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Abstract. The Wiener index of a connected graph is defined as the sum of the distances
between all unordered pairs of its vertices. We characterize the graphs which extremize the
Wiener index among all graphs on n vertices with k pendant vertices. We also characterize
the graph which minimizes the Wiener index over the graphs on n vertices with s cut-
vertices.
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1. Introduction

Throughout this paper, graphs are finite, simple, connected and undirected. Let G

be a graph with vertex set V (G) and edge set E(G). For a vertex v ∈ V (G), NG(v)

denotes the set of all neighbours of v in G. A vertex of degree one is called a pendant

vertex. A vertex v of G is called a cut-vertex if G \ v is disconnected. The distance

between two vertices u, v ∈ V (G), denoted by dG(u, v) or d(u, v) (if the context is

clear), is the number of edges in a shortest path joining u and v. The eccentricity of

a vertex v, denoted by e(v), is defined as e(v) = max{d(u, v) : u ∈ V (G)}. The dis-

tance of a vertex v ∈ V (G), denoted by DG(v), is defined as DG(v) =
∑

u∈V (G)

dG(u, v).

We refer to [18] for undefined notations and terminologies.

The Wiener index of G, denoted by W (G), is defined as the sum of distances

between all unordered pairs of its vertices, i.e.,

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑

v∈V (G)

DG(v).
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Different names such as graph distance (see [6]), transmission (see [12]), total

status (see [3]) and sum of all distances (see [7], [21]) have been used to study the

graphical invariant W (G). Apparently, the chemist Wiener was the first to point

out in 1947 (see [19]) that W (G) is well correlated with certain physio-chemical

properties of the organic compound from which G is derived. The mean distance

(see [5], [20]) or the average distance (see [1], [4]) between the vertices is a quantity

closely related to W (G). By considering G as an interconnection network connecting

many processors, the average distance of G between the nodes of the network is

a measure of the average delay for traversing the messages from one node to another.

In mathematical literature, the Wiener index was first studied by Entringer et al.

in [6]. This gave an important direction to the researchers to characterize the graphs

with extremal Wiener index in certain classes of graphs. In the last 20 years a lot of

studies for the optimal graphs associated with Wiener index have been done. For ex-

ample, characterization of trees with bounded maximum degree (see [9]), with fixed

diameter (see [11]), with given degree sequence (see [17], [23]) and characterization of

unicyclic graphs with fixed diameter (see [15]), with given girth (see [22]) associated

with Wiener index have been studied. Apart from trees and unicyclic graphs, some

other classes of graphs are also studied for the characterization of graphs having ex-

tremal Wiener index. Wiener index of graphs with fixed maximum degree is studied

in [14]. The graphs with maximum and minimum Wiener index among all Eulerian

graphs on n vertices are characterized in [8].

Wiener index of unicyclic graphs with fixed number of pendant vertices or cut-

vertices is studied in [16]. In this paper, we characterize the graphs having maximum

and minimum Wiener index over all connected graphs on n vertices with k pendant

vertices. We also obtain the graph which minimizes the Wiener index among all

connected graphs on n vertices with s cut-vertices.

1.1. Main results. We first construct some classes of graphs. Let k be a positive

integer and let G be a graph. By kG we mean the graph consisting of k copies of G.

Cg

Un,g

n− g vertices

Cg

U ′

n,g

︸ ︷︷ ︸

Pn−g

Figure 1. The graphs Un,g and U
′
n,g .

412



We denote the cycle on g vertices by Cg. For 3 6 g 6 n− 1, let Un,g be the graph

obtained by attaching n− g pendant vertices at one vertex of the cycle Cg and U
′
n,g

be the graph obtained by joining an edge between a pendant vertex of the path Pn−g

and a vertex of Cg, see Figure 1. Note that Un,n−1
∼= U ′

n,n−1.

Let Hn,k denote the class of all connected graphs on n vertices with k pendant

vertices. Let Tn,k be the subclass of Hn,k containing all trees on n vertices with k

pendant vertices.

The path [v1v2 . . . vn] on n vertices is denoted by Pn. For positive integers k, l, d

with n = k + l + d, let T (k, l, d) be the tree obtained by taking the path Pd and

adding k pendant vertices adjacent to v1 and l pendant vertices adjacent to vd. Note

that T (1, 1, d) is a path on d+ 2 vertices.

Cm1
Cm2

n=m1 +m2 − 1

Cm1
Cm2

n>m1 +m2 − 1

Figure 2. The graphs Cn
m1,m2

.

We define a specific subclass of graphs in Hn,0 as follows. Let m1, m2 and n be

positive integers with m1,m2 > 3 and n > m1 + m2 − 1. If n > m1 + m2 − 1,

take a path on n − (m1 + m2) + 2 vertices and identify one pendant vertex of the

path with a vertex of Cm1
and another pendant vertex with a vertex of Cm2

. If

n = m1 +m2 − 1, then identify one vertex of Cm1
with a vertex of Cm2

. We denote

this graph by Cn
m1,m2

, see Figure 2.

In this paper, we prove the following results:

Theorem 1.1. Let 0 6 k 6 n− 2 and let G ∈ Hn,k. Then:

(i) For 2 6 k 6 n− 2, W (G) 6 W (T (⌊k
2⌋, ⌈

k
2 ⌉, n− k)) and equality happens if and

only if G = T (⌊k
2 ⌋, ⌈

k
2 ⌉, n− k). Furthermore,

W
(
T
(⌊k

2

⌋
,
⌈k
2

⌉
, n− k

))

=





(
n− k + 1

3

)
+

k2

4
(n− k + 3)

+
k

2
((n− k)2 + n− k − 2) if k is even,

(
n− k + 1

3

)
+

k2 − 1

4
(n− k + 3)

+
k

2
((n− k)2 + n− k − 2) + 1 if k is odd.
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(ii) For k = 1, W (G) 6 W (U ′
n,3) and equality holds if and only if G = U ′

n,3.

Furthermore,

W (U ′
n,3) =

n3 − 7n+ 12

6
.

(iii) For k = 0 and n > 7, W (G) 6 W (Cn
3,3) and equality holds if and only if

G = Cn
3,3. Furthermore,

W (Cn
3,3) =

n3 − 13n+ 24

6
.

For 0 6 k 6 n− 3 and n > 4, let Kk
n be the graph obtained by adding k pendant

vertices to one vertex of the complete graph Kn−k.

