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Abstract. Let (R,m) be a standard graded K-algebra over a field K. Then R can be writ-
ten as S/I , where I ⊆ (x1, . . . , xn)

2 is a graded ideal of a polynomial ring S = K[x1, . . . , xn].
Assume that n > 3 and I is a strongly stable monomial ideal. We study the symmetric
algebra SymR(Syz1(m)) of the first syzygy module Syz1(m) of m. When the minimal gen-
erators of I are all of degree 2, the dimension of SymR(Syz1(m)) is calculated and a lower
bound for its depth is obtained. Under suitable conditions, this lower bound is reached.
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1. Introduction

Symmetric algebras are important topics in commutative algebra and algebraic

geometry. For instance, let W be a closed subscheme of a scheme X , which is

defined by a quasi-coherent sheaf of ideals I. Then the normal bundle to W in X is

defined by the symmetric algebra of I/I2. On the other hand, from the normal cone

to the normal bundle, there is a closed immersion, which is isomorphic if and only if

the symmetric and Rees algebra of I are isomorphic.

LetM be a finitely generated module over a commutative Noetherian ring R with

identity. There is an effective method to study the invariants of the symmetric alge-

bra SymR(M) in [5], where the authors introduced the notion of s-sequences. If M
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is generated by an s-sequence, one can obtain an exact value for dimR(Sym(M)),

e(Sym(M)) and a bound for depth(Sym(M)) and the Castelnuovo-Mumford regular-

ity reg(Sym(M)) by the computation of the same invariants of some special quotients

of the base ring R by the annihilator ideals.

Let M be an R-module generated by f1, . . . , fn. Then M has a presentation

Rm → Rn → M → 0

with m × n relation matrix A = (aij). The symmetric algebra Sym(M) has the

presentation

R[y1, . . . , yn]/J,

where J = (g1, . . . , gm) and gi =
n∑

j=1

aijyj with i = 1, . . . ,m. Consider P =

R[y1, . . . , yn] as a graded R-algebra assigning degree one to each variable yi and

degree zero to the elements of R. Then J is a graded ideal and Sym(M) is a graded

R-algebra. Let < be a monomial order induced by y1 < . . . < yn. For f ∈ P ,

f =
∑
α

aαy
α we put in(f) = aαy

α, where yα is the largest monomial with respect

to the given order such that aα 6= 0. We call in(f) the initial term of f . Note

that in contrast to the ordinary Gröbner basis theory, the base ring R is not a field.

Nevertheless, we may define the ideal

in(J) = (in(f) : f ∈ J).

The ideal is generated by terms which are monomials in y1, . . . , yn with coefficients

in R and is finitely generated since P is Noetherian. For i = 1, . . . , n we set

Mi =
i∑

j=1

Rfj and let Ii = Mi−1 :R fi = {a ∈ R : afi ∈ Mi−1}. We also set I0 = 0.

Note that Ii is the annihilator ideal of the cyclic module Mi/Mi−1
∼= R/Ii.

It is clear that

(I1y1, . . . , Inyn) ⊆ in(J),

and the two ideals coincide in degree one. If (I1y1, . . . , Inyn) = in(J), the genera-

tors f1, . . . , fn of M are called an s-sequence (with respect to <). If, in addition,

I1 ⊆ . . . ⊆ In, then f1, . . . , fn is called a strong s-sequence.

If f1, . . . , fn forms a strong s-sequence, then Propositions 2.4 and 2.6 in [5] shows

that
dim(SymR(M)) = max{dim(R/Ir) + r : r = 0, 1, . . . , n},

depth(SymR(M)) > min{depth(R/Ir) + r : r = 0, 1, . . . , n}.

Using s-sequences, some new results for symmetric algebras are obtained (cf. [5], [6],

[7], [8], [9]).
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Let Syz1(M) be the first syzygy module of the graded maximal ideal M =

(x1, . . . , xn) of a polynomial ring K[x1, . . . , xn] over a field K. Although the gen-

erators of Syz1(M) do not form an s-sequence, in virtue of Jacobian dual, some

invariants of Sym(Syz1(M)) are evaluated in [7] by the theory of s-sequences.

On the other hand, when R is a standard graded K-algebra whose defining ideal

is componentwise linear andM is the graded maximal ideal of R, the depth and reg-

ularity of SymR(M) are bounded in [4]. Using Gröbner bases, in order to get certain

invariants of SymR(M), it suffices to study standard graded K-algebras with mono-

mial relations. Stable and strongly stable monomial ideals are suitable candidates.

Combining the above two situations, we consider the case SymR(Syz1(m)),

where R is a standard graded algebra over a field K with the graded maximal

ideal m = (a1, . . . , an). Then the algebra R can be written as S/I and m = M/I,

where S = K[x1, . . . , xn] is a polynomial ring, M = (x1, . . . , xn) and I ⊆ M
2 is

a graded ideal of S. We are interested in the dimension and depth of SymR(Syz1(m)).

In the case M is generated by a strong s-sequence, the dimension and depth of

SymR(M) are estimated by that ofR[y1, . . . , yn]/(I1y1, . . . , Inyn), where I1⊆ . . .⊆ In.

In our case, we have to treat a ring R[y1, . . . , yn]/(I1y1, . . . , Inyn, I), where I1 ⊇ . . . ⊇

Is ⊆ Is+1 ⊆ . . . ⊆ In with some s > 1, and I is generated by some mono-

mials in y1, . . . , yn. In Section 2, we will compute the dimension and depth of

R[y1, . . . , yn]/(I1y1, . . . , Inyn, I).

