
Zpravodaj Československého sdružení uživatelů TeXu

Petr Sojka; Ondřej Sojka
The Unreasonable Effectiveness of Pattern Generation

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 29 (2019), No. 1-4, 73–86

Persistent URL: http://dml.cz/dmlcz/150175

Terms of use:
© Československé sdružení uživatelů TeXu, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150175
http://dml.cz


The Unreasonable Effectiveness of Pattern
Generation

Petr Sojka, Ondřej Sojka

Languages are constantly evolving, and so are their hyphenation rules and needs.
The effectiveness and utility of TEX’s hyphenation have been proven by its usage
in almost all typesetting systems in use today. The current Czech hyphenation
patterns were generated in 1995, and no hyphenated word database was freely
available.

We have developed a new Czech word database and have used the patgen
program to generate new effective Czech hyphenation patterns efficiently and
evaluated their generalization qualities. We have achieved full coverage on the
training dataset of 3,000,000 words, and developed a validation procedure of
new patterns for Czech based on the testing database of 105,000 words approved
by the Czech Academy of Science linguists.

Our pattern generation case study exemplifies a practical solution to the
widespread dictionary problem. The study has proven the versatility, effective-
ness, and extensibility of Liang’s approach to hyphenation developed for TEX.
The unreasonable effectiveness of the pattern technology has led to applications
that are and will be used, even more widely now, nearly 40 years after its
inception.

Keywords: patgen, hyphenation patterns, unreasonable effectiveness, Czech

. . . the best approach appears to be to embrace the complexity of the domain and
address it by harnessing the power of data: if other humans engage in the tasks and

generate large amounts of unlabeled, noisy data, new algorithms can be used to build
high-quality models from the data. (Peter Norwig, [1])

Introduction

In their famous essays, Wigner [2], Hamming [3] and Norwig [1] consider mathe-
matical and data-driven approaches to be miraculously, unreasonably effective.
One of the very first mathematically founded approaches that harnessed the
power of data was Franklin Liang’s language-independent solution for TEX’s hy-
phenation algorithm [4], and his program patgen for a generation of hyphenation
patterns from a word list.

Dictionary problem The task at hand was a dictionary problem. A dictionary
is a database of records; in each record, we distinguish the key part (the word) and

doi: 10.5300/2019-1-4/73 73



the data part (its division). Given an already hyphenated word list of a language,
a set of patterns is magically generated. Hyphenation patterns are much smaller
than the original word list and typically encode almost all hyphenation points in
the input list without mistakes. Liang’s pattern approach thus could be viewed
as an efficient lossy, ideally lossless, compression of the hyphenated dictionary
with a compression ratio of several orders of magnitude.

It has been proven [5, chapter 2] that the optimization problem of exact
lossless pattern minimization is non-polynomial by reduction to the minimum set
cover problem.

Generated patterns have minimal length, e.g., shortest context possible, which
results in their generalization properties. Patterns could hyphenate words not
seen during learning: yet another miracle of the generated patterns.

Pattern preparation In the 36 years of patgen use, there have been hundreds
of hyphenation patterns created, either by hand or generated by the program
patgen, or by the combination of both methods [6]. The advantage of pattern
generation is that one can fine-tune pattern qualities for specific usage. Having
an open-source and maintained word list adds another layer of flexibility and
usability to the deployment of patterns. This approach is already set up for
German variants and spellings [7] and was an inspiration for doing the same for
the Czech language.

In this paper, we report on the development of the new Czech word list with
a free license and complementary sets of hyphenation patterns. We describe the
iterative process of initial word list preparation, word form collection, estimation
of pattern generation parameters, and novel applications of the technology.