Theorem 1.2. Let 0 6 k 6 n− 2 and let G ∈ Hn,k. Then:

(i) For 0 6 k 6 n− 3, W (Kk
n) 6 W (G) and equality holds if and only if G = Kk

n.

Furthermore,

W (Kk
n) =

(
n− k

2

)
+ k2 + 2k(n− k − 1).

(ii) For k = n − 2, W (T (1, n − 3, 2)) 6 W (G) and equality holds if and only if

G = T (1, n− 3, 2). Furthermore,

W (T (1, n− 3, 2)) = n2 − n− 2.

Let Tn,k ∈ Tn,k be the tree that has a vertex v of degree k and Tn,k \ v =

rPq+1 ∪ (k − r)Pq , where q = ⌊n−1
k ⌋ and r = n− 1− kq. Here, we have 0 6 r < k.

Theorem 1.3. Let 2 6 k 6 n − 2 and T ∈ Tn,k. Then W (Tn,k) 6 W (T ) and

equality holds if and only if T = Tn,k.

Let Cn,s be the set of all connected graphs on n vertices and s cut-vertices. For

2 6 m 6 n, let v1, v2, . . . , vm be the vertices of a complete graph Km. For i =

1, 2, . . . ,m consider the paths Pli such that l1+ l2+ . . .+ lm = n. Identify a pendant

vertex of the path Pli with the vertex vi, for i = 1, 2, . . . ,m, to obtain a graph on n

vertices and denote it by Kn
m(l1, l2, . . . , lm).

Theorem 1.4. Let 0 6 s 6 n − 3 and i, j ∈ {1, 2, . . . , n − s}. Then the graph

Kn
n−s(l1, l2, . . . , ln−s) with |li − lj | 6 1 has the minimum Wiener index over Cn,s.

In the next section we will discuss some results related to Wiener index of graphs

which are useful to prove our main theorems.
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2. Preliminaries

We start this section with the following lemma.

Lemma 2.1. Let G be a graph and u, v ∈ V (G) are nonadjacent. Let G′ be

the graph obtained from G by joining the vertices u and v by an edge. Then

W (G′) < W (G).

It follows from Lemma 2.1 that among all connected graphs on n vertices, the

Wiener index is minimized by the complete graph Kn and maximized by a tree.

Among all trees on n vertices, the Wiener index is minimized by the star K1,n−1

and maximized by the path Pn, see [18], Theorem 2.1.14. It is easy to determine the

Wiener index of the following graphs, see [18]:

(i) W (Kn) =
(
n
2

)
,

(ii) W (Pn) =
(
n+1
3

)
,

(iii) W (K1,n−1) = (n− 1)2.

The Wiener index of the cycle Cn is (see [12],Theorem 5)

(2.1) W (Cn) =





1

8
n3 if n is even,

1

8
n(n2 − 1) if n is odd.

Also for u ∈ V (Cn)

(2.2) DCn
(u) =





n2

4
if n is even,

n2 − 1

4
if n is odd.

The following lemma is very useful.

Lemma 2.2 ([2], Lemma 1.1). Let G be a graph and u be a cut-vertex in G.

Let G1 and G2 be two subgraphs of G with G = G1 ∪G2 and V (G1)∩V (G2) = {u}.

Then

W (G) = W (G1) +W (G2) + (|V (G1)| − 1)DG2
(u) + (|V (G2)| − 1)DG1

(u).

Corollary 2.3. Let G and H be two connected graphs having at least 2 vertices

each. Let u, v ∈ V (G) and w ∈ V (H). Let G1 and G2 be the graphs obtained

from G and H by identifying the vertex w of H with the vertices u and v of G,

respectively. If DG(v) > DG(u), then W (G2) > W (G1) and equality happens if and

only if DG(v) = DG(u).
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P r o o f. By Lemma 2.2,

W (G1) = W (G) +W (H) + (|V (G)| − 1)DH(w) + (|V (H)| − 1)DG(u)

and

W (G2) = W (G) +W (H) + (|V (G)| − 1)DH(w) + (|V (H)| − 1)DG(v).

So

W (G2)−W (G1) = (|V (H)| − 1)(DG(v)−DG(u))

and the result follows. �

Let G be a connected graph on n > 2 vertices and v ∈ V (G). For l, k > 1,

let Gk,l be the graph obtained from G by attaching two new paths P : vv1v2 . . . vk

and Q : vu1u2 . . . ul at v, where u1, u2, . . . , ul and v1, v2, . . . , vk are distinct new

vertices. By G0,l we mean attaching a path of length l at v. Let G̃k,l be the graph

obtained from Gk,l by removing the edge {vk−1, vk} and adding the edge {ul, vk}.

Observe that the graph G̃k,l is isomorphic to the graph Gk−1,l+1. We say that G̃k,l

is obtained from Gk,l by grafting an edge.

Consider the path Pn : v1v2 . . . vn on n vertices with vi adjacent to vi−1 and vi+1

for 2 6 i 6 n− 1. Then for i = 1, 2, . . . , n,

DPn
(vi) = DPn

(vn−i+1) =
(n− i)(n− i+ 1) + i(i− 1)

2
.

So, if n is odd, then

DPn
(v1) > DPn

(v2) > . . . > DPn
(v(n+1)/2)

< DPn
(v(n+3)/2) < . . . < DPn

(vn−1) < DPn
(vn)

and if n is even, then

DPn
(v1) > DPn

(v2) > . . . > DPn
(vn/2)

= DPn
(v(n+2)/2) < . . . < DPn

(vn−1) < DPn
(vn).

The next result follows from the above observation and Corollary 2.3.

Corollary 2.4 ([11], Lemma 2.4). If 1 6 k 6 l, then W (Gk−1,l+1) > W (Gk,l).

The following result compares the Wiener index of two graphs, where one is ob-

tained from the other by moving one component from a vertex to another vertex.
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Lemma 2.5 ([10], Lemma 2.4). Let H , X and Y be three connected pairwise

vertex disjoint graphs having at least 2 vertices each. Suppose u, v ∈ V (H) with

u 6= v, x ∈ V (X) and y ∈ V (Y ). Let G be the graph obtained from H , X and Y

by identifying u with x and v with y, respectively. Let G∗
1 be the graph obtained

from H , X , Y by identifying vertices u, x, y and let G∗
2 be the graph obtained from

H , X , Y by identifying vertices v, x, y, see Figure 3. Then W (G∗
1) < W (G) or

W (G∗
2) < W (G).

Hu v

G

YX

Hu v

G∗

1

Y

X

Hu v

G∗

2

X

Y

Figure 3. Movement of a component from one vertex to another.

