extension and amalgamation, we refer the reader to [5], [14], [16],

[17], [18].

In [20], Nicholson introduced the clean ring (that is a ring in which every element

is a sum of a unit and an idempotent). It was proved that an element a ∈ A is clean if

and only if 1−a is clean. In [23], Ye introduced the concept of a semiclean ring (that

is a ring in which every element is a sum of a unit and a periodic element) as a gener-

alization of the notion of clean ring. In [10], Diesl introduced a new class of rings and

called it the nil-clean ring (that is a ring in which every element can be expressed as

a sum of an idempotent and a nilpotent). Every nil-clean element is clean and every

clean element is semiclean. Notice that the nil-clean ring is a periodic ring, further-

more, it was proved in [21], Theorem 3 (1) that a ring A is periodic if and only if each

element x of A can be expressed in the form x = p+n, where n is a nilpotent element

and pk = p for some positive integer k > 2. Han and Nicholson showed in [11] that the

group ring Z(7)[C3] is not clean, where Z(7) = {m/n : m,n ∈ Z and gcd(7, n) = 1}
and C3 is a cyclic group of order 3, while Ye proved in [23], that for every prime num-

ber p and for every cyclic group C3 of order 3, the group ring Z(p)[C3] is semiclean,

where Z(p) = {m/n : m,n ∈ Z and gcd(p, n) = 1}.
The following diagram of the implications summarizes the relations between the

main notions involved in this paper
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Notice that the above implications are not reversible in general. This paper stud-

ies the notions of periodic, UU and semiclean properties in various context of com-

mutative rings such as trivial ring extensions, amalgamations and pullbacks. The

obtained results provide new original classes of rings subject to various ring theoretic

properties.
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2. On periodic rings

Recall that a ring A is periodic provided for every element a of a ring A there

exist distinct positive integers m,n > 0 such that am = an. It was proved in [21],

Theorem 3 (1), that a ring A is periodic if and only if each element x of A can be

expressed in the form x = p + n, where n is a nilpotent element and pk = p for

some positive integer k > 2. Our first proposition examines the perodic property of

a homomorphic image.

Proposition 2.1. Let R be a ring and I be an ideal of R. If R is a periodic ring,

then R/I is a periodic ring. The converse holds if I is a nil ideal of R.

P r o o f. Assume that a ring R is periodic and let x ∈ R, let f : R → B be

a ring homomorphism, where B is a commutative ring. Then, there exist positive

integers m,n > 0 such that xm = xn and so f(x)m = f(xm) = f(xn) = f(x)n,

then f(x) is a periodic element in B. Conversely, assume that I is a nil ideal of R.

Let x ∈ R/I such that x− xn ∈ Nilp(R/I) for some positive integer n > 1 and

x̄ ∈ R/I. Then x − xn + I ∈ Nilp(R/I). Since I is a nil ideal of R, then it follows

that x− xn ∈ Nilp(R). Hence, R is a periodic ring. �

Remark 2.2. It is worthwhile noting that the condition “I is a nil ideal of R”

in Proposition 2.1 is essential for the converse. Indeed, let A be any periodic ring.

It is well known that A[X ] is never periodic. However, (A[X ]/(X)) ≃ A and A is

periodic.

Recall that a commutative ring R is said to be π-regular if for every element

x ∈ R, there exist a positive integer n and y ∈ R such that xn = xn+1y. It

is worthwhile noting that the properties “Krull dimension 0” and “π-regular” are

equivalent, see [13], Theorem 3.1, page 10. Also, recall from [4], Corollary 3.4 that

a commutative ring R is periodic if and only if R is zero-dimensional and U(R)

is torsion. Our next proposition establishes a characterization of the relationship

between periodic rings, rings of Krull dimension 0.

Proposition 2.3. Let R be a ring. Then the following assertions are equivalent:

(1) R is a periodic ring,

(2) R is a ring of Krull dimension 0 satisfying every unit u of R can be expressed

as u = f + n with fk = f ∈ R for some positive integer k > 2 and n ∈ Nilp(R).