Write SymR(Syz1(m)) as S[yij : 1 6 i < j 6 n]/J . In order to get the initial

ideal in(J), we find one Gröbner basis of J in Section 3. Section 4 is devoted to

calculate the dimension of SymR(Syz1(m)) and obtain one lower bound for its depth.

2. Preliminaries

Let R be a Noetherian ring and

0 → L → M → N → 0

be an exact sequence of R-modules. Then there is an exact sequence of symmetric

algebras:

L⊗R SymR(M) → SymR(M) → SymR(N) → 0.

When L is a submodule of M , one has an isomorphism

SymR(N) ∼= SymR(M)/(L̃),

where L̃ is the set of 1-forms of elements of L, cf. [1], Proposition A2.2.
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Furthermore, suppose that M is an R-module generated by f1, . . . , fn. Then M

has a presentation

Rm → Rn → M → 0

with m × n relation matrix A = (aij). The symmetric algebra Sym(M) has the

presentation

R[y1, . . . , yn]/J,

where J = (g1, . . . , gm) and gi =
n∑

j=1

aijyj with i = 1, . . . ,m. Under this presentation,

we get

SymR(N) ∼= R[y1, . . . , yn]/(J, L̃),

where L̃ = {r1y1 + . . .+ rnyn : r1f1 + . . .+ rnfn ∈ L}. We will use this presentation

in the next section.

Let K be a field, S = K[x1, . . . , xn] and I be a monomial ideal of S. Denote

the minimal generating set of I by G(I). For any monomial u of S, set max(u) =

max{i : xi | u} and min(u) = min{i : xi | u}. Put m(I) = max{min(u) : u ∈ G(I)}

and M(I) = max{max(u) : u ∈ G(I)}. For a monomial ideal W of K[xr, . . . , xt],

M(W ) and m(W ) are defined exactly as in K[x1, . . . , xn].

Definition 2.1. If for any monomial u ∈ I, xiu/xmax(u) ∈ I holds for any

i < max(u), we say that I is stable. Furthermore, if for any monomial u ∈ I and any

integer j such that xj | u, one has that xiu/xj ∈ I for any i < j, then we say that I

is strongly stable.

When I is stable, it is shown in [2] that

Proj.dim(S/I) = max{max(u) : u ∈ G(I)}.

Then, by Auslander-Buchsbaum formula, one gets

depth(S/I) = n−max{max(u) : u ∈ G(I)}.

On the other hand, for the dimension we have

dim(S/I) = n−max{min(u) : u ∈ G(I)},

which follows from the equality height(I) = max{min(u) : u ∈ G(I)} (cf. [3], Exer-

cise 8.9). Then we have the following lemma.

Lemma 2.2. Let I be a stable monomial ideal of S = K[x1, . . . , xn]. Then

dim(S/I) = n−M(I) and depth(S/I) = n−m(I).
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In order to estimate the dimension and depth of a factor ring, we need to express

an ideal as an intersection of some satisfied ideals. By using the same arguments as

in the proof of Lemma 2.3 of [5], we get the following two lemmas.

Lemma 2.3. Let R be a Noetherian ring, I1, . . . , In be ideals of R and u1, . . . , ut

be monomials in y1, . . . , yn. Then in R[y1, . . . , yn],

(I1y1, . . . , Inyn, u1, . . . , ut)

=
⋂

06r6n
16i1<...<ir6n

(Ii1 + . . .+ Iir , y1, . . . , ŷi1 , . . . , ŷir , . . . , yn, u1, . . . , ut),

where I0 = 0 by convention.

Lemma 2.4. Let R be a Noetherian ring, I1, . . . , In be ideals of R and u1, . . . , ut

be monomials in y1, . . . , yn. Suppose that there is an 1 6 s 6 n such that I1 ⊇ . . . ⊇

Is ⊆ Is+1 ⊆ . . . ⊆ In. Then in R[y1, . . . , yn],

(I1y1, . . . , Inyn, u1, . . . , ut)

= (y1, . . . , yn)
⋂( s⋂

r=1

n⋂

t=s

(Ir + It, y1, . . . , yr−1, yt+1, . . . , yn, u1, . . . , ut)

)
.

In particular, when s = 1, i.e. I1 ⊆ . . . ⊆ In,

(I1y1, . . . , Inyn, u1, . . . , ut) =
n⋂

r=0

(Ir , yr+1, . . . , yn, u1, . . . , ut).

Let I and J be two ideals of a Noetherian ring R. It is well-known that

dim(R/(I ∩ J)) = max{dim(R/I), dim(R/J)}.

On the other hand, from the short exact sequence

0 → R/(I ∩ J) → R/I ⊕R/J → R/(I + J) → 0

we have

depth(R/(I ∩ J)) > min{depth(R/I), depth(R/J), depth(R/(I + J)) + 1}.

The following result generalizes Proposition 2.4 of [5].