Corollary 2.6. Let G be a connected graph on n > 2 vertices and let u, v ∈ V (G).

For n1, n2 > 0, letGuv(n1, n2) be the graph obtained fromG by attaching n1 pendant

vertices at u and n2 pendant vertices at v. If n1, n2 > 1, then

W (Guv(n1 + n2, 0)) < W (Guv(n1, n2)) or W (Guv(0, n1 + n2)) < W (Guv(n1, n2)).

In [22], the authors have proved the following in Lemma 2.6:

Let G0 be a connected graph of order n0 > 1 and u0, v0 ∈ V (G0) be two distinct

vertices in G0. Ps = u1u2 . . . us and Pt = v1v2 . . . vt are two paths of order s

and t, respectively. Let G be the graph obtained from G0, Ps and Pt by adding

edges u0u1, v0v1. Suppose that G1 = G − u0u1 + vtu1 and G2 = G − v0v1 + usv1.

Then either W (G) < W (G1) or W (G) < W (G2) holds.

If we take G0 = Pn0
and u0 and v0 as two distinct pendant vertices of G0, then

G0
∼= G1

∼= G2. So, W (G0) = W (G1) = W (G2) and hence the statement is not true.

In the following result, we give a proof of the corrected version of it.

Lemma 2.7. Let G be a connected graph on n > 3 vertices and u, v ∈ V (G).

For l, k > 1, let Gp
uv(l, k) be the graph obtained from G by identifying a pendant

vertex of the path Pl with u and identifying a pendant vertex of the path Pk with v.

Suppose l, k > 2. If G is not the u-v path and DG(u) > DG(v), then

W (Gp
uv(l + k − 1, 1)) > W (Gp

uv(l, k)).
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P r o o f. First consider the graph Gp
u,v(l, 1) as H and let w be the pendant vertex

of H corresponding to Pl. Then by Lemma 2.2,

W (Gp
u,v(l, k)) = W (H) +W (Pk) + (|V (H)| − 1)DPk

(v) + (k − 1)DH(v)

and

W (Gp
u,v(l + k − 1, 1)) = W (H) +W (Pk) + (|V (H)| − 1)DPk

(w) + (k − 1)DH(w).

As DPk
(v) = DPk

(w), we get

W (Gp
u,v(l + k − 1, 1))−W (Gp

u,v(l, k)) = (k − 1)(DH(w) −DH(v)).

Now

DH(w) = DPl−1
(w) + (l − 1)|V (G)|+DG(u)

and

DH(v) = DG(u) + (l − 1)(dG(u, v) + 1) +DPl−1
(u′),

where u′ is the vertex on the path Pl adjacent to u. Since DPl−1
(w) = DPl−1

(u′),

DH(w) −DH(v) = (l − 1)(|V (G)| − dG(u, v)− 1) +DG(u)−DG(v).

As l > 2 and G is not the u-v path, (l − 1)(|V (G)| − dG(u, v) − 1) > 0. Hence, the

result follows from the given condition DG(u) > DG(v). �

The Wiener index of Un,g and U ′
n,g is useful for our results and can be found

in [22], see Theorem 1.1.

W (Un,g) =






g3

8
+ (n− g)

(g2
4

+ n− 1
)

if g is even,

g(g2 − 1)

8
+ (n− g)

(g2 − 1

4
+ n− 1

)
if g is odd,

(2.3)

W (U ′
n,g) =






g3

8
+ (n− g)

(n2 + ng + 3g − 1

6
−

g2

12

)
if g is even,

g(g2 − 1)

8
+ (n− g)

(n2 + ng + 3g − 1

6
−

g2

12
−

1

4

)
if g is odd.

(2.4)

We next calculate the Wiener index of some other trees, which we need for the

extremal bounds in some of our results. Let Sd,k be the tree obtained by identifying

a pendant vertex of the path Pd with the central vertex of the star K1,k. By using

Lemma 2.2, it is easy to see that

(2.5) W (Sd,k) =

(
d+ 1

3

)
+ k2 + (d− 1)k +

d(d− 1)k

2
.
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Using the value of W (Sd,k) and W (K1,l) in Lemma 2.2, we get

(2.6) W (T (l, k, d)) =

(
d+ 1

3

)
+ l2 + k2 +

(d2 + d− 2)(k + l)

2
+ (d+ 1)kl.

For l > 2 and q > 1, let T q
l be the tree on lq + 1 vertices with l pendant vertices

having one vertex v of degree l and T q
l − v = lPq (l copies of Pq). Note that T

q
1 is

the path Pq+1. Then

(2.7) DT q

l
(v) = l + 2l + . . .+ ql =

lq(q + 1)

2
.

Now by Lemma 2.2,

W (T q
l ) = W (T q

l−1) +W (T q
1 ) + (l − 1)qDT q

1
(v) + qDT q

l−1
(v)

= W (T q
l−1) +

(
q + 2

3

)
+ (l − 1)q2(q + 1).

Solving this recurrence relation we get

(2.8) W (T q
l ) = l

(
q + 2

3

)
+

q2l(q + 1)(l − 1)

2
.

3. Proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3

We first recall three known results related to Wiener index of graphs.

Theorem 3.1 ([13], Theorem 4). For 2 6 k 6 n− 2, the tree T (⌊k
2 ⌋, ⌈

k
2⌉, n− k)

uniquely maximizes the Wiener index over Tn,k.

Theorem 3.2 ([22], Corollary 1.2). Among all unicyclic graphs on n > 4 vertices,

the graph U ′
n,3 uniquely maximizes the Wiener index.

Theorem 3.3 ([12], Theorem 5). Let G be a two connected graph with n vertices.

Then W (G) 6 W (Cn) and equality holds if and only if G = Cn.

We now compare the Wiener index of the graphs Cn
3,3 and Cn.

Lemma 3.4. For n > 6, W (Cn) 6 W (Cn
3,3) and equality happens if and only if

n = 6.
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P r o o f. By (2.4), we have W (U ′
n,3) = 1

6 (n
3 − 7n + 12). If u is the pendant

vertex of U ′
n,3, then

DU ′

n,3
(u) = DPn−2

(u) + 2(n− 2) =
(n− 3)(n− 2)

2
+ 2n− 4 =

n2 − n− 2

2
.

