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Abstract. The aim of the paper is to present a procedure for the approximation of a
symmetric positive definite matrix by symmetric block partitioned matrices with structured
off-diagonal blocks. The entropy loss function is chosen as approximation criterion. This
procedure is applied in a simulation study of the statistical problem of covariance structure
identification.
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1. Introduction

The problem of the best approximation of a given symmetric positive definite
matrix by symmetric matrices with specified block partitioned structures is studied.
These particular matrices are partitioned into four sub-blocks with square diagonal
blocks, not necessarily of the same order. We assume that the diagonal blocks are
arbitrary symmetric square matrices, while the off-diagonal blocks can get one of the
following structures: all of the off-diagonal block elements are equal (this block can
be also considered as a part of the compound symmetry structure) or the off-diagonal
block is proportional to respective sub-block of the first-order autoregression matrix.
In the literature, the need for the estimation of covariance matrices is emphasized

by many authors. It is worth noting that the number of unknown parameters to
be estimated in an unstructured covariance matrix is usually much greater than in
the structured one. Moreover, in case when the number of observations is not large
enough, the sample covariance matrix is singular or ill-conditioned. One way to
overcome this problem is to impose structural restrictions to the covariance matrix.
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There are several methods of the choice of the most relevant structure; for example
graphical, like neural networks or mapping (cf. Gilson et al. (2019) [8]) or algebraic
techniques (cf. Lin et al. (2014) [12], Cui et al. (2016) [1]). In mathematical statistics,
structured covariance matrices are widely used in multivariate data analysis and
applied in various areas of science, such as e.g. medicine, agronomy (Mieldzioc et al.
(2019) [16]), economy, biology, geography, meteorology etc.

In classic multivariate models, usually covariance matrices with a specific struc-
ture, such as e.g. compound symmetry (Lin et al. (2014) [12]), autoregression of order
one (Cui et al. (2016) [1]) or banded Toeplitz matrices (Filipiak et al. (2018b) [7],
John, Mieldzioc (2019) [10]) are studied, without partitioning into blocks. Parti-
tioned matrices are commonly used in doubly multivariate models. One of the most
popular applications is that of separable structures of two unstructured matrices
or two matrices with one component additionally structured, studied e.g. by Lu and
Zimmerman (2005) [13], Srivastava et al. (2008) [18], Filipiak, Klein (2018) [4], Filip-
iak et al. (2018a) [6], Filipiak et al. (2020) [5]. In the literature, covariance structures
partitioned into four submatrices (Szczepańska-Álvarez et al. (2017) [21]) or block
compound symmetry covariance structures (Szatrowski et al. (1976) [19], Szatrowski
et al. (1982) [20]) are also analyzed.

It is worth noting that block covariance structures can be also applied in model-
ing the covariance between two random vectors. However, usually the structure of
covariance matrix is assumed a priori, without algebraic identification of the most
relevant structure. Algebraic methods of covariance structure identification are often
based on the approximation of a sample covariance matrix with respect to some cri-
teria. The most commonly used criteria (discrepancy functions) are Frobenius norm
(Cui et al. (2016) [1]) and the entropy loss function (Lin et al. (2014) [12]). In our
studies the entropy loss function is used as the most relevant for statistical purposes
(cf. Filipiak et al. (2020) [5]). The idea is to determine the minimum of the entropy
loss function and to choose the structure for which this smallest discrepancy is at-
tained. In this paper we perform simulation studies to verify whether the entropy
loss function recognizes given covariance structure properly.

The paper is organized as follows. In Section 2 we present considered structures
and the entropy loss function. In Section 3 the procedure of approximation via
entropy loss function is given and a particular form of the entropy loss function for
considered structures is derived. The description and results of simulation studies
are presented in Section 4. Conclusions are given in Section 5.
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2. Preliminaries

Let Ω ∈ R
>
m, where R

>
m is a set of symmetric positive definite matrices of order m.