P r o o f. (1)⇒ (2) Assume that R is a periodic ring. Then it is well known that R
is zero-dimensional. Next, let u ∈ U(R). From [21], Theorem 3 (1) it follows that

u = f + n with fk = f ∈ R for some positive integer k > 2 and n ∈ Nilp(R).
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(2) ⇒ (1) Assume that R is a ring of Krull dimension 0 satisfying every unit u

of R can be expressed as u = f + n with fk = f ∈ R for some positive integer k > 2

and n ∈ Nilp(R). Then R is π-regular. Let a ∈ R. From [3], Corollary 1, a = eu+w

for some e ∈ Idem(R), u ∈ U(R) and w ∈ Nilp(R). From the assumption, u = f + n

with fk = f ∈ R for some positive integer k > 2 and n ∈ Nilp(R). Therefore,

f = u − n ∈ U(R) and so fk−1 = 1. It easily follows that the group U(R/Nilp(R))

is a torsion. By [4], Corollary 3.4, the ring R/Nilp(R) is periodic, and so is R by

Proposition 2.1. �

Now, we introduce the notion of almost Boolean ring.

Definition 2.4. A ring R is said to be almost Boolean if for every x ∈ R there

exists an integer n > 2 such that xn = x.

Notice that from the previous definition, every Boolean ring is almost Boolean.

However, the converse is not true in general. For instance, R := Z/6Z is almost

Boolean (as x3 = x for all x ∈ R) which is not Boolean. The next proposition

establishes a characterization of periodic rings.

Proposition 2.5. Let R be a ring. Then the following assertions are equivalent:

(1) R is periodic,

(2) R/Jac(R) is almost Boolean and Jac(R) is a nil ideal of R.

P r o o f. (1) ⇒ (2) Assume that R is periodic. Let x̄ ∈ R/Jac(R). Then x̄ =

x+ Jac(R) such that x ∈ R. The fact that R is periodic gives x− xn ∈ Nilp(R) for

some positive integer n > 2. Since Nilp(R) ⊆ Jac(R), then it follows that x− xn = 0̄.

Therefore, x̄n = x̄ for some positive integer n > 2. Consequently, R/Jac(R) is almost

Boolean. The fact that Jac(R) is a nil ideal of R follows from [6], (P-1), the last line

of the first page, as R is periodic.

(2) ⇒ (1) Assume that R/Jac(R) is almost Boolean and Jac(R) is a nil ideal

of R. We claim that R is periodic. Indeed, let x ∈ R. Then x̄ ∈ R/Jac(R) which

is almost Boolean. So, there exists an integer n > 2 such that x̄n = x̄. Therefore,

x− xn ∈ Jac(R) ⊆ Nilp(R). Hence, R is periodic as desired. �

A ring R is called a torsion if it has positive characteristic, that is to say, if

l 6= 0 ∈ R for some positive integer l > 0 (not necessarily prime). In particular,

in a torsion ring, the set of periodic elements is closed under addition. Also, notice

that a periodic ring is a torsion. The next theorem gives a characterization of the

periodic property in an amalgamated algebra and is equivalent to [15], Theorem 2.6

(except for the condition (3)).

Theorem 2.6. Let (A,B) be a pair of rings, J be an ideal of B and f : A → B

be a ring homomorphism. Then the following assertions are equivalent:
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(1) A ⊲⊳f J is periodic,

(2) A and f(A) + J are periodic,

(3) A× (f(A) + J) is periodic,

(4) A is periodic and J ⊆ Per(B).

The proof of this theorem requires the following lemma.

Lemma 2.7.

(1) Any subring of a periodic ring is periodic.

(2) The ring A = A1 ×A2 is periodic if and only if so are A1 and A2.

P r o o f. (1) Let A ⊆ B be two rings, B be periodic and let x ∈ A. Then x is

periodic in B and so x is periodic in A. Hence, A is periodic.

(2) In view of [2], Lemma 2.4 for N = 2, we obtain the result. �

P r o o f of Theorem 2.6. (1) ⇔ (2) Assume that A ⊲⊳f J is periodic. From [9],

Proposition 5.1, A and f(A) + J are homomorphic images of A ⊲⊳f J . Then by

Proposition 2.1, A and f(A)+J are periodic. Conversely, assume that A and f(A)+J

are periodic, then A × (f(A) + J) is periodic by Lemma 2.7 (2). Since A ⊲⊳f J is

a subring of A× (f(A) + J), then A ⊲⊳f J is periodic by Lemma 2.7 (1).

(2) ⇔ (3) This follows from Lemma 2.7 (2).
(2) ⇒ (4) Assume that A and f(A) + J are periodic. Since J ⊆ f(A) + J ,

J ⊆ Per(B).

(4) ⇒ (1) This follows from the proof of (3) ⇒ (1) of [15], Theorem 2.6. �

The next corollary is a consequence of Theorem 2.6 and Proposition 2.5.