For n > 6, let u be the cut-vertex common to C3 and U ′
n−2,3 of C

n
3,3. Then by

Lemma 2.2,

(3.1) W (Cn
3,3) = W (C3) +W (U ′

n−2,3) + 2DU ′

n−2,3
(u) + 2(n− 3),

= 3 +
(n− 2)3 − 7(n− 2) + 12

6
+ (n− 2)2 − (n− 2)− 2 + 2n− 6

=
n3 − 13n+ 24

6
.

By (2.1) and (3.1), we have

W (Cn
3,3)−W (Cn) =






n(n2 − 52)

24
+ 4 if n is even,

n(n2 − 49)

24
+ 4 if n is odd.

Hence, the result follows. �

Lemma 3.5. Let m1,m2 > 3 be two integers and let n = m1 + m2 − 1. Then

W (Cn) > W (Cn
m1,m2

).

P r o o f. Let v be the vertex of degree 4 in Cn
m1,m2

. First suppose n is even.

Then one of m1 or m2 is odd and the other is even. Without loss of generality,

suppose m1 is odd and m2 is even. Then by Lemma 2.2, (2.1) and (2.2) we have

W (Cn
m1,m2

) = W (Cm1
) +W (Cm2

) + (m2 − 1)DCm1
(v) + (m1 − 1)DCm2

(v)

=
m3

1 −m1

8
+

m3
2

8
+ (m2 − 1)

m2
1 − 1

4
+ (m1 − 1)

m2
2

4

=
1

8
(m3

1 +m3
2 + 2m2

1m2 + 2m1m
2
2 − 2m2

1 − 2m2
2 −m1 − 2m2 + 2)

and

W (Cn) =
1

8
(m1 +m2 − 1)3

=
1

8
(m3

1 +m3
2 + 3m2

1m2 + 3m1m
2
2 − 3m2

1 − 3m2
2 − 6m1m2 + 3m1 + 3m2 − 1).
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The difference is

W (Cn)−W (Cn
m1,m2

) =
1

8
(m2

1m2 +m1m
2
2 −m2

1 −m2
2 − 6m1m2 + 4m1 + 5m2 − 3)

=
1

8
((m2 − 1)m2

1 + (m1 − 1)m2
2 + 4m1 + 5m2 − 6m1m2 − 3).

An easy calculation gives

W (Cn)−W (Cn
m1,m2

) =
1

4
m2(m2 − 2) > 0 if m1 = 3,

W (Cn)−W (Cn
m1,m2

) >
1

8
(3(m1 −m2)

2 + 4m1 + 5m2 − 3) > 0 if m1 > 5.

Now suppose n is odd. Then there are two possibilities.

Case 1 : Both m1 and m2 are even.

W (Cn
m1,m2

)=W (Cm1
) +W (Cm2

) + (m2 − 1)DCm1
(v) + (m1 − 1)DCm2

(v)

=
m3

1

8
+

m3
2

8
+ (m2 − 1)

m2
1

4
+ (m1 − 1)

m2
2

4

=
1

8
(m3

1 +m3
2 + 2m2m

2
1 + 2m1m

2
2 − 2m2

1 − 2m2
2),

W (Cn)=W (Cm1+m2−1)=
1

8
((m1 +m2 − 1)3 − (m1 +m2 − 1))

=
1

8
(m3

1 +m3
2 + 3m2

1m2 + 3m1m
2
2 − 3m2

1 − 3m2
2 − 6m1m2 + 2m1 + 2m2).

The difference is

W (Cn)−W (Cn
m1,m2

) =
1

8
((m1 − 1)m2

2 + (m2 − 1)m2
1 − 6m1m2 + 2m1 + 2m2)

>
1

8
(3(m1 −m2)

2 + 2m1 + 2m2) > 0.

Case 2 : Both m1 and m2 are odd.

W (Cn
m1,m2

) =
m3

1 −m1

8
+

m3
2 −m2

8
+ (m2 − 1)

m2
1 − 1

4
+ (m1 − 1)

m2
2 − 1

4

=
1

8
(m3

1 +m3
2 + 2m2m

2
1 + 2m1m

2
2 − 2m2

1 − 2m2
2 − 3m1 − 3m2 + 4)

and the difference is

W (Cn)−W (Cn
m1,m2

) =
1

8
((m1 − 1)m2

2 + (m2 − 1)m2
1 − 6m1m2 + 5m1 + 5m2 − 4).
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An easy calculation gives

W (Cn)−W (Cn
m1,m2

) >
1

8
(3(m1 −m2)

2 + 5m1 + 5m2 − 4) > 0 if m1,m2 > 5,

W (Cn)−W (Cn
m1,m2

) =
1

8
(2m2

2 − 4m2 + 2) > 0 if m1 = 3,

W (Cn)−W (Cn
m1,m2

) =
1

8
(2m2

1 − 4m1 + 2) > 0 if m2 = 3,

and this completes the proof. �

Lemma 3.6. Let u be the pendant vertex and v be a nonpendant vertex of the

unicyclic graph U ′
n,g. Then DU ′

n,g
(u) > DU ′

n,g
(v).

P r o o f. Let vg be the vertex of degree 3 in U ′
n,g. Then

(3.2) DU ′

n,g
(u) = DPn−g+1

(u) + (g − 1)(n− g) +DCg
(vg).

If v is a vertex on the cycle Cg of U
′
n,g, then

DU ′

n,g
(v) = DCg

(v) + d(v, vg)(n− g) +DPn−g+1
(vg).

Since DPn−g+1
(u) = DPn−g+1

(vg),

DU ′

n,g
(u)−DU ′

n,g
(v) = (n− g)(g − 1− d(v, vg)) > 0.

If v is not on the cycle Cg of U
′
n,g, then

DU ′

n,g
(v) = DPn−g+1

(v) + d(v, vg)(g − 1) +DCg
(vg).

Since DPn−g+1
(u) > DPn−g+1

(v) and DCg
(vg) = DCg

(v),

DU ′

n,g
(u)−DU ′

n,g
(v) > (g − 1)(n− g − d(v, vg)) > 0.

This completes the proof. �

The next corollary follows from Lemma 3.6 and Corollary 2.3.

Corollary 3.7. Let G be a connected graph with at least two vertices and

u ∈ V (G). Suppose v is the pendant vertex of U ′
n,g and w is a nonpendant ver-

tex of U ′
n,g. Let G1 and G2 be the graphs obtained from G and U ′

n,g by identifying u

of G with the vertices v and w of U ′
n,g, respectively. Then W (G1) > W (G2).
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Lemma 3.8. Let u be a vertex of a connected graph G. For m > 4, let G1 be the

graph obtained by identifying the vertex u of G with the pendant vertex of U ′
m+1,m

and G2 be the graph obtained by identifying the vertex u with the pendant vertex

of U ′
m+1,3. Then W (G2) > W (G1).