This matrix can have 1

2
m(m+1) different elements. To reduce the number of various

elements in Ω, some structured matrices are used. Our aim is to determine the best
approximation of Ω by the block partitioned matrix

Γ =

(
Γ1 Ψ

Ψ
′

Γ2

)

with unstructured diagonal blocks of order p and q respectively, and structured off-
diagonal blocks such that Γ ∈ R

>
m. We consider the following forms of matrix Ψ

⊲ the matrix with all elements equal to δ

(2.1) Ψ = δ1p1
′
q,

⊲ the matrix of the form

(2.2) Ψ = δA = δ




̺p ̺p+1 . . . ̺p+q−1

̺p−1 . . . . . . . . .
...

...
...

...
̺2 . . . . . . . . .

̺ ̺2 . . . ̺q




.

Observe that such forms of off-diagonal blocks may follow from compound sym-
metry or first order autoregression structures. For example, for p = 2 and q = 3,
structure (2.1) corresponds to the off-diagonal block of the compound symmetry
structure, i.e. 



α δ δ δ δ

δ α δ δ δ

δ δ α δ δ

δ δ δ α δ

δ δ δ δ α




and structure (2.2) corresponds to the off-diagonal block of the autoregression of
order one structure, i.e.

δ




1 ̺ ̺2 ̺3 ̺4

̺ 1 ̺ ̺2 ̺3

̺2 ̺ 1 ̺ ̺2

̺3 ̺2 ̺ 1 ̺

̺4 ̺3 ̺2 ̺ 1




.
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We denote the sets of structured matrices defined above as

(2.3) S1 = {Γ1 ∈ R
>
p , Γ2 ∈ R

>
q , Ψ = δ1p1

′
q : Γ ∈ R

>
p+q},

S2 = {Γ1 ∈ R
>
p , Γ2 ∈ R

>
q , Ψ = δA : Γ ∈ R

>
p+q}.

For a given matrix Ω, our aim is to determine a matrix from the set S1 and S2,
which will be the closest to the unstructured matrix Ω in the sense of some discrep-
ancy function. The most relevant structure has the smallest discrepancy and the
process of choosing the most appropriate structure is called by some authors, cf. Lin
et al. (2014) [12], Cui et al. (2016) [1], regularization. However, in the literature reg-
ularization often has another meaning; that is, improvement of estimators by stating
some additional requirements. Therefore, to avoid misunderstanding, the process
described in this paper will be called covariance structure identification.
As a measure of discrepancy we use the entropy loss function

(2.4) f(Ω,Γ) = tr(Ω−1
Γ)− ln |Ω−1

Γ| − (p+ q),

cf. James, Stein (1961) [9], Dey, Srinivasan (1985) [2]; which is also known as
a Kullback-Leibler divergence between two probability distributions; cf. Pan, Fang
(2002) [17]. The entropy loss function was considered in the approximation problem
by Lin et al. (2014) [12] and Filipiak et al. (2018a) [6] in classic and doubly mul-
tivariate models, respectively. Since in the approximation process via the entropy
loss function the inverses of matrices Ω and Γ appear, their nonsingularity (posi-
tive definiteness) is required. The entropy loss function is convex and antisymmetric
and has the important property that it is invariant with respect to the group of
linear transformations (cf. James, Stein (1961) [9]), that is, for arbitrary nonsingular
matrix B

(2.5) f(BΩB
′,BΓB

′) = f(Ω,Γ).

Let Ω ∈ R
>
m be partitioned as follows

Ω =

(
Ω11 Ω12

Ω
′
12 Ω22

)
,

where Ω11 : p×p, Ω12 : p×q, Ω22 : q×q and the inverse of matrix Ω is a partitioned
matrix, denoted by V,

Ω
−1 = V =

(
V11 V12

V
′
12 V22

)
,

where V11 : p× p, V12 : p× q, V22 : q × q.
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Note that in the entropy loss function, we need a determinant of a partitioned
nonsingular matrix Γ of the form

Γ =

(
Γ11 Γ12

Γ21 Γ22

)

with non-singular diagonal blocks. That can be determined using the Schur comple-
ment (cf. Kollo, von Rosen (2005) [11]) as

(2.6) |Γ| = |Γ22| · |Γ11 − Γ12Γ
−1
22 Γ21| = |Γ11| · |Γ22 − Γ21Γ

−1
11 Γ12|.