Corollary 2.8. Let (A,B) be a pair of rings, f : A → B be a ring homomorphism

and J be an ideal of B such that J ⊆ Jac(B). Then the following assertions are

equivalent:

(1) A ⊲⊳f J is periodic,

(2) A/Jac(A) is almost Boolean, Jac(A) is nil ideal.

P r o o f. This follows from the statement that A ⊲⊳f J is periodic if and only if A

is periodic and J ⊆ Per(B) (see Theorem 2.6), using Propositions 2.1 and 2.5 with

the fact that a subideal J of Jac(B) is nil if and only if J ⊆ Per(B). �

Corollary 2.8 provides a new original class of periodic rings that are not nil-clean.

Example 2.9. Let A := Z6 be a ring, E be an A-module and B := A ∝ E be

the trivial ring extension of A by E, f : A → B be the canonical injection defined

by f(a) = (a, 0) and J = 0 ∝ E be an ideal of B. Then:

(1) A ⊲⊳f J is periodic,

(2) A ⊲⊳f J is not nil-clean.
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P r o o f. (1) First, observe that Jac(A) = Z3 ∩ Z5 = 0 and so A/Jac(A) = Z6

which is almost Boolean, Jac(A) = 0 = Nilp(A) (as A is reduced). On the other

hand, J = 0 ∝ E ⊆ Jac(B) = Jac(A) ∝ E. Hence, by Corollary 2.8, A ⊲⊳f J is

periodic.

(2) By [12], Theorem 3, A ⊲⊳f J is not nil-clean since (2̄, 2̄) − (2̄, 2̄)2 = (4̄, 4̄) 6∈
Nilp(A ⊲⊳f J), as 4̄ 6∈ Nilp(A1). Hence, A ⊲⊳f J is not nil-clean. �

Let I be a proper ideal of A. The (amalgamated) duplication of A along I is

a special amalgamation given by

A ⊲⊳ I := A ⊲⊳idA I = {(a, a+ i) : a ∈ A, i ∈ I}.

The next corollary is an immediate consequence of Theorem 2.6 on the transfer of

periodic property to duplications and is equivalent to [15], Corollary 2.8.

Corollary 2.10. Let A be a ring and I be an ideal of A. Then A ⊲⊳ I is periodic

if and only if so is A.

Theorem 2.6 recovers a known result for trivial ring extensions which is given

in [15], Theorem 2.1.

Corollary 2.11. Let A be a ring, E be an A-module and R := A ∝ E be the

trivial ring extension of A by E. Then R is periodic if and only if so is A.

P r o o f. Consider the injective ring homomorphism f : A →֒ B defined by

f(a) = (a, 0) for every a ∈ A, let J := 0 ∝ E be an ideal of B. Clearly, f−1(J) = 0.

Therefore, by [9], Proposition 5.1 (3), f(A) + J = A ∝ 0 + 0 ∝ E = A ∝ E =

B ≃ A ⊲⊳f J . On the other hand, J := 0 ∝ E ⊆ Nilp(B) and so by application to

Theorem 2.6, we have the desired result. �

Now we show how one may use Corollary 2.10 to generate a new class of periodic

rings that are not nil-clean.

Example 2.12. Let A be a finite ring (for instance, take A := Z12) and I := 6Z12

be an ideal of A. Then:

(1) A ⊲⊳ I is periodic,

(2) A ⊲⊳ I is not nil-clean.

P r o o f. (1) By Corollary 2.10, A ⊲⊳ I is periodic since A is periodic.

(2) From [12], Theorem 3, A ⊲⊳ I is not nil-clean since ((2̄, 2̄)−((2̄, 2̄)2 = (10, 10) 6∈
NilpA ⊲⊳ I), as 10 6∈ Nilp(A). Hence, A ⊲⊳ I is not nil-clean. �
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3. On UU and semiclean rings

It is worthwhile recalling that every clean ring is semiclean. However, the converse

is not true in general. In [23], Theorem 5.1, Ye gave a condition to have this converse.

Our first proposition of this section establishes the relationship between the notions

of nil-clean, UU and semiclean rings.

Proposition 3.1. Let A be a nil-clean ring. Then the following assertions hold:

(1) A is clean, in particular, A is semiclean,

(2) A is periodic.

P r o o f. (1) By [10], Proposition 3.4, A is clean. Hence, it follows that A is semi-

clean.

(2) This follows from [21], Theorem 3 (1).

�

The following example shows that clean and periodic rings need not be UU.

Example 3.2. Let A := Z/6Z be the ring of integers modulo 6. Then:

(1) A is clean,

(2) A is periodic,

(3) A is not UU.

