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Abstract. Let p be a fixed odd prime. We combine some properties of quadratic and
quartic Diophantine equations with elementary number theory methods to determine all
integral points on the elliptic curve E : y2 = x3 − 4p2x. Further, let N(p) denote the
number of pairs of integral points (x,±y) on E with y > 0. We prove that if p > 17, then
N(p) 6 4 or 1 depending on whether p ≡ 1 (mod 8) or p ≡ −1 (mod 8).

Keywords: elliptic curve; integral point; quadratic equation; quartic Diophantine equa-
tion

MSC 2010 : 11G05, 11D25, 11Y50

1. Introduction

Let Z,N be the sets of all integers and positive integers, respectively. For any fixed

positive integer n, the elliptic curve

(1.1) E : y2 = x3 − n2x

is related to the famous congruent number problem (see [12]). The computation of

integral points on (1.1) has been investigated in many papers (see [1], [3], [4], [5],

[6], [7], [8], [10], [11], [12], [13], [14] and [15]). For instance, Bremner, Silverman and

Tzanakis in [3] determined all integral points on (1.1) for 1 6 n 6 72.

Let p be a fixed odd prime. In this paper we deal with the integral points on (1.1)

for n = 2p, namely,

(1.2) E : y2 = x3 − 4p2x.
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An integral point (x, y) on (1.2) is called trivial or nontrivial according to whether

y = 0 or not. Obviously, the only trivial integral points on (1.2) are given by

(x, y) = (0, 0), (2p, 0) and (−2p, 0). Notice that if (x, y) is a nontrivial integral point

on (1.2), then (x,−y) is also. Therefore, (x, y) along with (x,−y) are called a pair

of nontrivial integral points and denoted by (x,±y) with y > 0. We will determine

all nontrivial integral points on (1.2) and give an upper bound for their number.

We now introduce some notations and symbols. Let a, b, k be positive integers with

gcd(a, b) = 1. Any fixed positive integer c can be uniquely expressed as c = dm2,

where d, m are positive integers with d being square free. Then d is called the

quadratic free number of c (see [9], Section 2.6), d and m are denoted by Q(c)

and R(c), respectively. For any nonnegative integer t let

(1.3) Ut =
1

2
(αt + βt), Vt =

1

2
√
2
(αt − βt),

where

(1.4) α = 1 +
√
2, β = 1−

√
2.

It is a well known fact that (U, V ) = (U2i+1, V2i+1) (i = 0, 1, 2, . . .) and (u, v) =

(U2i, V2i) (i = 1, 2, . . .) are all solutions of Pell’s equations

(1.5) U2 − 2V 2 = −1, U, V ∈ N

and

(1.6) u2 − 2v2 = 1, u, v ∈ N,

respectively (see [9], Theorem 244).

Using certain properties of quadratic and quartic Diophantine equations, we will

prove the following result:

Theorem 1.1. If p > 17, then all nontrivial integral points on (1.2) are given as

follows:

(i) p = a4 + b4, (x,±y) = (−4a2b2,±4ab|a4 − b4|).
(ii) p = a4 + 12a2b2 + 4b4, (x,±y) = (−2(a2 − 2b2)2,±16ab|a4 − 4b4|).
(iii) p = 4V2k+1 + 3δ, δ ∈ {1, −1},

(x,±y) =























(2(U2
k + 2V 2

k+1
)2,±16UkVk+1(4V

4
k+1

− U4
k ))

if 2 | k and δ = 1 or 2 ∤ k and δ = −1,

(2(U2
k+1 + 2V 2

k )
2,±16Uk+1Vk(U

4
k+1 − 4V 4

k )),

if 2 | k and δ = −1 or 2 ∤ k and δ = 1.

(iv) p = Q(U4k), (x,±y) = (2pU4k,±4p2V4kR(U4k)).
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Let N(P ) denote the number of pairs of nontrivial integer points on (1.2). Re-

cently, Bennett in [1] proved that if p > 29 and p ≡ ±3 (mod 8), then N(P ) = 0.

By the above theorem, we obtain an upper bound for N(P ) for the remaining cases

as follows:

Corollary 1.1. If p > 17 and p ≡ ±1 (mod 8), then

(1.7) N(p) 6

{

4 if p ≡ 1 (mod 8),

1 if p ≡ −1 (mod 8).

Notice that if p = 17, then there exist four pairs of nontrivial integral points

(x,±y) = (−16,±120), (−2,±48), (162,±2016) and (578,±13872) on (1.2). It im-

plies that the upper bound (1.7) is attainable.

2. Preliminaries

Lemma 2.1 ([9], Theorem 279). If p ≡ 1 (mod 4), then the equation

(2.1) X2 + Y 2 = p, 2 | Y, X, Y ∈ N

has exactly one solution (X,Y ). If p ≡ 3 (mod 4), then (2.1) has no solution.

Lemma 2.2. The equation

(2.2) X4 + 12X2Y 2 + 4Y 4 = p, X, Y ∈ N

has at most one solution (X,Y ).

P r o o f. We now assume that (2.2) has two distinct solutions (X,Y ) and

(X ′, Y ′). Then we have

(2.3) p = (X2 − 2Y 2)2 + (4XY )2 = (X ′2 − 2Y ′2)2 + (4X ′Y ′)2.