Then the entropy loss function of Ω and Γ can be written in two forms

(2.7) f(Ω,Γ) = tr(V11Γ11) + 2 tr(V12Γ21) + tr(V22Γ22) + ln |Ω|

− ln |Γ22| − ln |Γ11 − Γ12Γ
−1
22 Γ21| − (p+ q)

= tr(V11Γ11) + 2 tr(V12Γ21) + tr(V22Γ22) + ln |Ω|

− ln |Γ11| − ln |Γ22 − Γ21Γ
−1
11 Γ12| − (p+ q)

with two variants of Schur complement (2.6) used.

3. Approximation

In this section we present the best approximation of a given Ω ∈ R
>
m by the matrix

respectively from the set S1 and S2 given by (2.3) via the entropy loss function (2.4).
To determine the smallest value of the discrepancy function, the entropy loss function
is minimized over the respective set of structures.

To shorten the notation, let us denote the set of relevant structures, S1 or S2, by G
and for a given Ω, the entropy loss function as fΩ(Γ). Then our aim is to minimize
the entropy loss function with respect to Γ ∈ G, that is to determine

ζ = min
Γ∈G

fΩ(Γ).

Let G = S1. Then the entropy loss function (2.7) with Γ ∈ S1 can be written as

fΩ(Γ) = tr(V11Γ1) + 2δ tr(V121q1
′
p) + tr(V22Γ2) + ln |Ω|

− ln |Γ2| − ln |Γ1 − δ21p1
′
qΓ

−1
2 1q1

′
p| − (p+ q)

= tr(V11Γ1) + 2δ tr(V121q1
′
p) + tr(V22Γ2) + ln |Ω|

− ln |Γ1| − ln |Γ2 − δ21q1
′
pΓ

−1
1 1p1

′
q| − (p+ q).
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To obtain the minimum of the entropy loss function over the set S1 we differentiate
this function with respect to Γ1 and δ using the first form of Schur complement and
with respect to Γ2 using the second form. Derivatives have the following forms:

∂f

∂Γ1

= [vec′(V11)− vec′(Γ1 − δ21p1
′
qΓ

−1
2 1q1

′
p)

−1] ·Dp,

∂f

∂Γ2

= [vec′(V22)− vec′(Γ2 − δ21q1
′
pΓ

−1
1 1p1

′
q)

−1] ·Dq,

∂f

∂δ
= 2 tr(V121q1

′
p) + 2δ vec′(V11) vec(1p1

′
qΓ

−1
2 1q1

′
p),

where Dp is a (p + q)2 × (p + q)(p + q + 1)/2 duplication matrix and vec(·) is an
operator stacking the columns of a given matrix one below another (cf. Magnus,
Neudecker (1986) [14] or Magnus, Neudecker (1999) [15]). The formulas for matrix
derivatives can be found in Fackler (2005) [3]. Equating the derivatives to zero and
using some transformations, we obtain the stationary point as the solution of the
system of equations given in Theorem 3.1. The theorem follows from convexity and
differentiability of the entropy loss function over the convex set, and there exists the
stationary point which is the global minimum (cf. Lin et al. (2014) [12]).

Theorem 3.1. For a given Ω ∈ R
>
m, there exists Γ ∈ R

>
m that minimizes the en-

tropy loss function (2.4) over S1 and this minimum is attained at Γ1, Γ2, δ satisfying

the following system of equations:





Γ1 = V
−1
11 + δ21p1

′
qΓ

−1
2 1q1

′
p,

Γ2 = V
−1
22 + δ21q1

′
pΓ

−1
1 1p1

′
q,

δ = −
tr(V121q1

′
p)

tr(V111p1
′
qΓ

−1
2 1q1

′
p)
.