P r o o f. As a finite ring, A is clean and periodic. However, 5̄ = 1̄+ 4̄ and 4̄ is not

nilpotent. Hence, A is not UU. �

It is well known that for any ring A, the polynomial ring A[X ] is never nil-clean nor

periodic. The next example shows that UU rings need not be nil-clean nor periodic

in general. Recall that an element f(X) = a0 + a1X + a2X
2 + . . . + anX

n ∈ A[X ]

is nilpotent if and only if each ai is nilpotent for i = 0, . . . , n. Also, recall that

f(X) = a0 + a1X + a2X
2 + . . .+ anX

n is a unit of A[X ] if and only if a0 is a unit

of A and each ai is a nilpotent element of A for i = 1, . . . , n.

Example 3.3. Let A := Z/4Z be the ring of integers modulo 4. Then:

(1) A[X ] is UU,

(2) A[X ] is not nil-clean,

(3) A[X ] is not periodic.

P r o o f. (1) Since A is UU, then it follows that A[X ] is UU.

(2) By [12], Theorem 3 A[X ] is not nil-clean since X −X2 6∈ Nilp(A[X ]).

(3) A[X ] is not periodic since X ∈ A[X ] and Xm 6= Xn for all integers m,n > 2

with m 6= n. �
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The next theorem gives a new characterization of nil-clean rings.

Theorem 3.4. Let A be a ring. Then the following conditions are equivalent:

(1) A is nil-clean.

(2) For each a ∈ A, we have a = e+ u, where e ∈ Idem(A) and u ∈ UU(A).

(3) A is clean and UU.

(4) A is semiclean and UU.

P r o o f. (1) ⇔ (2) Assume that A is nil-clean. Let a ∈ A. Using a similar

argument as in the proof of [10], Proposition 3.4 it follows that a = e + 1 + n with

e ∈ Idem(A) and n ∈ Nilp(A). Hence, a = e+u with u = 1+n ∈ UU(A). Conversely,

assume that for each a ∈ A, we have a = e+ u, where e ∈ Idem(A) and u ∈ UU(A).

Let a ∈ A. Then a+1 = e+u with u ∈ UU(A) and e ∈ Idem(A). So, a+1 = e+1+n

with n ∈ Nilp(A). Therefore, a = e+ n which is nil-clean. Finally, A is nil-clean, as

desired.

(1) ⇒ (3) Assume that A is nil-clean. Then by Proposition 3.1, A is semiclean.

We claim that A is UU. Indeed, let u ∈ U(A). Then u = e + n, where e ∈ Idem(A)

and n ∈ Nilp(A). So, u−n = e is both a unit and idempotent. Therefore, u−n = 1

and so u = 1 + n. Hence, A is UU.

(3) ⇒ (4) Trivial.
(4)⇒ (1) Assume that A is semiclean and UU. Let a ∈ A. Then a+2 = p+u for

some u ∈ U(A) and p ∈ Per(A). The fact that every periodic element is clean gives

p = v+e for some v ∈ U(A) and e ∈ Idem(A). So, a+2 = u+v+e = 1+n+1+m+e =

(2 + n + m) + e, where m,n ∈ Nilp(A). Consequently, a = (n + m) + e, which is

nil-clean. Hence, A is nil-clean, as desired. �

The next theorem examines the semiclean property in indecomposable rings. Re-

call that a ring A is indecomposable if Idem(A) = {0, 1}.

Theorem 3.5. Let A be an indecomposable ring. Then every semiclean element

of A is either a unit or a sum of a unit and a root of unity.

P r o o f. Assume that A is an indecomposable ring and let x ∈ A be a semiclean

element. Then there exist u ∈ U(A) and p ∈ Per(A) such that x = u+ p. From [23]

Lemma 5.2, there exists a positive integer k > 1 such that pk ∈ Idem(A) = {0, 1}
since A is indecomposable. So, pk = 0 or pk = 1. Thus, p is either a nilpotent or

a root of unity. Two cases are then possible:

Case 1 : p is nilpotent. Then x = u+ p is a unit.

Case 2 : p is root of unity. Then p is a unit and therefore x = u+ p is sum of two

units.

Hence, it follows that x is either a unit or a sum of a unit and a root of unity. �
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The following corollary is an immediate consequence of Theorem 3.5.

Corollary 3.6. Let A be an integral domain. Then every semiclean element is

either a unit or sum of two units.

Now, we give a characterization for the amalgamation ring to inherit the UU

property.