Hyphenation is neither anarchy nor the sole province of pedants and pedagogues. Used
in moderation, it can make a printed page more visually pleasing. If used

indiscriminately, it can have the opposite effect, either putting the reader off or causing
unnecessary distraction. (Major Keary)

Initial word list preparation

As a rule of thumb, the development of a large new hyphenated word list starts
with a small dataset. The experience and outputs from this initial phase, e.g.,
hyphenation patterns, are then applied to the larger and larger lists.

Bootstrapping idea As word lists of a well-established language are sizeable
and manual creation of a huge hyphenated word list is tedious work, we used the
bootstrapping technique. We illustrate the process of initial word list preparation
in the diagram in Figure 1 on the facing page. We have obtained a hyphenated

74



cs
-le

m
m

a-u
jc-

or
ig.

wl
 (1

05
 k 

hy
ph

en
ate

d 
wo

rd
s)

pa
tg

en
 (a

s h
yp

he
na

to
r)

cs
-le

m
m

a-u
jc-

[1
-4]

.w
lh

pa
tg

en
 (a

s h
yp

he
na

to
r)

cz
hy

ph
en

.p
at

 (l
ev

els
 1-

4)
cs

-so
jka

-co
rre

cto
pt

im
ize

d.
pa

r
 (l

ev
els

 1-
4)

pa
ttm

p.
8

 (c
re

ate
d 

by
 p

att
er

ns
 fr

om
 8 

lev
els

)

cs
-in

it-
[1

-3]
.p

ar
 (l

ev
els

 5-
8)

hu
m

an
 +

 v
im

(fi
xe

s b
ad

 hy
ph

en
s)

Fi
gu

re
1:

Li
fe

cy
cl
e
of

in
iti
al

wo
rd

lis
t
pr
ep

ar
at
io
n,

ill
us
tr
at
ed

w
ith

th
e
de

ve
lo
pm

en
t
of

10
5k

C
ze
ch

co
n-

sis
te
nt
ly

hy
ph

en
at
ed

wo
rd
s.

cz
hy

ph
en

.p
at

re
pr
es
en
ts

th
e

or
ig
in
al

C
ze
ch

hy
ph

en
at
io
n

pa
tt
er
ns

fro
m

[8
]

an
d

cs
-s

oj
ka

-c
or

re
ct

op
ti

mi
ze

d.
pa

r
ar
e

co
rr
ec
t

op
tim

iz
ed

pa
tg

en
pa

ra
m
et
er
s

fro
m

th
e

sa
m
e

pa
pe

r.
cs

-i
ni

t-
[1

-3
].

pa
r
ar
e
cu

st
om

pa
ra
m
et
er
s
th
at

tr
ad

e
off

ba
d
hy

ph
en

s
(w

hi
ch

ha
ve

to
be

m
an

ua
lly

ch
ec
ke
d)

fo
r
m
iss

ed
hy

ph
en

s.
In
fo
rm

at
io
n
on

wh
ich

hy
ph

en
at
io
ns

pa
tg

en
m
iss

ed
,a

nd
wh

er
e
it

wr
on

gl
y
in
se
rt
ed

a
hy

ph
en

is
so
ur
ce
d
fro

m
pa

tt
mp

.

75



word list with 105,244 words from the Czech Academy of Sciences, Institute of the
Czech Language (ÚJČ). Upon closer inspection, we discovered many problems
with the data, probably stemming from the fact that it has been crafted by
multiple linguists over many years. The few hyphenation rules [9] that are in the
Czech language are not applied consistently. The borderline cases were typically
between syllabic (ro-zum) and etymological variants (roz-um) of hyphenation,
or the way of handling words borrowed from German or English into Czech.
There are sporadic examples of words, where correct syllabification depends on
the semantics of the word: narval and oblít are two examples of them in Czech.
These are preferably not to be hyphenated, to stay on the safe side.

It is impractical to try to manually find inconsistencies and systemic errors,
even in a relatively short word list like this. We slightly modified and extended
the process suggested in [10, page 242]: We used patgen and the current Czech
patterns to hyphenate the word list and manually checked only the 25,813 words,
where the proposed hyphenation points differed from the official (were bad or
missed), creating a new word list cs-lemma-ujc-1.wlh [11] in the process.