Let G = S2. Then the entropy loss function (2.7) with Γ ∈ S2 can be written as

fΩ(Γ) = tr(V11Γ1) + δ tr(V′
12A) + δ tr(V12A

′)

+ tr(V22Γ2) + ln |Ω| − ln |Γ| − (p+ q),

where

ln |Γ| = ln |Γ2|+ ln |Γ1 − δ2AΓ
−1
2 A

′| = ln |Γ1|+ ln |Γ2 − δ2A′
Γ
−1
1 A|

follows from Schur complement (2.6). To obtain the minimum of the entropy loss
function over the set S2, we differentiate this function with respect to Γ1, Γ2, δ
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and ̺. Derivatives have the following forms:

∂f

∂Γ1

= [vec′(V11)− vec′(Γ1 − δ2AΓ
−1
2 A

′)−1] ·Dp,

∂f

∂Γ2

= [vec′(V22)− vec′(Γ2 − δ2A′
Γ
−1
1 A)−1] ·Dq,

∂f

∂δ
= 2 tr(V′

12A) + 2δ vec′(V11) vec(AΓ
−1
2 A

′),

∂f

∂̺
= [2 vec′(V12)− vec′(Γ1 − δ2AΓ

−1
2 A

′)−1(Ip2 +Kp,p)(AΓ
−1
2 ⊗ Ip)]vecF

with F being a derivative of A with respect to ̺, that is,

F =




p̺p−1 (p+ 1)̺p . . . (p+ q − 1)̺p+q−2

(p− 1)̺p−2 . . . . . . . . .
...

...
...

...
2̺ . . . . . . . . .

1 2̺ . . . q̺q−1




and Ks,t being an st× st commutation matrix (cf. Magnus, Neudecker (1986) [14]),
such that for any G ∈ R

s,t we have the following

Ks,t vecG = vecG′.

Equating the derivatives to zero and using some transformations gives the sta-
tionary point as the solution of the system of equations given in Theorem 3.2 given
below. The entropy loss function is a convex function, but the set S2 is not con-
vex. Therefore, there may exist more than one stationary point and thus Γ from
Theorem 3.2 can be only a local minimum (cf. Lin et al. (2014) [12]).

Theorem 3.2. For a given Ω ∈ R
>
m, there exists Γ ∈ R

>
m that minimizes the

entropy loss function (2.4) over S2 and this minimum is attained at Γ1, Γ2, δ, ̺

satisfying the following system of equations:





Γ1 = V
−1
11 + δ2AΓ

−1
2 A

′,

Γ2 = V
−1
22 + δ2A′

Γ
−1
1 A,

δ = −
tr(V′

12A)

tr(V11AΓ
−1
2 A′)

,

2 tr(V′
12F) + δ tr[V11(FΓ

−1
2 A

′ +AΓ
−1
2 F

′)] = 0.
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Observe that the equations received by differentiating the entropy loss function
with respect to Γ1, Γ2 and δ are comparable for S1 and S2 sets. In the second case
we consider the structure with one more parameter (̺); thus we receive one more
equation, which is a polynomial of order 3(p + q) − 4. It is worth noting that the
systems of equations for minimizing the entropy loss function over both sets have
no explicit solutions and can be solved only numerically. For this purpose we use
an iterative procedure, where we start with some initial assumption and determine
the sequence of improving approximate solutions such that the next result is derived
from the previous one. The calculations are continued until the stopping rule is
fulfilled. The details for initial assumptions and stopping rule are given in Section 4.

4. Simulation studies

Let us assume an experiment where two groups of characteristics are observed for
n objects. The measurements are collected in vectors xi for each object, i = 1, . . . , n.
We can denote a vector of observations as xi = (x′

a,x
′
b)

′, where the first group, with p
elements, has mean vector µa, and the second one, with q elements, µb. Assume
that each of the observation vectors xi has the normal distribution with mean vec-
tor µ = (µ′

a,µ
′
b)

′ and covariance matrix Ω, i.e. xi∼ Nm(µ,Ω) with m = p + q.
Using vectors of observations for each object, we constuct the observation matrix
as X = (x1,x2, . . . ,xn) having matrix normal distribution Nm,n(µ1

′
n,Ω, In). We

are interested in relations between characterisitcs from the first and second group
described in the covariance matrix Ω12, especially δ1p1