Theorem 3.7. Let (A,B) be a pair of rings, J be an ideal of B and f : A → B

be a ring homomorphism. Set J0 := {j ∈ J : f(u) + j ∈ U(B) for some u ∈ U(A)}.
Then the following assertions hold:

(1) A ⊲⊳f J is UU if and only if A is UU and J0 ⊆ Nilp(B).

(2) If A and f(A) + J are UU, then so is A ⊲⊳f J .

P r o o f. (1) Assume that A ⊲⊳f J is UU. We claim that A is UU. Let u ∈ U(A).

Then (u, f(u)) ∈ U(A ⊲⊳f J) which is UU. So, (u, f(u)) = (1, 1) + (n, f(n) + k) =

(1 + n, 1 + f(n) + k) with (n, f(n) + k) ∈ Nilp(A ⊲⊳f J). By [8], Lemma 2.10

n ∈ Nilp(A) and k ∈ Nilp(B)∩ J . It follows that u = 1+n, which is an UU element

of A. Hence, A is UU. It remains to show that J0 ⊆ Nilp(B). Let k ∈ J0. Then

(v, f(v) + k) ∈ U(A ⊲⊳f J) for some v ∈ U(A). So, v = 1 + n for some n ∈ Nilp(A),

and f(v)+k = 1+f(x)+m for some x ∈ A andm ∈ J such that f(x)+m ∈ Nilp(B).

First, we have f(v) = f(1 + n) = 1 + f(n). Then 1 + f(n) + k = 1 + f(x) + m.

Thus, f(n) + k = f(x) + m. Hence, (v, f(v) + k) = (1, 1) + (n, f(x) + m) with

(n, f(x) + m) ∈ Nilp(A × B). Since f(n) + k = f(x) + m, then (v, f(v) + k) =

(1, 1) + (n, f(n) + k) and (n, f(n) + k) ∈ Nilp(A ⊲⊳f J). By [8], Lemma 2.10 it

follows that k ∈ Nilp(B). Conversely, assume that A is UU and J0 ⊆ Nilp(B). Let

(u, f(u) + j) ∈ U(A ⊲⊳f J). Then u is a unit of A and j ∈ J0 ⊆ Nilp(B). So,

u = 1 + n for some n ∈ Nilp(A). Hence, (u, f(u) + j) = (1, 1) + (n, f(n) + j). One

can easily check that (n, f(n)+ j) ∈ Nilp(A ⊲⊳f J), making (u, f(u)+ j) a unipotent

element of A ⊲⊳f J . Thus, A ⊲⊳f J is UU.

(2) Assume that A and f(A)+J are UU. Let x ∈ A, j ∈ J such that (x, f(x)+j) ∈
U(A ⊲⊳f J). Then x ∈ U(A) and f(x) + j ∈ U(f(A) + J). So,

(i) x = 1 + b for some b ∈ Nilp(A),

(ii) f(x) + j = 1 + b′ for some b′ ∈ Nilp(f(A) + J).

From (i), it follows that f(x) = f(1 + b) = 1 + f(b). Substituting (i) into (ii)

we get 1 + f(b) + j = 1 + b′. Hence, f(b) + j = b′. Consequently, (x, f(x) + j) =

(1 + b, 1+ b′) = (1, 1) + (b, b′) = (1, 1) + (b, f(b) + j) which is a unipotent element of

A ⊲⊳f J . Hence, A ⊲⊳f J is UU, as desired. �

The next result is a consequence of Theorem 3.7 for the transfer of UU property

to a trivial ring extension.
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Corollary 3.8. Let A be a ring, E be an A-module and R := A ∝ E be the

trivial ring extension of A by E. Then R is UU if and only if so is A.

P r o o f. Set B := A ∝ E, f : A →֒ B is the injective ring homomorphism defined

by f(a) = (a, 0) and J := 0 ∝ E is an ideal of B. Observe that J = 0 ∝ E ⊆ Nilp(B)

and so J0 := {j ∈ J : f(u) + j ∈ U(B) for some u ∈ U(A)} ⊆ Nilp(B). Clearly,

f(A) + J = A ∝ 0 + 0 ∝ E = B = A ∝ E ≃ A ⊲⊳f J , as f−1(J) = 0, see [9],

Proposition 5.1 (3). Hence, by Theorem 3.7 (1), A ⊲⊳f J is UU if and only if so is A.