However, we are erroneous humans making mistakes. To find these mistakes,
we have used patgen to generate the four additional levels of hyphenation patterns
on top of the current patterns from the checked word list. We have also adjusted
the parameters (see cs-init-[1-3].par [11]) used for generation of the four
additional levels to trade off bad hyphens (which have to be manually checked)
for missed ones. We have then used these patterns, with eight levels in total, to
hyphenate the checked word list and manually rechecked the wrongly hyphenated
points (dots in patgen output), with missed hyphenation points (implicitly
marked as the hyphen sign in hyphenated word list). We have repeated this process
three times, iterating on cs-lemma-ujc-[2-4].wlh. Word list number four is
used for the generation of bootstrapping patterns and final pattern validation.

Word list preparation and design

Any live language continually changes, and Czech is no exception. Many new
Czech words now come from other languages, mostly from English. It presents a
challenge for the patterns; they must not only correctly hyphenate Czech words
according to Czech syllabic boundaries, but foreign words must be hyphenated
correctly too, according to their new Czech syllabic pronunciation [12]. To have
the patterns keep up with language evolution, we must maintain not only the
patterns but also a hyphenation word list. In this section, we detail how we have
built such a word list.

csTenTen corpus We have first obtained a word list with frequencies, gener-
ated from the Czech Web Corpus of TenTen family (csTenTen) [13]. We then

76



filtered this word list to include only words that appear more than ten times
in two crawls [14] made in years 2012 and 2017. We ended up with a word list
containing 922,216 words, a non-negligible fraction of which are misspellings and
jargon.

Word list cleanup We have then cleaned this word list by using the Czech
morphological analyzer majka [15] to remove all words not known to it. We
removed 370,291 typos, misspellings, and similar atypical lexemes, and we kept
only 551,925 frequently occurring valid words in the dataset.

Word list expansion The morphological analyzer majka [15] also allows us
to expand words into all their inflected forms. We chose not to use the expansion
feature of majka, because the word list would grow to 3,779,379 (almost a fourfold
increase) and csTenTen already contains most of the commonly used types of
inflections. It would also distort which hyphenation patgen gives the most weight
to. We tried supplying logarithms of word frequencies from csTenTen to the word
list, so more weight could be given to patterns that cover the most common words.
It did not significantly improve validation scores in our case, as one can see in
Table 3 on page 81. We think that this is partly because patgen is limited to one
digit of frequency per word and partly because the validation score (computed
from error rate on ujc word list) does not capture real-world usage.

We expanded the word list with majka by adding 54,569 lemmas (base forms)
that were present in the word list, but not in their base form. It increased the
word list size to 606,494 words.

We list the statistics of word lists used in pattern generation in Table 1.

Table 1: Czech word list shortcut names and statistics

shortcut word list description count

ujc checked word list for validation 105,244
all all frequent word forms from web known to majka plus

all lemmas known to majka
606,494

allflex previous plus all word forms generated by majka 2,100,581
allflexjargon previous plus all non-standard and jargon word forms 3,779,379
biggest tokens that are present in the csTenTen more than 10

times
3,918,054

Maintenance The German wortliste [7] project served as inspiration for our
open word list format, detailed in the README.md [11].

77



cs-lemma-ujc-4.wlh
(105 k correctly hyphenated word lemmata)

patgen
 (as pattern generator)

cs-sojka-boot.pat

patgen
 (as hyphenator)

cs-all-cstenten-[1-n].wlh

patgen
 (as hyphenator)

pattmp.4

 human + vim + regex
(fixes inflections)

cs-sojka-boot.par

cs-all-cstenten.wls
(606 k words with common inflections)

Figure 2: How we bootstrapped hyphenation of the big word list by training
patterns (cs-sojka-boot.pat) on the small word list and applying them to
the big one. cs-sojka-boot.par are patgen parameters that are designed to
generate many patterns but still retain their generalization properties. pattmp
highlights which hyphenation points in the source file the new pattern level
missed, which were correctly covered and where they wrongly put a hyphen.