Proposition 2.5. Let K be a field, R = K[x1, . . . , xm] and I1 ⊇ . . . ⊇ Is ⊆

Is+1 ⊆ . . . ⊆ In be ideals of R. Then for any monomial ideal I of K[y1, . . . , yn],

dim(R[y1, . . . , yn]/(I1y1, . . . , Inyn, I))

= max
16r6s
s6t6n

{dim(R), dim(R/(Ir + It)) + dim(K[yr, . . . , yt]/I ∩K[yr, . . . , yt])}.
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P r o o f. By Lemma 2.4 we have

dim(R[y1, . . . , yn]/(I1y1, . . . , Inyn, I))

= dim

(
R[y1, . . . , yn]/(y1, . . . , yn)

⋂( s⋂

r=1

n⋂

t=s

(Ir + It, y1, . . . , yr−1, yt+1, . . . , yn, I)

))

= max
16r6s
s6t6n

{dim(R), dim(R[y1, . . . , yn]/(Ir + It, y1, . . . , yr−1, yt+1, . . . , yn, I))}

= max
16r6s
s6t6n

{dim(R), dim(R[yr, . . . , yt]/(Ir + It, I ∩K[yr, . . . , yt]))}.

Notice that

R[yr, . . . , yt]/(Ir + It, I ∩K[yr, . . . , yt])

∼= R/(Ir + It)⊗K K[yr, . . . , yt]/(I ∩K[yr, . . . , yt]),

by Proposition 2.2.20 of [10]. Then by [10], Exercise 2.1.14

dim(R[yr, . . . , yt]/(Ir + It, I ∩K[yr, . . . , yt]))

= dim(R/(Ir + It)) + dim(K[yr, . . . , yt]/(I ∩K[yr, . . . , yt]).

Thus, the result follows. �

By [10], Theorem 2.2.21

depth(R[yr, . . . , yt]/(Ir + It, I ∩K[yr, . . . , yt])))

= depth(R/(Ir + It)) + depth(K[yr, . . . , yt]/(I ∩K[yr, . . . , yt])),

which will be used in the following arguments for depth.

Lemma 2.6. Let K be a field, R = K[x1, . . . , xm] and I1 ⊆ . . . ⊆ In be ideals

of R. Then for any monomial ideal I of K[y1, . . . , yn],

depth(R[y1, . . . , yn]/(I1y1, . . . , Inyn, I))

> min
06r6n

{depth(R/Ir) + depth(K[y1, . . . , yr]/(I ∩K[y1, . . . , yr])),

depth(R/Ir) + depth(K[y1, . . . , yr−1]/(I ∩K[y1, . . . , yr−1])) + 1}.
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P r o o f. We use induction on n. When n = 1, one has

depth(R[y1]/(I1y1, I))

= depth(R[y1]/((y1) ∩ (I1, I)))

> min{depth(R[y1]/(y1)), depth(R[y1]/(I1, I)), depth(R[y1]/(y1, I1)) + 1}

= min{depth(R), depth(R/I1) + depth(K[y1]/I), depth(R/I1) + 1}.

Now assume that n > 1. Notice that by Lemma 2.4,
n−1⋂
r=0

(Ir , yr+1, . . . , yn, I) =(n−1⋂
r=0

(Ir, yr+1, . . . , yn, I)
)
∩ (R, I) = (I1y1, . . . , In−1yn−1, yn, I), hence

(n−1⋂

r=0

(Ir, yr+1, . . . , yn, I)

)
+ (In, I) = (In, yn, I).

Then

depth(R[y1, . . . , yn]/(I1y1, . . . , Inyn, I))

= depth

(
R[y1, . . . , yn]/

n⋂

r=0

(Ir, yr+1, . . . , yn, I)

)

= depth

(
R[y1, . . . , yn]/

((n−1⋂

r=0

(Ir , yr+1, . . . , yn, I)

)
∩ (In, I)

))

> min

{
depth

(
R[y1, . . . , yn]/

n−1⋂

r=0

(Ir, yr+1, . . . , yn, I)

)
,

depth(R[y1, . . . , yn]/(In, I)),

depth

(
R[y1, . . . , yn]/

((n−1⋂

r=0

(Ir , yr+1, . . . , yn, I)

)
+ (In, I)

))
+ 1

}

= min{depth(R[y1, . . . , yn]/(I1y1, . . . , In−1yn−1, yn, I),

depth(R[y1, . . . , yn]/(In, I)), depth(R[y1, . . . , yn]/(In, yn, I)) + 1}

= min{depth(R[y1, . . . , yn−1]/(I1y1, . . . , In−1yn−1, I ∩K[y1, . . . , yn−1])),

depth(R/In) + depth(K[y1, . . . , yn]/I),

depth(R/In) + depth(K[y1, . . . , yn−1]/(I ∩K[y1, . . . , yn−1])) + 1}.

The results follow by the induction hypothesis. �

The following proposition reduces the general case to the case above.
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Proposition 2.7. Let K be a field, R = K[x1, . . . , xm] and I1 ⊇ . . . ⊇ Is ⊆

Is+1 ⊆ . . . ⊆ In be ideals of R. Then for any monomial ideal I of K[y1, . . . , yn],

depth(R[y1, . . . , yn]/(I1y1, . . . , Inyn, I))

> min
16r6s−1

{depth(R[ys, . . . , yn]/(Isys, . . . , Inyn, I ∩K[ys, . . . , yn])),

depth(R[yr, . . . , yn]/((Ir + Ir)yr, . . . , (Ir + In)yn, I ∩K[yr, . . . , yn])),

depth(R[yr+1, . . . , yn]

/((Ir + Ir+1)yr+1, . . . , (Ir + In)yn, I ∩K[yr+1, . . . , yn])) + 1}.