Now, the result is straightforward. �

Recall that a ring A is semiclean if every element of A can be written as the sum

of a unit and a periodic element. Also, recall from [23], Proposition 2.1 that the

semiclean property is stable under homomorphic image. In the next theorem, we

investigate about when the amalgamation is semiclean.

Theorem 3.9. Let (A,B) be a pair of rings, f : A → B be a ring homomorphism

and J be an ideal of B. Then:

(1) If A ⊲⊳f J is semiclean, then so are A and f(A) + J .

(2) Assume that f(u) + j ∈ U(B) for all u ∈ U(A) and j ∈ J . Then A ⊲⊳f J is

semiclean if and only if so is A.

(3) Assume that f(p) + j ∈ Per(B) for all p ∈ Per(A) and j ∈ J . Then A ⊲⊳f J is

semiclean if and only if so is A.

P r o o f. (1) If A ⊲⊳f J is semiclean, then so are A and f(A)+ J as homomorphic

images of A ⊲⊳f J , see [9], Proposition 5.1.

(2) If A ⊲⊳f J is semiclean then, by assertion (1) above, so is A. Conversely,

assume that A is semiclean and let (a, j) ∈ A × J . Then a = u + x with u ∈ U(A)

and x ∈ Per(A). So, (a, f(a) + j) = (u, f(u) + j) + (x, f(x)). One can easily check

that (x, f(x)) ∈ Per(A ⊲⊳f J) as x ∈ Per(A). From assumption, it follows that

(u, f(u) + j) is a unit of A ⊲⊳f J . Therefore, (a, f(a) + j) is semiclean, as desired.

(3) Assume that A is semiclean and let (a, j) ∈ A × J . Then a = u + x with

u ∈ U(A) and x ∈ Per(A). Observe that (a, f(a) + j) = (u, f(u)) + (x, f(x) + j)

with (u, f(u)) ∈ U(A ⊲⊳f J). From the assumption, f(x) + j ∈ Per(B). Therefore,

by Lemma 2.7, it follows that (x, f(x) + j) is a periodic element of A ⊲⊳f J . Hence,

(a, f(a) + j) is semiclean, making A ⊲⊳f J , a semiclean ring, as desired. �

The following example shows the failure of the statement of assertion (2) (or (3))

of Theorem 3.9 in the case the assumption “for all u ∈ U(A) and j ∈ J , f(u) +

j ∈ U(B)” (or “for all p ∈ Per(A) and j ∈ J , f(p) + j ∈ Per(B)”, respectively) is

not satisfied.
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Example 3.10. Let A be any semiclean ring (for instance, takeA :=Z11[(Z3,+)],

a group ring), B := A[X ] be the polynomial ring with coefficients in A, J := XA[X ]

be an ideal of B and f : A →֒ B be the natural injection. Then:

(1) 1 ∈ U(A) and f(1) +X = 1 +X 6∈ U(B) (or 0 ∈ Per(A) and f(0) +X = X 6∈
Per(B), respectively),

(2) A is semiclean,

(3) A ⊲⊳f J is not semiclean.

P r o o f. (1) Straightforward.

(2) By [23], Theorem 3.1 A is semiclean.

(3)We claim that A ⊲⊳f J is not semiclean. Indeed, f(A)+J = A+XA[X ] = A[X ]

is not semiclean by [23], Example 3.2. Then in virtue of Theorem 3.9 (1), A ⊲⊳f J is

not semiclean. �

Theorem 3.9 (2) recovers a known result for trivial ring extensions which is Propo-

sition 2.10 of [19].

Corollary 3.11. Let A be a ring, E be an A-module and R := A ∝ E be the

trivial ring extension of A by E. Then R is semiclean if and only if so is A.

P r o o f. Consider the injective ring homomorphism f : A →֒ R defined by f(a) =

(a, 0) for every a ∈ A, J := 0 ∝ E is the ideal of R. Clearly, f−1(J) = 0. Therefore,

from [9], Proposition 5.1 (3) f(A) + J = A ∝ 0 + 0 ∝ E = A ∝ E = R ≃ A ⊲⊳f J .

On the other hand, one can easily check that for all a ∈ U(A) and for all j ∈ J ,

f(a) + j = (a, 0) + (0, e) = (a, e) ∈ U(R) = U(f(A) + J). Hence, by application to

the assertion (2) of Theorem 3.9, the conclusion is straightforward. �

The following corollaries are consequences of Theorem 3.9.

Corollary 3.12. Let A ⊂ B be an extension of commutative rings and X :=

{X1, X2, . . . , Xn} be a finite set of indeterminates over B. Set A + XB[[X ]] :=

{P ∈ B[[X ]] : P (0) ∈ A}, the subring of the ring of formal power series B[[X ]]. Then

A+XB[[X ]] is semiclean if and only if A is semiclean.