78



One must regard the hyphen as a blemish to be
avoided wherever possible. (Winston Churchill)

Bootstrapping — iterative development of hyphens in the
big word list

It would be tedious to hyphenate such a big word list by hand manually, so we
train patterns on a small list and apply them to the big word list, as illustrated in
Figure 2 on the preceding page. Then, we train patterns on the (now hyphenated)
big word list and have patgen show what it would have hyphenated differently.
With this approach, we cherry-pick inconsistencies in the word list.

Since the big word list contains not only lemmas of words, but also charac-
teristic inflections, we use regular expressions to add hyphens around them and
fix inconsistencies. We keep iterating on this, as shown in Figure 2 on the facing
page, until the patterns, generated with cs-init-[1-3].par [11], achieve nearly
perfect coverage.

The resulting patterns hyphenate according to the standard Czech hyphenation
rule: hyphenation is allowed whenever it does not change the pronunciation of
the word. Thanks to the effectiveness of pattern generation, this works not only
for Czech words but also for foreign (Latin, French, German, English) ones.

Hyphens, like cats, are capable of arousing tenderness or shudders. (Pamela Frankau)

Pattern generation

The last Czech hyphenation patterns were generated in 1995 [8], and are in use not
only in TEX but also in other widespread typesetting systems. For conservative
users, there is no strong incentive for change, because the error rate is relatively
low (the first version of the validation set measured an error rate around 4%),
and coverage is relatively high (the first version of the validation set measured
around 7% missed hyphenation points).

Pattern generation from 3,000,000 words does not take hours as it did two
decades ago, but seconds, even on commodity hardware, which allows for rapid
development of “home-made” patterns.

In each training pass, patgen generates all possible substrings of every word in
its dictionary with length higher than or equal to the parameter pat_start but
lower than pat_finish. Then, for each generated pattern, it counts how many
hyphenation points would be correctly covered by the pattern and how many
hyphenation points would the patterns wrongly identify. Statistics of Good, Bad
and Missed represent the count of points, where the patterns correctly identified

79



a hyphen, where the patterns expected a hyphen but there was none, and the
count of hyphenation points that the patterns did not identify.

We have developed a Python wrapper for patgen that we use in Jupyter
notebooks. It allows rapid iteration, and easy sharing of results — see Table 2
and demo.ipynb [11].

Had Liang in 1983 had the same ease of changing patgen parameters, running
it, and seeing the results in 60 seconds, he would have inevitably generated higher
than 89% coverage while staying within the limit of 5,000 patterns [4, page 37].

Table 2: Outputs from running patgen in our Jupyter notebook with two dif-
ferent parameter sets. The first parameter set is from the German Trennmuster
project [7] and generates 7,291 patterns, 40 kB. The second one from [8] generates
shorter and smaller patterns — 4,774 patterns, 25 kB.

Level Patterns Good Bad Missed Lengths
1 750 1,683,529 525,670 0 1 5
2 3,178 1,628,874 38 54,655 2 6
3 2,548 1,683,528 9,931 1 3 7
4 1,382 1,683,287 0 242 4 8
5 92 1,683,528 0 1 5 9
6 0 1,683,528 0 1 6 10
7 1 1,683,529 0 0 7 11

Level Patterns Good Bad Missed Lengths
1 1,608 1,655,968 131,481 27,561 1 3
2 1,562 1,651,840 2,533 31,689 1 3
3 2,102 1,683,528 2,584 1 2 5
4 166 1,683,135 6 394 2 5

It has also become common to use a validation dataset to ensure generalization
abilities. Our usage of a validation dataset has proven useful. Table 3 shows that
if we were to use the correct optimized parameters from [8] that have been in
use for Czech, we would overfit on the training dataset and perform worse than
their size optimized counterparts. The validation word list has to be carefully
checked with linguists from UJČ for consistency to minimize the generalization
error. Most of the current errors stem from foreign words used in Czech texts.