′
q and δA described in Sec-

tion 2.
In this section we apply the formulas from Theorems 3.1 and 3.2 in a simulation

study. Our aim is to verify whether the considered discrepancy function recognizes
the true structure properly. For this purpose we take sample size n = 100 and
number of parameters (p, q) = {(2, 2), (2, 3), (2, 5), (2, 10), (3, 2), (3, 3), (3, 5), (3, 10)},
for which we determine matrix Ω as a well-conditioned matrix from the set S1 or S2.
Under these assumptions we generate the data from the normal distribution with
mean vector 0 and covariance matrix Ω, i.e. X ∼ Np+q,n(0,Ω, In).
The choice of the most appropriate structure is based on the estimation of matrixΩ

and determination of the nearest structure in the sense of some discrepancy function.
In real life applications, the covariance matrix Ω is usually unknown; thus we replace
it with a maximum likelihood estimator of Ω, i.e. S = 1

n
X(In − 1

n
1n1

′
n)X

′. By
minimazing the entropy loss function over the set S1 and S2, we obtain respective
discrepancies that we denote as ζ1 and ζ2, that is

ζ1 = min
Γ∈S1

fS(Γ) and ζ2 = min
Γ∈S2

fS(Γ).
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The discrepancies ζ1 and ζ2 are computed using iterative algorithm based on a sys-
tem of equations given in Theorems 3.1 and 3.2, respectively. In the first considered
structure the initial assumption of the algorithm solving the system of equations
given in Theorem 3.1 is Γ2 = Iq, while in Theorem 3.2: Γ2 = Iq and ̺ = 0.5.
The other variables, δ and Γ1, are computed from their respective equations (Theo-
rems 3.1 and 3.2) and we receive the first step results of appropriate variables. Then
the second step results are computed based on the first step. The iteration pro-
cess goes on until some criterion is fulfilled, e.g. the difference between the solutions
of two steps (or trace of the matrix difference) is smaller than a given threshold,
here 10−5. The last step results can be viewed as the estimators of respectively
structured covariances. Obviously, in both algorithms the initial conditions can be
chosen arbitrarily, for example instead of the identity matrix a block of S can be also
assumed.

All simulations are repeated 1000 times, i.e. for the chosen true matrix Ω we
generate 1000matricesX and for each of them we determine the maximum likelihood
estimator of Ω, i.e. the matrix S and discrepancies ζ1 and ζ2. Then the averaged
results of discrepancies, i.e. ζ1 and ζ2, are computed.

We expect that when the true matrix Ω ∈ S1 the discrepancy between S and
the S1 set of structures is smaller than the discrepancy between S and the S2 set of
structures, and when the true matrix Ω ∈ S2 we expect the opposite rule, that is

Ω ∈ S1 ⇒ ζ1 6 ζ2,

Ω ∈ S2 ⇒ ζ2 6 ζ1.

The simulations results are presented in Tables 1 and 2.

It can be seen from Table 1 that the entropy loss function identifies the true
Ω ∈ S1 very rarely and that there are only a few cases with the proportion of proper
structure identification higher than 50%. Moreover, for q = 2 there are some cases
where none of the structures has been identified properly (p = 2 and δ = −3 or p = 3

and δ ∈ {−3, 3}). However, the best proportion (93.6%) of correct identification is
also obtained for q = 2 (p = 2 and δ = −2). We can also observe that bigger values
of the parameters p and q usually provide to higher values of discrepancy.

In Table 2 the results for the true Ω ∈ S2 are presented. We can see that the
averaged discrepancies satisfy ζ2 6 ζ1 for each value of parameters p, q and δ (except
one case). Moreover, the true Ω ∈ S2 proportion of proper structure identification
is usually higher than 80% and for many cases the proportion is very high, larger
than 95%. The results obtained for δ = 1 and δ = 2 are comparable. Similarly
as in the first case, bigger values of parameters p and q provide higher values of
discrepancy.
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The small proportion of proper structure identification (small π values) for true
Ω ∈ S1 is caused by the inclusion S1 ⊂ S2. It follows from the fact that the
discrepancy from the larger set is always smaller. It can be also caused by the high
bias of the matrix S, which does not need to be a good estimator of Ω, as we will
show below. However, if ζ1 is close to ζ2, then S1 can be recommended as the relevant
structure, since it has smaller number of parameters.
Matrix S does not have structure from S1 with probability one. One would expect

that ζ1 < ζ2, however this is not true in general. For example, in one of the cases
where only 7.9% of structures were identified properly (p = 2, q = 2, δ = −5), the
true matrix Ω has the form