P r o o f. By [9], Example 2.5 A + XB[[X ]] ≃ A ⊲⊳σ J , where σ : A →֒ B[[X ]] is

the natural embedding and J = XB[[X ]] is an ideal of B[[X ]]. It is well known that

Jac(B[[X ]]) = {h ∈ B[[X ]] : h(0) ∈ Jac(A)}. Clearly, J ⊆ Jac(B[[X ]]). Hence, by

Theorem 3.9 (2), it follows that A ⊲⊳σ J is semiclean if and only if so is A. �

Corollary 3.13. Let (A,B) be a pair of rings, f : A → B be a ring homomor-

phism and J be an ideal of B such that J ⊆ Jac(B). Then A is semiclean if and

only if so is A ⊲⊳f J .
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P r o o f. Assume that J ⊆ Jac(B) and let u ∈ U(A) and j ∈ J . Then f(u) + j =

f(u)(1 + f(u−1)j) ∈ U(B). Therefore, by Theorem 3.9 (2), we have the desired

result. �

Now, we show how one may use Theorem 3.9 to construct a new original class of

semiclean rings that are not clean.

Example 3.14. Let MN(F ) be the ring of N×N infinite matrices over a field F

in which each column has finitely many nonzero entries. Let A1 = {A = (aij)i,j ∈
MN(F ) : there exists nA ∈ N such that aij = ai+1j+1 for every i > nA, j > 1} with
F = F2(X) which is the field fraction of the set of all polynomials over F2, a field

with two elements. Take A := {N ∈ A1 : N4 = N and NC = CN for all C ∈ A1}.
Let B := A ∝ E be the trivial ring extension of A by E, f : A → B be the injective

ring homomorphism defined by f(a) = (a, 0) and J = Jac(B) = Jac(A) ∝ E be the

Jacobson radical of B. Then:

(1) A ⊲⊳f J is semiclean,

(2) A ⊲⊳f J is not clean.

P r o o f. (1) First notice that for every E ∈ A, E4 = E. So, for every E ∈ A,

E = I + (E − I) with (E − I)4 = (E − I). Therefore, A is semiclean. Hence, by

Theorem 3.9 (2), A ⊲⊳f J is semiclean.

(2) A ⊲⊳f J is not clean. Indeed, using similar argument as in [22], Example 3.1

it follows that A1 is not clean. Therefore, A is not clean. Hence, by [8], Proposi-

tion 2.1 (1) A ⊲⊳f J is not clean. �

The next example provides a new original class of semiclean rings that are nei-

ther weakly clean nor Noetherian. Recall that weakly clean rings are closed under

homomorphic images.

Example 3.15. Let A := C(X,Z3[
√
3]) be the ring of continuous functions,

where X is P -space. From [2], A is semiclean that is not weakly clean. Let E = A∞

be an A-module and R := A ∝ E be the trivial ring extension of A by E. Then:

(1) R is semiclean,

(2) R is not weakly clean,

(3) R is not Noetherian.

P r o o f. (1) By Corollary 3.11, R is semiclean since A is semiclean.

(2) R is not weakly clean, since A ≃ A ∝ E/0 ∝ E is not weakly clean, as the

weakly clean property is stable under factor ring.

(3) R is not Notherian since E is not a finitely generated A-module. �
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4. Pullbacks

In this section we examine the transfer of periodic, UU and semiclean rings to

different context of pullbacks. First, we recall the following definition.

Definition 4.1 ([9], Definition 4.1). If α : A → C and β : B → C are ring

homomorphisms, the subring D := α ×C β := {(a, b) ∈ A × B : α(a) = β(b)} of
A×B is called the pullback (or fiber product) of α and β.

The fact that D is pullback can also be described by saying that the triplet

(D, pA, pB) is a solution of the universal problem of rendering commutative the dia-

gram built on α and β,

D

pB

��

pA // A

α

��
B

β // C

where pA (or pB) is the restriction to D := α×C β of the projection of A×B onto A

(or B, respectively).

Our first theorem examines the transfer of periodic and UU properties to pullback,

defined above.

Theorem 4.2. Under the above notation, the following assertions hold:

(1) D is periodic if and only if so are pA(D) and pB(D).

(2) Consider the following assertions:

(a) pA(D) is periodic and ker(β) = {0},
(b) pB(D) is periodic and ker(α) = {0}.