P r o o f. It is enough to show that

depth(R[y1, . . . , yn]/(I1y1, . . . , Inyn, I))

> min{depth(R[y2, . . . , yn]/(I2y2, . . . , Inyn, I ∩K[y2, . . . , yn])),

depth(R[y1, . . . , yn]/((I1 + I1)y1, . . . , (I1 + In)yn, I)),

depth(R[y2, . . . , yn]/((I1 + I2)y2, . . . , (I1 + In)yn, I ∩K[y2, . . . , yn])) + 1}.

Set

J1 = (y1, . . . , yn)
⋂( s⋂

r=2

n⋂

t=s

(Ir + It, y1, . . . , yr−1, yt+1, . . . , yn, I)

)
,

J2 = (y1, . . . , yn)
⋂( n⋂

t=s

(I1 + It, yt+1, . . . , yn, I)

)
.

Then by Lemma 2.4, (I1y1, . . . , Inyn, I) = J1 ∩ J2. We see that

J1 = (y1, I2y2, . . . , Inyn, I)

by putting I1 = R in Lemma 2.4. Considering the sequence I1+I1 ⊆ . . . ⊆ I1+In and

applying Lemma 2.4 again, we get that J2 = ((I1 + I1)y1, . . . , (I1 + In)yn, I). Then

depth(R[y1, . . . , yn]/(I1y1, . . . , Inyn, I))

> min{depth(R[y1, . . . , yn]/J1), depth(R[y1, . . . , yn]/J2),

depth(R[y1, . . . , yn]/(J1 + J2)) + 1}

= min{depth(R[y1, . . . , yn]/(y1, I2y2, . . . , Inyn, I)),

depth(R[y1, . . . , yn]/((I1 + I1)y1, . . . , (I1 + In)yn, I)),

depth(R[y1, . . . , yn]/(y1, (I1 + I2)y2, . . . , (I1 + In)yn, I)) + 1}

= min{depth(R[y2, . . . , yn]/(I2y2, . . . , Inyn, I ∩K[y2, . . . , yn])),

depth(R[y1, . . . , yn]/((I1 + I1)y1, . . . , (I1 + In)yn, I)),

depth(R[y2, . . . , yn]/((I1 + I2)y2, . . . , (I1 + In)yn, I ∩K[y2, . . . , yn])) + 1},

as required. �
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Suppose that I is strongly stable. Let us simplify the formulas in Proposition 2.5

and Lemma 2.6.

By Lemma 2.2, we have

dim(K[yr, . . . , yt]/(I ∩K[yr, . . . , yt])) = t− r + 1− (M(I ∩K[yr, . . . , yt])− r + 1)

= t−M(I ∩K[yr, . . . , yt]),

and

depth(K[yr, . . . , yt]/(I ∩K[yr, . . . , yt])) = t− r + 1− (m(I ∩K[yr, . . . , yt])− r + 1)

= t−m(I ∩K[yr, . . . , yt]).

Corollary 2.8. Let K be a field, R = K[x1, . . . , xm] and I1 ⊇ . . . ⊇ Is ⊆

Is+1 ⊆ . . . ⊆ In be ideals of R. Then for any strongly stable monomial ideal I

of K[y1, . . . , yn],

dim(R[y1, . . . , yn]/(I1y1, . . . , Inyn, I))

= max
s6t6n

{dim(R), dim(R/It) + t−M(I ∩K[ys, . . . , yt])}.

P r o o f. For a fixed t with s 6 t 6 n, as Ir + It ⊇ Is + It = It and

M(I ∩K[yr, . . . , yt]) > M(I ∩K[ys, . . . , yt]) for all 1 6 r 6 s, one has that

dim(R/(Ir + It)) 6 dim(R/It),

and

dim(K[yr, . . . , yt]/(I ∩K[yr, . . . , yt])) = t−M(I ∩K[yr, . . . , yt])

6 t−M(I ∩K[ys, . . . , yt])

= dim(K[ys, . . . , yt]/(I ∩K[ys, . . . , yt])).

Then for all 1 6 r 6 s,

dim(R/(Ir + It)) + dim(K[yr, . . . , yt]/(I ∩K[yr, . . . , yt]))

6 dim(R/It) + dim(K[ys, . . . , yt]/(I ∩K[ys, . . . , yt]))

= dim(R/It) + t−M(I ∩K[ys, . . . , yt]).

Hence, the result follows from Proposition 2.5. �
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Corollary 2.9. Let K be a field, R = K[x1, . . . , xm] and I1 ⊆ . . . ⊆ In be ideals

of R. Then for any strongly stable monomial ideal I of K[y1, . . . , yn],

depth(R[y1, . . . , yn]/(I1y1, . . . , Inyn, I))

> min
06r6n

{depth(R/Ir) + depth(K[y1, . . . , yr]/(I ∩K[y1, . . . , yr]))}.

P r o o f. By Lemma 2.6, it is enough to show that

depth(K[y1, . . . , yr]/I ∩K[y1, . . . , yr])

6 depth(K[y1, . . . , yr−1]/(I ∩K[y1, . . . , yr−1])) + 1.

It is true because

depth(K[y1, . . . , yr]/I ∩K[y1, . . . , yr]) = r −m(I ∩K[y1, . . . , yr]),

depth(K[y1, . . . , yr−1]/I ∩K[y1, . . . , yr−1]) = r − 1−m(I ∩K[y1, . . . , yr−1]),

and

m(I ∩K[y1, . . . , yr]) > m(I ∩K[y1, . . . , yr−1]).