Ω =




40.4805 −3.2857 −5 −5

−3.2857 30.4662 −5 −5

−5 −5 13.7867 7.0661

−5 −5 7.0661 29.8369




and its maximum likelihood estimate has the form

S =




43.1327 −3.2283 −2.0342 −4.0651

−3.2283 30.2062 −3.5415 −4.5745

−2.0342 −3.5415 10.9243 7.4380

−4.0651 −4.5745 7.4380 29.4835


 ,

while

Γ̂CS =




43.3859 −3.1991 −3.1071 −3.1071

−3.1991 29.7926 −3.1071 −3.1071

−3.1071 −3.1071 10.9721 7.2440

−3.1071 −3.1071 7.2440 28.9051




and

Γ̂AR =




43.6253 −3.1640 −3.3547 −4.0682

−3.1640 29.6590 −2.7663 −3.3547

−3.3547 −2.7663 10.9387 7.3309

−4.0682 −3.3547 7.3309 29.1380




are the minimum of the entropy loss function over S1 and S2, respectively, that is

min
Γ∈S1

fS(Γ) = fS(Γ̂CS) = ζ1 and min
Γ∈S2

fS(Γ) = fS(Γ̂AR) = ζ2.

In this case ζ1 = 0.0079 > 0.0067 = ζ2. It can follow from the fact that ζ1 presents
a discrepancy between the structure from the set S1 and a matrix S like ζ2 gives the
discrepancy between the structure from the set S2 and also the matrix S, which is
not a good estimator of the true structure.

838



Similarly, for p = 3, q = 2, δ = 3 the true matrix has the following form:

Ω =




13.6376 7.0020 7.4252 3 3

7.0020 13.2476 −5.1712 3 3

7.4252 −5.1712 19.5732 3 3

3 3 3 7.9498 3.8762

3 3 3 3.8762 14.1895




and its maximum likelihood estimate is

S =




12.8821 5.4486 8.9021 2.4804 3.5079

5.4486 11.4081 −3.4473 4.0197 2.5917

8.9021 −3.4473 19.7483 3.3223 4.1575

2.4804 4.0197 3.3223 9.4947 4.5119

3.5079 2.5917 4.1575 4.5119 10.9852




.

As previously, matrix S has no structure from S1 anymore and the estimates obtained
over respective sets are

Γ̂CS =




13.4928 6.0912 9.2271 3.6822 3.6822

6.0912 11.5260 −3.1804 3.6822 3.6822

9.2271 −3.1804 19.7059 3.6822 3.6822

3.6822 3.6822 3.6822 8.6508 4.7567

3.6822 3.6822 3.6822 4.7567 11.6244




and

Γ̂AR =




12.5147 5.3189 8.7078 2.7464 2.2326

5.3189 11.0068 −3.3883 3.3783 2.7464

8.7078 −3.3883 19.8810 4.1557 3.3783

2.7464 3.3783 4.1557 9.2361 4.7472

2.2326 2.7464 3.3783 4.7472 11.1314




.

Similarly as in the first example, the Γ1 and Γ2 estimates are quite similar and the
discrepancy between S and its estimate is smaller for Γ̂AR, ζ1 = 0.07429>0.0447=ζ2.

On the other hand, the discrepancy values obtained in simulation studies are rather
small. This means that the considered approximations (Γ̂CS and Γ̂AR) are close to
the matrix S and close to each other; thus they are very difficult to distinguish.
Sometimes, it is better to choose a slightly more distant structure (in the sense of
discrepancy function) and have a smaller number of parameters to estimate.
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p = 2 p = 3