P r o o f. By Lemma 2.2, we have

W (G1) = W (G) +W (U ′
m+1,m) + (|V (G)| − 1)DU ′

m+1,m
(u) +mDG(u)

and

W (G2) = W (G) +W (U ′
m+1,3) + (|V (G)| − 1)DU ′

m+1,3
(u) +mDG(u).

By Theorem 3.2, W (U ′
m+1,3) > W (U ′

m+1,m). So, the difference is

W (G2)−W (G1) > (|V (G)| − 1)(DU ′

m+1,3
(u)−DU ′

m+1,m
(u)).

By (3.2), we have DU ′

m+1,3
(u) = 1

2 (m− 1)(m+ 2) and

DU ′

m+1,m
(u) =






m+
m2

4
if n is even,

m+
m2 − 1

4
if n is odd.

So,

DU ′

m+1,3
(u)−DU ′

m+1,m
(u) =





m2 − 2m− 4

4
if m is even,

m2 − 2m− 3

4
if m is odd,

which is greater than 0 and this completes the proof. �

Corollary 3.9. Let m1,m2 > 3 be two integers and let m1 + m2 6 n. Then

W (Cn
3,3) > W (Cn

m1,m2
) and equality happens if and only if m1 = m2 = 3.

P r o o f of Theorem 1.1. (i) Let G ∈ Hn,k. Suppose G is not isomorphic to

T (⌊k
2 ⌋, ⌈

k
2⌉, n−k). IfG is a tree, then by Theorem 3.1,W (G) <W (T (⌊k

2⌋, ⌈
k
2 ⌉, n−k)).

Suppose G is not a tree. Then construct a spanning tree G′ from G by deleting

some edges. Then by Lemma 2.1, W (G′) > W (G). The number of pendant vertices

of G′ is greater than or equal to k. Suppose G′ has more than k pendant vertices.

Since k > 2, G′ has at least one vertex of degree greater than 2 and at least two

paths attached to it. Consider a vertex v of G′ with d(v) > 3 and two paths Pl1 , Pl2 ,

l1 > l2 attached at v. Using grafting of edge operation on G′, we get a new tree G̃

with number of pendant vertices one less than the number of pendant vertices of G′
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and by Corollary 2.4, W (G̃) > W (G′). We continue this process untill we get a tree

with k pendant vertices from G̃. By Lemma 2.4, every step in this process increases

the Wiener index. So, we will reach at a tree T of order n with k pendant ver-

tices. By Theorem 3.1, we have W (T (⌊k
2 ⌋, ⌈

k
2 ⌉, n − k)) > W (T ) > W (G). Hence,

T (⌊k
2 ⌋, ⌈

k
2⌉, n− k) uniquely maximizes the Wiener index over Hn,k.

Now by replacing d, l and k with n− k, ⌊k
2 ⌋ and ⌈

k
2⌉, respectively, in (2.6), we get

the value of W (T (⌊k
2⌋, ⌈

k
2 ⌉, n− k)) as in the statement. This completes the proof.

(ii) Let G ∈ Hn,1. Suppose G is not isomorphic to U
′
n,3. Since G is connected and

has exactly one pendant vertex, it must contain a cycle. Let Cg be a cycle in G. If G

is a unicyclic graph, then by Theorem 3.2,W (U ′
n,3) > W (G). If G has more than one

cycle, then construct a new graph G′ from G by deleting edges from all cycles other

than Cg so that the graph remains connected. Then by Lemma 2.1, W (G′) > W (G)

and G′ is a unicyclic graph on n vertices with girth g. By Theorem 3.2, W (U ′
n,3) >

W (G′) > W (G). Hence, U ′
n,3 uniquely maximizes the Wiener index over Hn,1. We

get the value of W (U ′
n,3) from (2.4) and this completes the proof.

(iii) Let n > 7 and let G ∈ Hn,0. Suppose G is not isomorphic to C
n
3,3. Then we

have two cases:

Case 1 : For some integers m1,m2 > 3 with n = m1 + m2 − 1, Cn
m1,m2

is a

subgraph of G.

Since Cn
m1,m2

is a subgraph of G, by deleting some edges (if required) from G we

get Cn
m1,m2

∈ Hn,0 and by Lemma 2.1, W (G) 6 W (Cn
m1,m2

). Again by Lemma 3.4

and Lemma 3.5, we have

W (G) 6 W (Cn
m1,m2

) < W (Cn) < W (Cn
3,3).

Case 2 : There are no integers m1,m2 > 3 with n = m1+m2−1 such that Cn
m1,m2

is a subgraph of G.

If G is a two connected graph, then by Theorem 3.3 and Lemma 3.4, W (G) 6

W (Cn) < W (Cn
3,3). So let G have at least one cut-vertex.

Since G has a cut-vertex and no pendant vertices, so G contains two cycles with

at most one common vertex. Let Cg1 and Cg2 be two cycles of G with at most

one common vertex. Since Cn
m1,m2

with m1 + m2 − 1 = n is not a subgraph of G,

g1 + g2 6 n. Clearly G has at least n+ 1 edges.

If G has exactly n+1 edges, then there is no common vertex between Cg1 and Cg2

and G = Cn
g1,g2 . As G is not isomorphic to C

n
3,3, by Corollary 3.9, W (G) < W (Cn

3,3).

Now let |E(G)| > n + 2. Suppose |E(G)| = n + k, where k > 2. Choose k − 1

edges {e1, . . . , ek−1} ⊂ E(G) such that ei /∈ E(Cg1 ) ∪ E(Cg2 ), i = 1, . . . , k − 1 and

G\{e1, . . . , ek−1} is connected. Let G1 = G\{e1, . . . , ek−1} (G1 may have some pen-

dant vertices). Then by Lemma 2.1, W (G1) > W (G). If G1 has no pendant vertices,

then G1 = Cn
g1,g2 for some g1, g2 > 3. By Corollary 3.9, W (G) < W (G1) 6 W (Cn

3,3).
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Suppose G1 has some pendant vertices. Then for some p < n, Cp
g1,g2 is a subgraph

of G1. By grafting of edges operation (if required), we can form a new graph G2

from G1, where G2 is a connected graph on n vertices obtained by attaching some

paths to some vertices of Cp
g1,g2 . Then by Corollary 2.4, W (G2) > W (G1). If more

than one path are attached to different vertices of Cp
g1,g2 in G2, then using the graph

operation as mentioned in Lemma 2.7, form a new graph G3 from G2, where G3 has

exactly one path attached to Cp
g1,g2 . Then by Lemma 2.7, W (G3) > W (G2).