When the validation word list is added to training, then patterns could be
developed to serve as a lossless compression of word list dataset and thus maximize

80



Ta
bl
e
3:

Eff
ec
tiv

en
es
s
an

d
eff

ec
tiv

ity
of

pa
tt
er
n
ge
ne

ra
tio

n
on

C
ze
ch

wo
rd

lis
ts
.
C
om

pa
ris

on
of

va
lid

at
io
n
sc
or
es

of
pa

tt
er
ns

tr
ai
ne

d
on

va
rio

us
wo

rd
lis
t
an

d
pa

ra
m
et
er

co
m
bi
na

tio
ns
.
Pe

rc
en
ta
ge
s
su
m

up
to

m
or
e
th
an

10
0%

,
be

ca
us
e
th
ey

ar
e
ca
lc
ul
at
ed

by
di
vi
di
ng

th
e
co
un

t
of

G
oo

d,
Ba

d
or

M
iss

ed
hy

ph
en

s
by

th
e
to
ta
lw

or
d
co
un

t.

W
or
d
lis
t

Pa
ra
m
s

G
oo

d
%

Ba
d
%

M
iss

ed
%

Si
ze

Pa
tt
er
ns

T
im

e
(s
)

al
l

co
rr
ec
to
pt

[8
]

99
.7
6

2.
94

0.
24

30
kB

5,
59
3

58
.1
3

siz
eo
pt

[8
]

98
.9
5

2.
80

1.
05

19
kB

3,
81
6

59
.4
6

ge
rm

an
[7
]

99
.7
4

2.
21

0.
26

51
kB

8,
99
1

20
1.
9

we
ig
ht
ed

al
l

co
rr
ec
to
pt

[8
]

99
.7
6

2.
94

0.
24

30
kB

5,
59
0

59
.2
3

siz
eo
pt

[8
]

98
.9
5

2.
80

1.
05

20
kB

3,
82
1

58
.7
4

ge
rm

an
[7
]

99
.7
4

2.
21

0.
26

51
kB

8,
97
8

20
7.
35

al
lf

le
x

co
rr
ec
to
pt

[8
]

99
.4
6

4.
02

0.
54

28
kB

5,
38
7

21
2.
55

siz
eo
pt

[8
]

99
.2
6

3.
72

0.
74

29
kB

5,
53
7

21
2.
59

ge
rm

an
[7
]

99
.4
2

3.
35

0.
58

49
kB

8,
66
3

1,
03
5.
16

al
lf

le
xj

ar
go

n
co
rr
ec
to
pt

[8
]

99
.4
7

4.
08

0.
53

29
kB

5,
61
2

36
5.
96

siz
eo
pt

[8
]

99
.3
1

3.
78

0.
69

31
kB

5,
93
8

36
9.
92

ge
rm

an
[7
]

99
.4
3

3.
36

0.
57

53
kB

9,
30
8

1,
78
6.
4

81



the effectiveness of the pattern technology. See results with parameter set german
for an example of almost lossless compression.

Life is the hyphen between matter and spirit. (Augustus William Hare)

The unreasonable effectiveness

We were able to solve the dictionary problem for Czech hyphenation effectively.

Space effectiveness From 3,000,000+ hyphenated words stored in approxi-
mately 30,000,000 bytes we have produced patterns of size 30,000 bytes, achieving
roughly 1000× space lossless compression.