q δ ζ1 ζ2 π ζ1 ζ2 π

2 −5 0.0299 0.0351 7.9 0.0491 0.1507 38.3

2 −3 0.0301 0.0206 0.0 0.0509 0.0404 0.0

2 −2 0.0303 0.1864 93.6 0.0496 0.0442 4.4

2 −1 0.0287 0.0587 46.4 0.0501 0.0399 5.5

2 0 0.0285 0.0209 6.4 0.0503 0.0390 8.7

2 1 0.0275 0.0271 18.5 0.0479 0.0408 3.0

2 2 0.0293 0.1013 70.8 0.0519 0.0512 7.1

2 3 0.0300 0.0694 36.7 0.0528 0.0417 0.0

2 5 0.0317 0.1434 53.9 0.0827 0.4040 49.4

3 −5 0.0564 0.0908 13.4 0.0954 0.3421 42.0

3 −3 0.0538 0.1174 32.3 0.0846 0.2178 44.5

3 −2 0.0489 0.0403 4.4 0.0833 0.1931 54.3

3 −1 0.0519 0.0417 2.3 0.0802 0.0719 7.1

3 0 0.0504 0.0464 2.3 0.0809 0.0727 8.2

3 1 0.0521 0.1318 55.9 0.0828 0.0737 13.8

3 2 0.0579 0.0974 26.9 0.0827 0.1956 84.8

3 3 0.0495 0.0452 5.6 0.0840 0.0914 13.2

3 5 0.0495 0.0866 14.9 0.0826 0.1674 39.4

5 −5 0.0941 0.1354 32.2 0.1494 0.1511 5.5

5 −3 0.1013 0.1458 24.7 0.1485 0.2032 24.6

5 −2 0.0946 0.0945 7.8 0.1487 0.1546 3.4

5 −1 0.0916 0.0831 14.5 0.1472 0.1423 21.1

5 0 0.0907 0.0795 4.7 0.1445 0.1410 15.8

5 1 0.0922 0.1181 27.5 0.1483 0.1444 10.3

5 2 0.0925 0.0906 7.5 0.1469 0.1524 25.7

5 3 0.0945 0.1971 50.9 0.1447 0.2356 25.2

5 5 0.0906 0.2403 46.6 0.1524 0.1445 0.8

10 −5 0.2113 0.4297 49.6 0.3195 0.3959 29.8

10 −3 0.2032 0.3481 65.1 0.3165 0.3187 18.9

10 −2 0.2074 0.2144 18.0 0.3102 0.3214 15.3

10 −1 0.2026 0.1980 22.0 0.3165 0.3154 27.7

10 0 0.2053 0.1964 17.2 0.3140 0.3027 18.9

10 1 0.2076 0.2017 20.0 0.3131 0.3088 14.8

10 2 0.2069 0.2144 17.7 0.3176 0.3183 9.1

10 3 0.2046 0.2104 11.3 0.3144 0.3338 29.5

10 5 0.2018 0.3070 40.1 0.3137 0.4553 42.8

Table 1. The averaged discrepancies ζ1, ζ2 and proportion π (in %) of proper structure
identification among 1000 simulation runs in the case of Ω ∈ S1 with n = 100 for
various values of δ.
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δ = 1 δ = 2