Let u be the vertex on Cp
g1,g2 of G3 at which the path is attached. Then again, we

have two cases:

Case 1 : u ∈ V (Cg1 )∪V (Cg2). Without loss of generality, assume that u ∈ V (Cg1 ).

Then the induced subgraph of G3 containing the vertices of Cg1 and the vertices of

the path attached to it, is the graph U ′
k,g1
for some k > g1. Let v be the pendant

vertex of U ′
k,g1
. Since the two cycles Cg1 and Cg2 have at most one vertex in common,

we have two subcases:

Subcase 1.1 : V (Cg1) ∩ V (Cg2 ) = {w}. Let H1 be the induced subgraph of G3

containing the vertices {V (G3) \ V (U ′
k,g1

)} ∪ {w}. Clearly H1 is the cycle Cg2 . Then

identify the vertex v of U ′
k,g1
with the vertex w of H1 to form a new graph G4.

By Corollary 3.7, W (G4) > W (G3) and G4 is the graph Cn
g1,g2 . By Corollary 3.9,

W (G) < W (G4) 6 W (Cn
3,3).

Subcase 1.2 : V (Cg1) ∩ V (Cg2 ) = ∅. Let H2 be the induced subgraph of G3

containing the vertices V (G3)\V (U ′
k,g1

). In G3 there is exactly one vertex w1 ∈ U ′
k,g1

adjacent to exactly one vertex w2 ofH2. Form a new graphG5 fromG3 by deleting the

edge {w1, w2} and adding the edge {v, w2}. By Corollary 3.7, W (G5) > W (G3) and

G5 is the graph C
n
g1,g2 . Again, by Corollary 3.9, we haveW (G) < W (G5) 6 W (Cn

3,3).

Case 2 : u /∈ V (Cg1) ∪ V (Cg2 ). Let w be the pendant vertex of G3 and let w3 be

a vertex on Cp
g1,g2 of G3 adjacent to u. Form a new graph G6 from G3 by deleting the

edge {u,w3} and adding the edge {w,w3}. By Corollary 3.7,W (G6) > W (G3) andG6

is the graph Cn
g1,g2 . Again, by Corollary 3.9, we have W (G) < W (G6) 6 W (Cn

3,3).

Hence, Cn
3,3 uniquely maximizes the Wiener index over Hn,0 for n > 7.

We have W (Cn
3,3) =

1
6 (n

3 − 13n+ 24) by (3.1) and this completes the proof. �

It can be checked easily that for 3 6 n 6 5, the cycle Cn has the maximum

Wiener index over Hn,0 and for n = 6, the Wiener index is maximized by both the

graphs C6 and C6
3,3.

P r o o f of Theorem 1.2. (i) Let G ∈ Hn,k, 0 6 k 6 n− 3 and let v1, v2, . . . , vn−k

be the nonpendant vertices of G. Suppose G is not isomorphic to Kk
n. If the induced

subgraph G[v1, v2, . . . , vn−k] is not complete, then form a new graph G′ from G by

joining all the nonadjacent nonpedant vertices of G with new edges. Then G′ ∈ Hn,k

and by Lemma 2.1, W (G′) < W (G). If G′ = Kk
n, then W (Kk

n) < W (G).
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Otherwise, G′ has at least two vertices of degree greater than or equal to n−k. (If

the induced subgraph G[v1, v2, . . . , vn−k] is complete, then G[v1, v2, . . . , vn−k] has at

least two vertices of degree greater than or equal to n − k.) Form a new graph G′′

from G′ by moving all the pendant vertices to one of the vertex v1, v2, . . . , vn−k.

Then G′′ = Kk
n and by Corollary 2.6, W (Kk

n) = W (G′′) < W (G′) 6 W (G). Hence,

for 0 6 k 6 n− 3, Kk
n uniquely minimizes the Wiener index over Hn,k.

Let u ∈ V (Kk
n) be a vertex of degree n− 1. Then by Lemma 2.2, we have

W (Kk
n) = W (Kn−k) +W (K1,k) + (|V (Kn−k)| − 1)k + kDKn−k

(u)

=

(
n− k

2

)
+ k2 + 2k(n− k − 1).

(ii) Let G ∈ Hn,n−2. Suppose G is not isomorphic to T (1, n − 3, 2). Then G

is isomorphic to a tree T (k, l, 2) for some k, l > 2. Now form a tree T (1, n − 3, 2)

from G by moving pendant vertices from one end to another. Then by Corollary 2.6,

W (T (1, n − 3, 2)) < W (G) and by taking d = 2, l = 1 and k = n − 3 in (2.6), we

have W (T (1, n− 3, 2)) = n2 − n− 2. �

P r o o f of Theorem 1.3. We first prove that for k > 3, if T ∈ Tn,k has mini-

mum Wiener index, then there is a unique vertex v ∈ V (T ) with d(v) > 3. Let

there be two vertices u, v ∈ V (T ) with d(u) = n1 > 3, d(v) = n2 > 3. Let NT (u) =

{u1, u2, . . . , un1
} and NT (v) = {v1, v2, . . . , vn2

}, where u1 and v1 lie on the path join-

ing u and v (u1 may be v and v1 may be u). Let T1 be the largest subtree of T contain-

ing u, u2, u3, . . . , un1−1 but not u1, un1
and T2 be the largest subtree of T containing

v, v2, v3, . . . , vn2−1 but not v1, vn2
.We rename the vertices u ∈ V (T1) and v ∈ V (T2)

by u′ and v′, respectively. Let H = T \ {u2, u3, . . . , un1−1, v2, v3, . . . , vn2−1}. Con-

struct two trees T ′ and T ′′ from H , T1 and T2 by identifying the vertices u, u
′, v′

and v, u′, v′, respectively. Clearly, both T ′, T ′′ ∈ Tn,k and by Lemma 2.5, either

W (T ′) < W (T ) or W (T ′′) < W (T ), which is a contradiction.

Let T be the tree which minimizes the Wiener index in Tn,k. For k = 2, the only

possible tree is the path Pn, which is isomorphic to Tn,2. So assume 3 6 k 6 n− 2.