Time effectiveness Using the trie data structure for patterns makes the time
complexity of accessing the record related to the word, e.g. hyphenation point,
very low constant time. The constant is related to the depth of the pattern trie
data structure, e.g. 5 or 6 in the case of Czech. If the entire pattern trie resides
in RAM, the time for finding the patterns for a word is on the scale of tens, at
most hundreds, of processor instructions. Word hyphenation throughput is then
about 1,000,000 words per second on a modern CPU.

Optimality Even though finding exact space and time-optimal solutions is not
feasible, finding an approximate solution close to optimum is possible. Heuristics
and insight expressed above, together with interactive fine-tuning of patgen
parameter options, allows for rapid pattern development.

Automation A close-to-optimal solution to the dictionary problem could be
useful not only for Czech hyphenation, but for all other languages [6, 16], and more
generally, for other instances of the dictionary problem. Heuristics for thresholding
patgen pattern generation parameters could be based on a statistical analysis
of large input datasets. It could allow the deployment of presented approaches
on a much broader problem set and scale. We believe that parameters could be
approximated automatically from the statistics of the input data.

Pattern generation — in Wigner’s words — “has proved accurate beyond all
reasonable expectations”. Let us paraphrase another one of his quotes:

The miracle of the appropriateness of the language of mathematics
patterns for the formulation of the laws of physics data is a wonderful
gift which we neither understand nor deserve. We should be grateful
for it and hope that it will remain valid in future research and that
it will extend, for better or for worse, to our pleasure, even though
perhaps also to our bafflement, to wide branches of learning.

82



“We should stop acting as if our goal is to author extremely elegant theories, and
instead embrace complexity and make use of the best ally we have: the unreasonable

effectiveness of data.” (Peter Norvig, [1])

Conclusion

We have developed a flexible open language–independent system [11] for hyphen-
ation pattern generation. We have demonstrated the effectiveness of this system
by updating the old Czech hyphenation patterns [8] and achieving record accu-
racy. We have also applied recent data and computer science advancements, such
as the usage of interactive Jupyter notebooks and a validation dataset to prevent
overfitting, to the more than three decades old problem of pattern generation.

Future work
Word lists for other languages The logical next steps will be applying
developed techniques to different languages: to Slovak and virtually all others
that do not yet have word list hyphenation patterns based on a word list, but for
which a word list — either in Sketch Engine or elsewhere — is available.

Stratification Pattern generation could be further sped up by several tech-
niques, such as the stratification of word lists on the level of input, or on the level
of counting pro and con examples for including a new pattern or not.

Pattern-encoded spellchecker We have a big dictionary of frequent spelling
errors from the csTenTen word list. Nothing prevents us from encoding these into
specific patterns or pattern layers with extra levels and using that information
during typesetting, e.g. to typeset misspelled words with a red underline in
LuaTEX. LuaTEX allows dynamic pattern loading and Lua programming that
enables the implementation of this feature, which people are used to having in
editors.

Word segmentations Recent progress in machine-learned natural language
processing and machine translation builds on subword representations and various
types of semantically coherent sentence or word segmentations. As tokenization
and segmentation are at the beginning of every natural language processing
pipeline, there is a demand for effective and efficient universal segmentation [17].
New neural machine translation systems are capable of open-vocabulary transla-
tion by representing rare and unseen words as a sequence of subword units [18,
Table 1]. Segmentation is crucial, especially for compositional languages like
German, where there are many compounds (mostly out of vocabulary words),

83



and for morphologically rich languages like Hebrew [19] or Arabic, that need to
be segmented, represented, and translated.

Pattern-based learnable key memories Solutions to variations of the dic-
tionary problem are a hot topic of leading-edge research to design memory data
architectures like those used in machine learning of language [20]. Pattern-based
memory network architectures could speed up language data access in huge neural
networks considerably.

Multilingual hyphenation patterns Given that there are close languages
with syllabic-based rules like Czech and Slovak, generating patterns from merged
word lists is straightforward. It would save energy on low-resource devices like
e-book readers by having them load fewer patterns at a time.