�

3. Gröbner Basis

Let K be a field, S = K[x1, . . . , xn] be a polynomial ring and M = (x1, . . . , xn)

be the graded maximal ideal of S. Let

Sm → Sn → M → 0

be a presentation of M as an S-module and e1, . . . , en be the canonical basis of S
n.

Then Syz1(M) is generated by the
(
n
2

)
syzygies {xiej − xjei : 1 6 i < j 6 n}. Now,

consider the presentation of Syz1(M)

Sa → S(
n

2) → Syz1(M) → 0.

Let σij 7→ xiej − xjei, 1 6 i < j 6 n, be the canonical basis of S(
n

2). It is known

(cf. [1]) that Syz2(M) is generated by the set of cyclic syzygies:

{xiσjk − xjσik + xkσij : 1 6 i < j < k 6 n}

and they are
(
n
3

)
. The symmetric algebra of Syz1(M) has the presentation:

SymS(Syz1(M)) = S[yij : 1 6 i < j 6 n]/T,
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where yij 7→ σij and T is the relation ideal generated by the set

{xiyjk − xjyik + xkyij : 1 6 i < j < k 6 n}.

Proposition 3.1. One Gröbner basis of T with respect to a term order < on

S[yij : 1 6 i < j 6 n] induced by xn > xn−1 > . . . > x1 > y1n > y1,n−1 > . . . >

y12 > y2n > . . . > yn−1,n is the following:

{xiyjk − xjyik + xkyij : 1 6 i < j < k 6 n}

∪{xr(yijykl − yikyjl + yilyjk) : 1 6 i < j < k < l 6 n, 1 6 r 6 n}.

P r o o f. See the proof of Lemma 3.1 of [6]. �

Now assume that R = S/I, where I ⊆ M
2 is a monomial ideal of S with G(I) =

{u1, . . . , ut}, i.e., R is a standard K-algebra with monomial relations. Set mi =

max(ui) and u′
i = ui/xmi

, i = 1, . . . , t. Let m be the graded maximal ideal of R.

Notice that for any R-module N ,

SymR(N) = R⊗S SymS(N) = SymS(N)/ISymS(N).

Lemma 3.2. Suppose that I is strongly stable. Then

SymR(Syz1(m)) ∼= S[yij : 1 6 i < j 6 n]/J,

where

J = (u1, . . . , ut;xiyjk − xjyik + xkyij , i < j < k;u′
iyj,mi

, j < mi, 1 6 i 6 t).

P r o o f. Set I⊕n = ⊕n
i=1I. From

0 0 0

↓ ↓ ↓

0 → Syz1(M) ∩ I⊕n → I⊕n → I

↓ ↓ ↓

0 → Syz1(M) → Sn → M → 0

↓ ↓ ↓

0 → Syz1(m) → Rn → m → 0

↓ ↓ ↓

0 0 0

we have an exact sequence

0 → Syz1(M) ∩ I⊕n → Syz1(M) → Syz1(m) → 0.
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Then SymS(Syz1(m)) ∼= SymS(Syz1(M))/( Â�Syz1(M) ∩ I⊕n) . Hence,

SymR(Syz1(m)) = R⊗S SymS(Syz1(m)) = SymS(Syz1(m))/ISymS(Syz1(m))

∼= SymS(Syz1(M))/(I, Â�Syz1(M) ∩ I⊕n)

= S[yij : 1 6 i < j 6 n]

/(u1, . . . , ut;xiyjk − xjyik + xkyij , i < j < k; Â�Syz1(M) ∩ I⊕n).

Note that

Syz1(M) = (xiej − xjei : 1 6 i < j 6 n)

and

a(xiej − xjei) ∈ I⊕n ⇔ a ∈ I : (xi, xj).

It follows that ( Â�Syz1(M) ∩ I⊕n)) = (((u1, . . . , ut) : (xi, xj))yij : i < j). Then u′
iyj,mi

belongs to this set for any j < mi and 1 6 i 6 t. Set

J = (u1, . . . , ut;xiyjk − xjyik + xkyij , i < j < k;u′
iyj,mi

, j < mi, 1 6 i 6 t).

Let us show that ( Â�Syz1(M) ∩ I⊕n)) ⊆ J . Then the lemma follows.

It is clear that

(u1, . . . , ut) : xi =
( u1

[u1, xi]
, . . . ,

ut

[ut, xi]

)

and

(u1, . . . , ut) : (xi, xj) =
( usuk

[us[uk, xj ], uk[us, xi]]
: s, k = 1, . . . , t; 1 6 i < j 6 n

)
.

Then it is enough to show that (usuk/[us[uk, xj ], uk[us, xi]])yij ∈ J . Notice that if

xi ∤ us or xj ∤ uk, then usuk/[us[uk, xj ], uk[us, xi]] is divided by us or uk, which

implies that (usuk/[us[uk, xj ], uk[us, xi]])yij ∈ (u1, . . . , ut). Hence, we may assume

that xi | us and xj | uk.

Since (usuk/[usxj , ukxi])yij is divided by (uk/xj)yij , it is enough to show that

(uk/xj)yij ∈ J for any i < j. If j = mk, the result is clear. Now assume that

j < mk. Then one has

uk

xj

yij =
uk

xmk
xj

(xmk
yij − xjyi,mk

+ xiyj,mk
) +

uk

xmk

yi,mk
−

ukxi

xjxmk

yj,mk
.