Then there exists a unique vertex v ∈ V (T ) with d(v) > 3 and d(v) number of paths

are attached to v. Suppose P and P ′ are two paths attached at v in T of length l

and l′, respectively, with l − l′ > 2. By grafting of edge, form a tree T̃ from T such

that the lengths of paths corresponding to P and P ′ in T̃ are l− 1 and l′+1, respec-

tively. Then by Corollary 2.4, W (T̃ ) < W (T ), which is a contradiction. Hence, the

difference of the lengths of any two paths attached at v in T is at most one. There-

fore, T uniquely minimizes the Wiener index over Tn,k and T is isomorphic to Tn,k.

�
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For r = 0, the tree Tn,k is isomorphic to the tree T
q
k and hence by (2.8),

W (Tn,k) = k

(
q + 2

3

)
+

q2(q + 1)k(k − 1)

2
.

For 1 6 r < k, by Lemma 2.2, we have

W (Tn,k) = W (T q+1
r ) +W (T q

k−r) + r(q + 1)DT q

k−r
(v) + (k − r)qDT q+1

r
(v),

where v is the vertex of Tn,k with Tn,k \ v = rPq+1 ∪ (k− r)Pq . Thus, by using (2.7)

and (2.8), the value of W (Tn,k) can be obtained.

4. Proof of Theorem 1.4

Any graph on n vertices has at most n− 2 cut-vertices. The path Pn is the only

graph on n vertices with n−2 cut-vertices. Hence, for Cn,s we consider 0 6 s 6 n−3.

Let Ct

n,s be the set of all trees on n vertices with s cut-vertices. In a tree, every vertex

is either a pendant vertex or a cut-vertex. So Ct

n,s = Tn,n−s. Hence, the next result

follows from Theorems 1.3 and 3.1.

Theorem 4.1. For 0 6 s 6 n − 3, the tree T (⌊n−s
2 ⌋, ⌈n−s

2 ⌉, s) maximizes the

Wiener index and the tree Tn,n−s minimizes the Wiener index over C
t

n,s.

A block in a graph G is a maximal connected component without any cut-vertices

in it. Let BG be the graph corresponding to G with V (BG) as the set of blocks

of G and two vertices u and v of BG are adjacent whenever the corresponding blocks

contain a common cut-vertex of G. A vertex of G with minimum eccentricity is

called a central vertex. We call a block B in G a pendant block if there is exactly one

cut-vertex of G in B. The block corresponding to a central vertex in BG is called

a central block of G. Two blocks in G are said to be adjacent blocks if they share

a common cut-vertex.

Lemma 4.2. Let G be a graph which minimizes the Wiener index over Cn,s. Then

every block of G is a complete graph.

P r o o f. Let B be a block of G which is not complete. Then there are at least two

nonadjacent vertices in B. Let u and v be two nonadjacent vertices in B. Form a new

graph G′ from G by joining the edge {u, v}. Clearly G′ ∈ Cn,s and by Lemma 2.1,

W (G′) < W (G), which is a contradiction. �

Lemma 4.3. Let G be a graph which minimizes the Wiener index over Cn,s. Then

every cut-vertex of G is shared by exactly two blocks.
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P r o o f. Let c be a cut-vertex in G shared by more than two blocks, say

B1, B2, . . . , Bk, k > 3. Construct a new graph G′ from G by joining all the non-

adjacent vertices of
k⋃

i=2

Bi. Then G′ ∈ Cn,s and by Lemma 2.1, W (G′) < W (G),

which is a contradiction. �

Lemma 4.4. Let m > 3. For i, j ∈ {1, 2, . . . ,m}, if li 6 lj − 2, then

W (Kn
m(l1, . . . , li + 1, . . . , lj − 1, . . . , lm)) < W (Kn

m(l1, . . . , li, . . . , lj , . . . , lm)).

P r o o f. Let u be the pendant vertex of Kn
m(l1, . . . , li + 1, . . . , lj − 1, . . . , lm) on

the path Pli+1 and v be the pendant vertex of Kn
m(l1, . . . , li, . . . , lj , . . . , lm) on the

path Plj . Let w1 and w2 be the vertices adjacent to u and v, respectively. Then

using Lemma 2.2 we have

W (Kn
m(l1, . . . , li + 1, . . . , lj − 1, . . . , lm))−W (Kn

m(l1, . . . , li, . . . , lj , . . . , lm))

= DKn−1
m (l1,...,li,...,lj−1,...,lm)(w1)−DKn−1

m (l1,...,li,...,lj−1,...,lm)(w2) < 0,

since li < lj − 1 and m > 3. �

Let G be a graph in which every cut-vertex is shared by exactly two blocks.

Then BG is a tree. So, BG has either one central vertex or two adjacent central

vertices and hence G has either one central block or two central blocks with a common

cut-vertex.

Lemma 4.5. Let G be a graph which minimizes the Wiener index over Cn,s. If

s > 2, then every pendant block of G is K2.

P r o o f. All the blocks in G are complete by Lemma 4.2. Suppose B is a pendant

block of G which is not K2. Let V (B) = {v1, v2, . . . , vm} with m > 2. Assume v1
is the cut-vertex of G in B which is shared by another block B′ with V (B′) =

{v1 = u1, u2, . . . , ur} and r > 2. Construct a new graph G′ from G as follows: Delete

the edges {v2, vj}, j = 3, 4, . . . ,m and add the edges {vj , ui}, j = 3, 4, . . . ,m and

i = 2, 3, . . . , r. When G changes to G′, the only type of distances which increase

are d(v2, vj), j = 3, 4, . . . ,m. Each such distance increases by one and hence the

total increment in distances for vj , j = {3, . . . ,m} is exactly m − 2. The distance

d(vj , ui), j = 3, 4, . . . ,m, i = 2, 3, . . . , r decrease by one. Since r > 2, the total

distance decreased by such pair of vertices is at least m − 2. Since s > 2, there

exists a vertex w belonging to another block B′′ such that d(vj , w), j = 3, 4, . . . ,m

decreases by one. So W (G′) < W (G), which is a contradiction. �

Lemma 4.6. Let G be a graph which minimizes the Wiener index over Cn,s. If

s > 2, then all noncentral blocks of G are K2.
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P r o o f. Since G minimizes the Wiener index over Cn,s, by Lemmas 4.2 and 4.5,

all blocks of G are complete and all pendant blocks are K2. Assume that G has

a nonpendant and noncentral block. By Lemma 4.3, every cut-vertex of G is shared

by exactly two blocks. Let B be a central block in G. Then there exist a noncentral,

nonpendant block B1 and a cut-vertex (of G) c1 ∈ V (B1) such that a path Pl is

attached to B1 at c1. Since B1 is a nonpendant block, so there is a cut-vertex (of G)

c2 ∈ V (B1) different from c1, shared by another block B2 such that the vertices corre-

sponding to the blocks B1, B2 and B (starting from B1) in the tree BG lie on a path.