Acknowledgments The authors thank the CSTUG and the TEX Users Group
who financially supported the presentation of the project at TUG 2019. We owe
our gratitude also to Vít Suchomel of Lexical Computing for word lists from
Sketch Engine, to Pavel Šmerk, Frank Liang and Don Knuth for majka, patgen
and TEX, respectively. Thanks go to Vít Novotný and Pavel Šmerk for valuable
comments to the paper. Thanks TUG for the permission to reprint the paper
from TUGboat, with minor extensions, and Don Knuth for discussion after the
presentation of the paper at TUG 2019.

References

1. PEREIRA, Fernando; NORVIG, Peter; HALEVY, Alon. The Unreasonable
Effectiveness of Data. IEEE Intelligent Systems. 2009, vol. 24, no. 02, s.
8–12. ISSN 1541-1672. Dostupné z DOI: 10.1109/MIS.2009.36.

2. WIGNER, Eugene P. The Unreasonable Effectiveness of Mathematics in
the Natural Sciences. Richard Courant Lecture in Mathematical Sciences
delivered at New York University, May 11, 1959. Communications on Pure
and Applied Mathematics. 1960, vol. 13, no. 1, s. 1–14. Dostupné z DOI:
10.1002/cpa.3160130102.

3. HAMMING, R. W. The Unreasonable Effectiveness of Mathematics. The
American Mathematical Monthly. 1980, vol. 87, no. 2, s. 81–90. ISSN
00029890, 19300972. ISSN 00029890, 19300972. Dostupné také z: https:
//www.jstor.org/stable/2321982.

4. LIANG, Franklin M. Word Hy-phen-a-tion by Com-put-er. 1983. Dostupné
také z: https : / / tug . org / docs / liang/. Disertační práce. Stanford
University.

84



5. SOJKA, Petr. Competing Patterns in Language Engineering and Computer
Typesetting. 2005. Disertační práce. Faculty of Informatics.

6. REUTENAUER, Arthur; MIKLAVEC, Mojca. TEX hyphenation patterns
[online]. TUG [cit. 2019-11-14]. Dostupné z: https://tug.org/tex-
hyphen/.

7. LEMBERG, Werner. A database of German words with hyphenation infor-
mation. Dostupné také z: https://repo.or.cz/wortliste.git.

8. SOJKA, Petr; ŠEVEČEK, Pavel. Hyphenation in TEX — Quo Vadis?
TUGboat. 1995, vol. 16, no. 3, s. 280–289.

9. Internetová jazyková příručka (Internet Language Reference Book) [online].
Institute of Czech language, Czech Academy of Sciences [cit. 2019-07-18].
Dostupné z: http://prirucka.ujc.cas.cz/?id=135.

10. SOJKA, Petr. Hyphenation on Demand. TUGboat. 1999, vol. 20, no. 3, s.
241–247. https://tug.org/TUGboat/tb20-3/tb64sojka.pdf.

11. SOJKA, Ondřej; SOJKA, Petr. cshyphen repository. Dostupné také z:
https://github.com/tensojka/cshyphen.

12. SOJKA, Petr. Notes on Compound Word Hyphenation in TEX. TUGboat.
1995, vol. 16, no. 3, s. 290–297.

13. JAKUBÍČEK, Milos; KILGARRIFF, Adam; KOVÁŘ, Vojtěch; RYCHLÝ,
Pavel; SUCHOMEL, Vít. The TenTen Corpus Family. In: Proc. of 7th
International Corpus Linguistics Conference (CL). Lancaster, 2013, s. 125–
127.

14. SUCHOMEL, Vít; POMIKÁLEK, Jan. Efficient Web Crawling for Large
Text Corpora. In: KILGARRIFF, Adam; SHAROFF, Serge (eds.). Proc.
of the seventh Web as Corpus Workshop (WAC). Lyon, 2012, s. 39–43.
Dostupné také z: https://sigwac.org.uk/raw- attachment/wiki/
WAC7/wac7-proc.pdf.