By the strong stability of I, we have that ukxi/xj ∈ I. But max(ukxi/xj) = mk,

which implies that (ukxi/xjxmk
)yj,mk

∈ J . The result follows. �
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Remark 3.3. Notice that from the above proof, (u/xj)yij ∈ J for any u ∈ G(I)

with xj | u. Furthermore, if xj0 | u and i < j 6 j0, then (u/xj0)yij ∈ J also holds

because
u

xj0

yij =
uxj/xj0

xj

yij

with uxj/xj0 ∈ I.

From now on, we will fix a term order < on S[yij : 1 6 i < j 6 n] induced by

xn > xn−1 > . . . > x1 > y1n > y1,n−1 > . . . > y12 > y2n > . . . > yn−1,n.

The main result of this section is the following theorem.

Theorem 3.4. Suppose that I is strongly stable. Then

{
G(I);

u

xi

yjk, u ∈ G(I), xi | u, j < k 6 i;xiyjk − xjyik + xkyij , i < j < k;

xs(yijykl − yikyjl + yilyjk), i < j < k < l, 1 6 s 6 n
}

is a Gröbner basis of J with respect to the above term order.

P r o o f. Firstly, notice that to show that one set is a Gröbner basis, it is sufficient

to prove that for any two elements α and β of this set, the S-pair

S(α, β) :=
in(α)

[in(α), in(β)]
β −

in(β)

[in(α), in(β)]
α

has a standard expression with zero remainder with respect to the above term order.

We may assume that [in(α), in(β)] 6= 1. We will use the following property: If u, v ∈ S

are monomials and f, g ∈ K[yij : 1 6 i < j 6 n], then S(uf, vg) = (uv/[u, v])S(f, g).

Denote the above four groups in the set of the theorem by (I)–(IV), respectively.

Since (I) and (II) are monomials and (III)∪(IV) is a Gröbner basis by Proposi-

tion 3.1, it is enough to consider the following cases:

(a) α ∈ (I) and β ∈ (III). Let u ∈ G(I) with xk | u. Then (u/xk)xi, (u/xk)xj ∈ I

for i < j < k by the strong stability of I. Hence,

S(u, xiyjk − xjyik + xkyij) =
u

xk

xiyjk −
u

xk

xjyik ∈ (G(I)).

(b) α ∈ (I) and β ∈ (IV). Let u ∈ G(I) with xs | u. Then

S(u, xs(yijykl − yikyjl + yilyjk)) = u(yijykl − yikyjl) ∈ (G(I)).
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(c) α ∈ (II) and β ∈ (III). For the S-pair S((u∗/xi′)yj′k′ , xiyjk − xjyik + xkyij),

where j′ < k′ 6 i′ and i < j < k, there are three possibilities:

(c1) (j
′, k′) 6= (i, j) and xk | u∗/xi′ ;

(c2) (j
′, k′) = (i, j) and xk | u∗/xi′ ;

(c3) (j
′, k′) = (i, j) and xk ∤ u∗/xi′ .

In (c1), the S-pair is (u
∗
1/xi′)yj′k′yjk − (u∗

2/xi′)yj′k′yik, where u
∗
1 = (u∗/xk)xi and

u∗
2 = (u∗/xk)xj are all in I, hence, (u∗

1/xi′)yj′k′ and (u∗
2/xi′)yj′k′ belong to (II).

Similarly in (c2), the S-pair is (u
∗
1/xk)yjk − (u∗

2/xk)yik, where u
∗
1 = (u∗/xi′)xj′ and

u∗
2 = (u∗/xi′)xk′ are all in I. In (c3), the S-pair becomes u

∗
1yjk − u∗

2yik, where u
∗
1

and u∗
2 are as in (c2). Then the S-pair belongs to (G(I)). Therefore, the S-pair has

a standard expression with zero remainder in any possibilities.

(d) α ∈ (II) and β ∈ (IV). We note that

S
( u

xi′
yj′k′ , xs(yijykl−yikyjl+yilyjk)

)
=

xs

[u/xi′ , xs]

u

xi′
S(yj′k′ , yijykl−yikyjl+yilyjk),

which is divided by (u/xi′)yj′k′ if yj′k′ is coprime with yilyjk, and divided by

(u/xi′)ykk′yj′j − (u/xi′)yjk′yj′k or (u/xi′)yij′yk′l − (u/xi′)yik′yj′l if (j
′, k′) = (i, l)

or (j, k). Since (u/xi′)ykk′ , (u/xi′)yjk′ , (u/xi′)yij′ and (u/xi′)yik′ are all in (II), the

S-pair has a standard expression with zero remainder in any cases.

Then the result follows. �

Using this Gröbner basis, we get immediately the following corollary.

Corollary 3.5. Suppose that I is strongly stable. Then

in(J) =
(
G(I),

{ u

xi

yjk : u ∈ G(I), xi | u, j < k 6 i
}
,

{xkyij : i < j < k}, {xsyilyjk : i < j < k < l, 1 6 s 6 n}
)
.