Let V (B1) = {c1 = u1, u2, . . . , um1
= c2} and V (B2) = {v1, v2, . . . , vm2

= c2}.

Construct a new graph G′ from G as follows: Delete the edges {c1, ui} for all

ui ∈ V (B1) \ {c1, c2} and add the edges {ui, vj} for all ui ∈ V (B1) \ {c1, c2} and

vj ∈ V (B2) \ {c2}.

For i = 2, . . . ,m1−1, let Hi be the maximal connected component of G containing

exactly one vertex ui of B1. Let Pl : t1t2 . . . tl be the path with t1 identified with c1.

When G changes to G′, the only type of distances which increase in G′ are dG′(u, tj),

where u ∈
m1−1⋃
i=2

V (Hi) and j = 1, 2, . . . , l. Each such distance increases by one in G′.

For any other pair of vertices, the distance between them either decreases or remains

the same. Since B1 is not a central block, for each tj , j = 1, 2, . . . , l there exists a ver-

tex t′j ∈ V (G) \
(m1−1⋃

i=2

V (Hi) ∪ {t1, t2, . . . , tl, v1, v2, . . . , vm2
}
)
such that dG′(u, t′j)

decreases by one, where u ∈
m1−1⋃
i=2

V (Hi). So, the increment in distance by the pairs u,

tj is neutralized by the pairs u, t
′
j . Apart from this, at least the distances dG′(ui, vj)

for i = 2, 3, . . . ,m1− 1 and j = 1, 2, . . . ,m2− 1 decrease by one. So W (G′) < W (G),

which is a contradiction. Hence, for s > 2, all noncentral blocks of G are K2. �

P r o o f of Theorem 1.4. Let G be a graph, which minimizes the Wiener in-

dex over Cn,s. We first claim that G is isomorphic to Kn
n−s(l1, . . . , ln−s) for some

l1, l2, . . . , ln−s.

By Lemmas 4.2 and 4.3, every block of G is complete and every cut-vertex of G

is shared by exactly two blocks. If s = 0, then G has exactly one block. So G = Kn

and Kn is isomorphic to K
n
n (1, 1, . . . , 1).

For s = 1, G has exactly two complete blocks with a common vertex w (say).

Let B1 and B2 be the two blocks of G. If any of B1 or B2 is K2, then G is iso-

morphic to Kn
n−1(2, 1, . . . , 1). Otherwise, let V (B1) = {u1, u2, . . . , um1

= w} and

V (B2) = {v1, v2, . . . , vm2
= w} with m1,m2 > 2. Construct a new graph G′ from G

as follows: Delete the edges {u1, ui}, i = 2, 3, . . . ,m1 − 1 and add the edges {ui, vj},

i = 2, 3, . . . ,m1 − 1, j = 1, 2, . . . ,m2 − 1. Clearly G′ ∈ Cn,1. Then the only type

of distances which increase are d(u1, uj), j = 2, 3, . . . um1−1 and each such distance

increases by one. So, the total increment in distance is exactly m1 − 2. Also each
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distance d(ui, vj), i = 2, 3, . . . ,m1 − 1, j = 2, 3, . . .m2 − 1 decreases by one. The

total decrement is (m1 − 2)(m2 − 1). Since m1,m2 > 2, W (G′) < W (G), which is

a contradiction. Hence, G is isomorphic to Kn
n−1(2, 1, . . . , 1).

Now suppose s > 2. Then G has s+1 blocks and alsoG has either one central block

or two adjacent central blocks. By Lemma 4.6, all noncentral blocks of G are K2.

If G has exactly one central block, then G is isomorphic to Kn
n−s(l1, . . . , ln−s)

for some l1, l2, . . . , ls. Suppose G has two central blocks and G is not isomorphic

to Kn
n−s(l1, . . . , ln−s) for any l1, l2, . . . , ln−s. Then each of the central blocks of G

has at least 3 vertices. Let B1 and B2 be the two central blocks with a common

vertex w. Let V (B1) = {u1, u2, . . . , um1
= w} and V (B2) = {v1, v2, . . . , vm2

= w}

with m1,m2 > 2. Let H1(H2) be the maximal connected component of G containing

exactly one vertex w of B2(B1). Let Pl : wu1t3 . . . tl be the longest path in H1

starting at w containing u1 such that none of the vertices t3, . . . , tl belongs to B1.

Take w as t1 and u1 as t2 in Pl. Since B1 and B2 are central blocks, so there

exists a path P ′
l : t′1t

′
2 . . . t

′
l on l vertices in H2 starting at w = t′1 and containing

exactly two vertices of B2. Construct a new graph G′ from G as follows: Delete the

edges {u1, ui}, i = 2, 3, . . . ,m1 − 1 and add the edges {ui, vj}, i = 2, 3, . . . ,m1 − 1,

j = 1, 2, . . . ,m2−1. ClearlyG′ ∈ Cn,s. The only type of distances which increase in G
′

are dG′(u, tj), where u ∈ V (H1) \ V (Pl) and j = 2, . . . , l also each such distance in-

creases by one. The distance dG′(u, t′j) decreases by one, where u ∈ V (H1)\V (Pl) and

j = 2, . . . , l. So, the increment in distance by the pairs {u, tj} is neutralized by the

pairs {u, t′j}. Since m2 > 3, there exist at least one vertex w′ in B2 which is not in P
′
l .

For each u ∈ V (H1) \ V (Pl), the distance dG′(u,w′) decreases by one. So, W (G′) <

W (G), which is a contradiction. Hence, G is isomorphic to Kn
n−s(l1, . . . , ln−s) for

some l1, l2, . . . , ln−s. Now the result follows from Lemma 4.4. �

5. Conclusion

In this article, we obtained the graphs which extremize the Wiener index over all

connected graphs on n vertices with k pendant vertices. We also obtained the tree

which minimizes the Wiener index over all trees on n vertices with k pendant vertices.

In [13], the author has characterized the tree which maximizes the Wiener index over

all trees on n vertices with fixed number of pendant vertices. We further obtained

the graph which minimizes the Wiener index over all connected graphs on n vertices

with s cut-vertices. It will be nice to obtain the graph which maximizes the Wiener

index over all connected graphs on n vertices with fixed number of cut-vertices.
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