15. ŠMERK, Pavel. Fast Morphological Analysis of Czech. In: SOJKA, Petr;
HORÁK, Aleš (eds.). Proceedings of Recent Advances in Slavonic Natural
Language Processing, RASLAN 2009. Karlova Studánka, Czech Republic:
Masaryk University, 2009, s. 13–16. ISBN 978-80-210-5048-8. Dostupné
také z: http://nlp.fi.muni.cz/raslan/2009/.

16. SCANNELL, Kevin Patrick. Hyphenation patterns for minority languages.
TUGboat. 2003, vol. 24, no. 2, s. 236–239.

17. SHAO, Yan; HARDMEIER, Christian; NIVRE, Joakim. Universal Word
Segmentation: Implementation and Interpretation. Transactions of the As-
sociation for Computational Linguistics. 2018, vol. 6, s. 421–435. Dostupné
z DOI: 10.1162/tacl_a_00033.

18. SENNRICH, Rico; HADDOW, Barry; BIRCH, Alexandra. Neural Machine
Translation of Rare Words with Subword Units. In: Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics

85



(Volume 1: Long Papers). Berlin, Germany: Association for Computational
Linguistics, 2016, s. 1715–1725. Dostupné z DOI: 10.18653/v1/P16-1162.

19. ZELDES, Amir. A Characterwise Windowed Approach to Hebrew Morpho-
logical Segmentation. In: Proc. of the Fifteenth Workshop on Computational
Research in Phonetics, Phonology, and Morphology. Brussels, Belgium: As-
sociation for Computational Linguistics, 2018, s. 101–110. Dostupné z DOI:
10.18653/v1/W18-5811.

20. LAMPLE, Guillaume; SABLAYROLLES, Alexandre; RANZATO,
Marc’Aurelio; DENOYER, Ludovic; JÉGOU, Hervé. Large Memory
Layers with Product Keys [online]. 2019 [cit. 2019-07-18]. Dostupné z arXiv:
1907.05242 [cs.CL].

Nepochopitelná efektivita generování vzorů dělení slov

Jazyky se vyvíjí a spolu s nimi i jejich potřeby a pravidla dělení slov. Mechanis-
mus vzorů dělení slov v TEXu převzala většina dnešních sazebních systémů, což
prokazuje jeho efektivitu a užitečnost. Současné vzory dělení slov pro češtinu ale
vznikly v roce 1995, kdy ještě neexistovala žádná volně šiřitelná databáze slov.

Vyvinuli jsme novou českou databázi slov, použili jsme program patgen k vy-
generování nových efektivních vzorů dělení slov pro češtinu a vyhodnotili jsme
jejich generalizační schopnosti. Na trénovací datové sadě 3 milionů slov jsme
dosáhli plného pokrytí. Dále jsme vyvinuli postup pro validaci nových vzorů
dělení slov pro češtinu s využitím databáze 105 tisíc slov schválených lingvisty
Akademie věd České republiky.

Naše případová studie generování vzorů dělení slov představuje praktické
řešení častého slovníkového problému. Studie dokazuje pružnost, efektivitu a roz-
šiřitelnost Liangova přístupu k dělení slov vyvinutého pro TEX. Nepochopitelná
efektivita mechanismu vzorů dělení slov dala vzniknout aplikacím, které ho vyu-
žívají i téměř 40 let po jeho vzniku.

Klíčová slova: patgen, vzory dělení slov, nepochopitelná efektivita, čeština

Petr Sojka, Faculty of Informatics, Masaryk University, Brno, Czech Republic
and CSTUG, sojka@fi.muni.cz

Ondřej Sojka c/o CSTUG, Nejedlého 1, 638 00 Brno, Czech Republic,
ondrej.sojka@gmail.com

86