p q ̺ ζ1 ζ2 π ζ1 ζ2 π

2 2 −0.9 0.0430 0.0293 89.1 0.1037 0.0633 94.1

2 2 −0.5 0.0542 0.0385 77.6 0.0424 0.0283 87.8

2 2 −0.1 0.0266 0.0220 84.6 0.0273 0.0230 88.6

2 2 0 0.0289 0.0222 83.2 0.0285 0.0234 90.5

2 2 0.1 0.0310 0.0202 93.5 0.0277 0.0211 97.0

2 2 0.5 0.0282 0.0238 92.8 0.0262 0.0643 73.8

2 2 0.9 0.0286 0.0201 99.8 0.0309 0.0303 87.4

2 3 −0.9 0.0630 0.0482 90.8 0.0889 0.0524 95.1

2 3 −0.5 0.0515 0.0416 91.8 0.1011 0.0448 100.0

2 3 −0.1 0.0512 0.0403 92.7 0.0483 0.0373 97.9

2 3 0 0.0524 0.0462 92.4 0.0493 0.0407 98.9

2 3 0.1 0.0520 0.0445 90.0 0.0494 0.0398 97.7

2 3 0.5 0.0504 0.0434 92.9 0.0568 0.0421 96.9

2 3 0.9 0.0511 0.0453 95.2 0.0543 0.0707 50.1

2 5 −0.9 0.1036 0.0837 87.3 0.1384 0.0911 94.8

2 5 −0.5 0.1008 0.0867 96.8 0.0936 0.0893 88.4

2 5 −0.1 0.0960 0.0873 91.1 0.0945 0.0843 93.3

2 5 0 0.0910 0.0854 90.3 0.0917 0.0851 95.6

2 5 0.1 0.0937 0.0876 89.2 0.0936 0.0871 87.8

2 5 0.5 0.0937 0.0865 97.8 0.0979 0.0802 95.5

2 5 0.9 0.0913 0.0814 99.8 0.0939 0.0840 95.3

2 10 −0.9 0.2925 0.2273 97.4 0.2224 0.2040 89.5

2 10 −0.5 0.2092 0.1974 80.3 0.2208 0.2114 93.2

2 10 −0.1 0.2017 0.1881 90.7 0.1995 0.1891 89.5

2 10 0 0.2065 0.1969 84.8 0.2041 0.1977 85.7

2 10 0.1 0.1984 0.1871 88.8 0.2052 0.1961 86.6

2 10 0.5 0.2037 0.1898 80.7 0.2098 0.1951 87.8

2 10 0.9 0.2208 0.1999 82.8 0.2065 0.1932 86.3

3 5 −0.9 0.5050 0.4646 88.9 0.1738 0.1520 97.5

3 5 −0.5 0.1627 0.1401 88.7 0.1500 0.1409 88.2

3 5 −0.1 0.1482 0.1343 88.1 0.1483 0.1405 88.2

3 5 0 0.1440 0.1348 89.1 0.1467 0.1355 88.7

3 5 0.1 0.1498 0.1377 90.7 0.1486 0.1380 89.9

3 5 0.5 0.1518 0.1397 92.6 0.1586 0.1359 95.1

3 5 0.9 0.1485 0.1418 92.9 0.1651 0.1396 99.8
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δ = 1 δ = 2

p q ̺ ζ1 ζ2 π ζ1 ζ2 π

3 10 −0.9 0.3873 0.3470 89.4 0.6324 0.5133 97.7

3 10 −0.5 0.3108 0.2995 90.1 0.3148 0.3060 89.5

3 10 −0.1 0.3121 0.2973 76.0 0.3164 0.3027 82.3

3 10 0 0.3152 0.3040 78.8 0.3179 0.3073 81.4

3 10 0.1 0.3143 0.3083 88.4 0.3195 0.3044 87.2

3 10 0.5 0.3150 0.2999 86.2 0.3190 0.3036 86.8

3 10 0.9 0.3126 0.3047 84.4 0.3321 0.4113 15.6

Table 2. The averaged discrepancies ζ1, ζ2 and proportion π (in %) of proper structure
identification among 1000 simulation runs in the case of Ω ∈ S2 with n = 100 for
various values of ̺.

5. Conclusions

We have proposed a method to find the best approximation of a given positive
definite matrix by matrices with specified block structures, based on minimizing the
entropy loss function, between a given Ω ∈ R

>
m and the set of matrices that has

a structure under consideration. The simulation study showed that the S2 structure
is better identified by the entropy loss function even when the assumed structure
is S1. Moreover, with the increase of the parameters p and q, there is no apparent
change in the proportion of proper structure identification. To sum up, this method
can be used in statistics to approximate the covariance matrix.

Finally, it is worth mentioning that the problems of estimation of the partitioned
covariance matrix with known structure of diagonal blocks of Γ can be considered, in
particular, Γ1 = δ1 Θ1 and Γ2 = δ2Θ2, whereΘ1 andΘ2 are known positive definite
matrices. It can be related to the situation when the covariance structure for each
of the observation vectors xa and xb has been already studied while the covariance
between vectors xa and xb remains unknown. In such a case the formulas given in
Theorems 3.1 and 3.2 are less complicated, and for Θ1 = Ip and Θ2 = Iq we have
three or four variables instead of 1

2
p(p+1)+ 1

2
q(q+1)+1 and 1

2
p(p+1)+ 1

2
q(q+1)+2

for the structure from S1 and S2, respectively.

In this paper the approximation by only two special structures is given. Observe
however that there is a wide range of potential candidate structures; therefore, this
topic will be a subject of our future research.
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