4. Dimension and depth

Suppose that I is strongly stable and its minimal generators u1, . . . , ut are all of

degree 2. Then by Corollary 3.5, we have

in(J) = (u1, . . . , ut, I1x1, . . . , Inxn),

where Ir, r = 1, . . . , n, are ideals of Q := K[yij : 1 6 i < j 6 n]. Let us identify

these ideals Ir and then calculate the dimension and depth of the symmetric algebra

SymR(Syz1(m)).
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Set I>r = I ∩K[xr, . . . , xn]. Put m(0) = M(0) = 0. From Corollary 3.5, we see

that the generating set of Ir consists of three parts A, B and C given by

Axr = Qxr ∩ {xkyij : i < j < k},

Bxr = Qxr ∩ {xsyilyjk : i < j < k < l, 1 6 s 6 n},

Cxr = Qxr ∩
{ u

xi

yjk : u ∈ G(I), xi | u, j < k 6 i
}
.

It is clear that
A = {yij : i < j < r},

B = {yilyjk : i < j < k < l},

C = {yjk : xixr ∈ G(I), j < k 6 i}.

Since yij ∈ A for i < j < r, we may assume that i > r in C. Furthermore, notice

that by the strong stability of I, if xixl ∈ I with l > r, then xixr, xrxl ∈ I. It follows

that the maximal i in C is just M(I>r). Hence, C = {yij : i < j 6 M(I>r)}. Then

Ir = (yij : i < j < max{r,M(I>r) + 1}; yilyjk : i < j < k < l).

Notice that I = I>1 ⊇ I>2 ⊇ . . . ⊇ I>n, which implies that M(I) = M(I>1) >

M(I>2) > . . . > M(I>n) and if I>r 6= 0, then M(I>r) > r, so max{r,M(I>r)+1} =

M(I>r) + 1. On the other hand, it is easy to see that max{r : I>r 6= 0} = m(I).

Then we have the following conclusions:

I1 ⊇ I2 ⊇ . . . ⊇ Im(I) ⊆ Im(I)+1 ⊆ . . . ⊆ In.

Lemma 4.1. Q/Ir is Cohen-Macaulay with

dim(Q/Ir) =

{
2n− 2−M(I>r), r = 1, . . . ,m(I),

2n− 1− r, r = m(I) + 1, . . . , n.

P r o o f. Set r∗ = max{r,M(I>r) + 1} and Qr = K[yij : 1 6 i < j 6 n, j > r∗].

Then Q/Ir = Qr/I
′
r, where I

′
r = (yilyjk : i < j < k < l, j > r∗). Denote

Yr∗ =




y1r∗ y1,r∗+1 . . . y1n

. . . . . .

yr∗−1,r∗ yr∗−1,r∗+1 . . . yr∗−1,n

yr∗,r∗+1 . . . yr∗,n
. . .

yn−1,n




.

Then I ′r = (in(m) : m is a 2-minor of Yr∗).

As shown in the proof of Proposition 3.4 of [7], Qr/I
′
r is Cohen-Macaulay of

dimension 2n − 1 − r∗. Furthermore, if I>r 6= 0, then r∗ = M(I>r) + 1 and if

I>r = 0, then r∗ = r. Then the lemma follows. �
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Now we can prove the main theorem.

Theorem 4.2. Let R = K[x1, . . . , xn]/I, n > 3, be a standard K-algebra with

a strongly stable monomial relation ideal I ⊆ (x1, . . . , xn)
2 whose generators are all

of degree two, and m be the graded maximal ideal of R. Then

dim(SymR(Syz1(m))) = max
{
1
2n(n− 1), 2n− 1−M(I ∩K[xm(I), xm(I)+1])

}

and

depth(SymR(Syz1(m))) > 2n− 1−M(I)−m(I).

P r o o f. We keep the notations as before. Then

dim(SymR(Syz1(m))) = dim(S[yij : 1 6 i < j 6 n]/J)

= dim(S[yij : 1 6 i < j 6 n]/in(J))

= dim(Q[x1, . . . , xn]/(I1x1. . . . , Inxn, I)).

It follows from Corollary 2.8 that

dim(SymR(Syz1(m)))

= max
m(I)6t6n

{dim(Q), dim(Q/It) + t−M(I ∩K[xm(I), . . . , xt])}

= max
m(I)6t6n

{
1
2n(n− 1) dim(Q/It) + t−M(I ∩K[xm(I), . . . , xt])

}
.

By Lemma 4.1, dim(Q/Im(I)) = 2n − 2 − M(I>m(I)) and dim(Q/It) = 2n − 1 − t

for t > m(I). Notice that M(I ∩K[xm(I)]) = m(I) and M(I ∩K[xm(I), . . . , xt]) >

M(I ∩K[xm(I), xm(I)+1]) for all m(I) < t 6 n. Then

dim(SymR(Syz1(m))) = max
{

1
2n(n− 1), 2n− 2−M(I>m(I)),

2n− 1−M(I ∩K[xm(I), xm(I)+1])
}
.

It is easy to see that if M(I>m(I)) = m(I), then M(I ∩K[xm(I), xm(I)+1]) = m(I),

and if M(I>m(I)) > m(I), then M(I ∩K[xm(I), xm(I)+1]) = m(I) + 1. Thus, in any

case,

max{2n− 2−M(I>m(I)), 2n− 1−M(I ∩K[xm(I), xm(I)+1])}

= 2n− 1−M(I ∩K[xm(I), xm(I)+1]).