If (a) or (b) holds, then D is periodic.

(3) If pA(D) and pB(D) are UU, then so is D.

P r o o f. (1) If D is periodic, then so are PA(D) and PB(D) as homomorphic im-

ages of D. Conversely, assume that pA(D) and pB(D) are periodic and let (a, b) ∈ D.

Then a ∈ Per(A) and b ∈ Per(B). So, by Lemma 2.7 (2), (a, b) ∈ Per(A ×B). Since

D ⊆ A×B, then by Lemma 2.7 (1), D is periodic.

(2) Assume that (a) holds. We claim that D is periodic. Indeed, suppose that

pA(D) is periodic and ker(β) = {0}, and let (a, b) ∈ D. Then α(a) = β(b) and

am = an for some distinct positive integers m, n. So, αm(a) = βm(b) = αn(a) =

βn(b). Consequently, β(bm) = β(bn). Hence, bm = bn since ker(β) = {0}. Finally,
(a, b)m = (a, b)n, making D a periodic ring. Same argument for (b) holds.

(3) Assume that pA(D) and pB(D) are UU and let (u, v) ∈ U(D). Then

α(u) = β(v), u = 1 + m and b = 1 + n for some m ∈ Nilp(A) and n ∈ Nilp(B).

Thus 1 + α(m) = 1 + β(n) and so α(m) = β(n). Hence, (u, v) = (1, 1) + (m,n) is

unipotent in D. Finally, D is UU, as desired. �
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Recall that pullback can be defined as follows: Let T be a ring, M be a nonzero

ideal of T , π be the natural surjection π : T → T/M and D be a subring of T/M .

Then R := π−1(D) is a subring of T and M is a common ideal of R and T and

D = R/M , R is called a pullback ring associated to the pullback diagram

R = π−1(D)

i

��

π/R // D = R/M

j

��
T

π // T/M

where i and j are the natural injections.

We assume that R ⊂ T and we refer to this as a diagram of type △. Our next
result investigates the transfer of semiclean property to the pullback of type △.

Theorem 4.3. For a diagram of type △:
(1) If R is semiclean, then so is D.

(2) Assume that D is a field and Per(R) = Per(T ). If T is semiclean, then so is R.

P r o o f. (1) This follows from [23], Proposition 2.1 as D is a homomorphic image

of R.

(2) Suppose D is a field, Per(R) = Per(T ) and T is semiclean. We claim that R is

semiclean. Indeed, consider an element r ∈ R. Clearly r ∈ T which is semiclean. So,

r = u + x with u ∈ U(T ) and x ∈ Per(T ). Notice that u 6∈ M as u ∈ U(T ). On the

other hand, u = r − x ∈ R since x ∈ Per(R) and so π(u) = v which is a unit of D.

Consequently, π−1(u) = v−1. It follows that u is a unit of R. Hence, T is semiclean,

as desired. �

The next example illustrates Theorem 4.3.

Example 4.4. Let R = Q(
√
3) + XQ(

√
3)[[X ]] be the power series ring with

coefficients in the field Q(
√
3) and X an indeterminate. Consider T := R[[Y ]] being

the power series ring with coefficients in R. By [1], Proposition 2.2 (2) we have

Per(T ) = Per(R) since Per(R) = Per(Q(
√
3)). Consider the pullback

R = π−1(D)

i

��

π/R // D = Q(
√
3)

j

��
T = Q(

√
3)[[X ]][[Y ]]

π // Q(
√
3)[[X ]]

By [23], Proposition 3.3 T is semiclean. Hence, by Theorem 4.3 (2), it follows that R

is semiclean, as desired.
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Recall that periodics of a ring R can be lifted modulo an ideal M of R if, for each

r ∈ R with rm − rn ∈ M , there exists s ∈ R such that sm = sn in R and r− s ∈ M ,

see [23], definition on page 5610. Now, we study the stability of the periodic and

semiclean properties in the following special case of pullback.

Proposition 4.5. Let ϕ : R → T be an injective ring homomorphism and Q be

an ideal of R such that QT = Q.

(1) If R is semiclean then so is R/Q.

(2) Assume that Q ⊂ Jac(R) and periodic elements of R can be lifted modulo Q.

Then R is semiclean if and only if so is R/Q.

P r o o f. (1) Assume that R is semiclean. Then by [23], Proposition 2.1 R/Q is

semiclean.

(2) Assume that R/Q is semiclean. From [23], Proposition 2.2 R is semiclean.

The converse is straightforward by assertion (1) above. �
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