Then the equality for the dimension follows.
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For the depth, by Proposition 2.7, we have

depth(SymR(Syz1(m)))

= depth(S[yij : 1 6 i < j 6 n]/J) > depth(S[yij : 1 6 i < j 6 n]/in(J))

= depth(Q[x1, . . . , xn]/(I1x1, . . . , Inxn, I))

> min
16r6m(I)−1

{depth(Q[xm(I), . . . , xn]

/(Im(I)xm(I), . . . , Inxn, I ∩K[xm(I), . . . , xn])),

depth(Q[xr, . . . , xn]/((Ir + Ir)xr , . . . , (Ir + In)xn, I ∩K[xr, . . . , xn])),

depth(Q[xr+1, . . . , xn]

/((Ir + Ir+1)xr+1, . . . , (Ir + In)xn, I ∩K[xr+1, . . . , xn])) + 1}.

By Corollary 2.9 and Lemma 4.1, one has

depth(Q[xm(I), . . . , xn]/(Im(I)xm(I), . . . , Inxn, I ∩K[xm(I), . . . , xn]))

> min
m(I)6t6n

{depth(Q),

depth(Q/It) + depth(K[xm(I), . . . , xt]/(I ∩K[xm(I), . . . , xt]))}

= min
m(I)6t6n

{depth(Q), depth(Q/It) + t−m(I ∩K[xm(I), . . . , xt])}

= min
m(I)+16t6n

{
1
2n(n− 1), 2n− 2−M(I>m(I)), 2n− 1−m(I ∩K[xm(I), . . . , xt])

}

= min
{
1
2n(n− 1), 2n− 2−M(I>m(I)), 2n− 1−m(I ∩K[xm(I), . . . , xn])

}

= min
{
1
2n(n− 1), 2n− 2−M(I>m(I)), 2n− 1−m(I>m(I))

}

= min
{
1
2n(n− 1), 2n− 2−M(I>m(I))

}

> min
{
1
2n(n− 1), 2n− 2−M(I)

}
,

depth(Q[xr, . . . , xn]/((Ir + Ir)xr, . . . , (Ir + In)xn, I ∩K[xr, . . . , xn]))

> min
r6t6n

{depth(Q),

depth(Q/(Ir + It)) + depth(K[xr, . . . , xt]/(I ∩K[xr, . . . , xt]))}

= min
r6t6n

{depth(Q), depth(Q/(Ir + It)) + t−m(I ∩K[xr, . . . , xt])}

= min
{
depth(Q), min

r6t6m(I)
{depth(Q/Ir) + t−m(I ∩K[xr, . . . , xt])},

min
m(I)+16t6n

{depth(Q/Imax{M(I>r)+1,t}) + t−m(I ∩K[xr, . . . , xt])}
}

= min
{
depth(Q), min

r6t6m(I)
{2n− 2−M(I>r) + t−m(I ∩K[xr, . . . , xt])},

min
m(I)+16t6n

{2n− 1−max{M(I>r) + 1, t}+ t−m(I ∩K[xr, . . . , xt])}
}

> min
{
1
2n(n− 1), 2n− 2−M(I>r) + r −m(I>r), 2n− 1−M(I>r)

}
,
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where t−max{M(I>r) + 1, t} > m(I) + 1− (M(I>r) + 1) for t = m(I) + 1, . . . , n, is

used, and similarly,

depth(Q[xr+1, . . . , xn]/((Ir + Ir+1)xr+1, . . . , (Ir + In)xn, I ∩K[xr+1, . . . , xn]))

> min
r+16t6n

{depth(Q), depth(Q/(Ir + It)) + t−m(I ∩K[xr+1, . . . , xt]))}

= min
{
depth(Q), min

r+16t6m(I)
{2n− 2−M(I>r) + t−m(I ∩K[xr+1, . . . , xt])},

min
m(I)+16t6n

{2n− 1−max{M(I>r) + 1, t}+ t−m(I ∩K[xr+1, . . . , xt])}
}

> min
{
1
2n(n− 1), 2n− 2−M(I>r) + r + 1−m(I>r+1), 2n− 1−M(I>r)

}
.

It follows that

depth(SymR(Syz1(m)))

> min
16r6m(I)−1

{
1
2n(n− 1), 2n− 2−M(I), 2n− 2−M(I>r) + r −m(I>r),

2n− 1−M(I>r), 2n−M(I>r) + r −m(I>r+1), 2n−M(I>r)
}

= min
{

1
2n(n− 1), 2n− 1−M(I)−m(I), 2n− 2−M(I)

}

= 2n− 1−M(I)−m(I).

�

Remark 4.3. As 1
2n(n− 1) > 2n− 2 for n > 4, it follows that

dim(SymR(Syz1(m))) = 1
2n(n− 1)

for n > 4. Suppose that M(I) = 1, i.e. I = (x2
1). Then

depth(SymR(Syz1(m))) > 2n− 3.

When n = 3, by Lemma 3.2,

SymR(Syz1(m)) = K[x1, x2, x3, y12, y13, y23]/(x
2
1, x1y23 − x2y13 + x3y12).

It is easy to see that x2
1, x1y23 − x2y13 + x3y12 is a regular sequence. Then

SymR(Syz1(m)) is Cohen-Macaulay of dimension 4.

Assume that n > 4. Since SymR(Syz1(m)) = SymS(Syz1(M))/(x2
1), x

2
1 is a regu-

lar element in SymS(Syz1(M)), and SymS(Syz1(M)) has depth 2n− 2 by [7], Theo-

rem 4.1, it follows that depth(SymR(Syz1(m))) = 2n−3. Hence, the lower bound for

depth in Theorem 4.2 is reached. Notice that the dimension and depth are different

in this case, hence, SymR(Syz1(m)) is not Cohen-Macaulay.
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