Applying Lemma 2.1 to (2.3), we get

(2.4) 4XY = 4X ′Y ′

and

(2.5) |X2 − 2Y 2| = |X ′2 − 2Y ′2|.
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By (2.2) and (2.4), we have (X2 + 2Y 2)2 = X4 + 4X2Y 2 + 4Y 4 = (X4 + 12X2Y 2 +

4Y 4)− 8X2Y 2 = p− 8X2Y 2 = p− 8X ′2Y ′2 = (X ′4+12X ′2Y ′2 +4Y ′4)− 8X ′2Y ′2 =

(X ′2 + 2Y ′2)2. It implies that

(2.6) X2 + 2Y 2 = X ′2 + 2Y ′2.

The combination of (2.5) and (2.6) yields either (X,Y ) = (X ′, Y ′) or X2 = 2Y ′2,

a contradiction. Thus, (2.2) has at most one solution (X,Y ). The lemma is proved.

�

Lemma 2.3. If the equation

(2.7) X4 − 12X2Y 2 + 4Y 4 = p, X, Y ∈ N

has a solution (X,Y ), then

(2.8) p = 4V2k+1 − 3, k ∈ N.

Moreover, if p satisfies (2.8), then (2.7) has only the solution

(2.9) (X,Y ) =

{

(Uk+1, Vk) if 2 | k,
(Uk, Vk+1) if 2 ∤ k.

P r o o f. We now assume that (X,Y ) is a solution of (2.7). Then we have

(2.10) p = (X2 + 2Y 2)− (4XY )2 = (X2 + 4XY + 2Y 2)(X2 − 4XY + 2Y 2).

Notice that X2 + 4XY + 2Y 2 > 1 and p is an odd prime. By (2.10), we get

(2.11) X2 + 4XY + 2Y 2 = p

and

(2.12) X2 − 4XY + 2Y 2 = (X − 2Y )2 − 2Y 2 = 1.

We see from (2.12) that (1.6) has the solution (u, v) = (|X − 2Y |, Y ). Hence, we

have

(2.13) X − 2Y = λU2t, Y = V2t, λ ∈ {1,−1}, t ∈ N.
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When λ = 1, then from (1.3), (1.4) and (2.13), we have

(2.14) X = U2t + 2V2t =
α2t + β2t

2
+

α2t − β2t

√
2

=
α2t+1 + β2t+1

2
= U2t+1.

Substituting (2.12), (2.13) and (2.14) into (2.11) yields

(2.15) p = (X2 − 4XY + 2Y 2) + 8XY = 1 + 8U2t+1V2t = 4V4t+1 − 3.

Let k = 2t. We see from (2.15) that p satisfies (2.8) with 2 | k. Moreover, since p
is fixed and {Vi}∞i=1 is an increasing sequence, by (2.13) and (2.14), if p satisfies (2.8)

with 2 | k, then (2.7) has only the solution (X,Y ) = (Uk+1, Vk).

Similarly, when λ = −1, let k = 2t− 1, then p satisfies (2.8) with 2 ∤ k, and (2.7)

has only the solution (X,Y ) = (Uk, Vk+1). Thus, the lemma is proved. �

Using the same method as in the proof of Lemma 2.3, we can obtain the following

lemma:

Lemma 2.4. If p > 7 and the equation

(2.16) X4 − 12X2Y 2 + 4Y 4 = −p, X, Y ∈ N

has a solution (X,Y ), then

(2.17) p = 4V2k+1 + 3, k ∈ N.

Moreover, if p satisfies (2.17), then (2.16) has only the solution

(2.18) (X,Y ) =

{

(Uk, Vk+1) if 2 | k,
(Uk+1, Vk) if 2 ∤ k.

Lemma 2.5. The equation

(2.19) U2l = pZ2, l, Z ∈ N

has at most one solution (l, Z). Moreover, if p > 11, then the solution (l, Z) satis-

fies 2 | l.

P r o o f. We now assume that (l, Z) is a solution of (2.19). Since U2
2l − 2V 2

2l = 1,

by (2.19) we have

(2.20) p2Z4 − 2V 2
2l = 1.

Thus, applying the results of [2] to (2.20), we obtain the lemma immediately. �
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Lemma 2.6. If p > 11 and (2.19) has a solution (l, Z), then p ≡ 1 (mod 8).

P r o o f. By Lemma 2.5 we have 2 | l and

(2.21) U4k = pZ2.

Further, by (1.3), (1.4) and (2.21), we get

(2.22) pZ2 =
α4k + β4k

2
=

1

2
((α2k + β2k)2 − 2(αβ)2k) = 2U2

2k − 1.

Therefore, since 2 ∤ Z and 2 ∤ U2k, by (2.22) we obtain p ≡ pZ2 ≡ 2U2
2k−1 ≡ 2−1 ≡ 1

(mod 8). The lemma is proved. �

3. Proof of the theorem

We now assume that (x,±y) is a pair of nontrivial integral points on (1.2). Since

y > 0, we have either 0 > x > −2p or x > 2p. The case 0 > x > −2p has been solved

in [3] as follows:

Lemma 3.1. If p > 17 and 0 > x > −2p, then the integral points satisfy either

type (i) or type (ii).

For the case x > 2p, x can be expressed as

(3.1) x = 2rpsz, gcd(2p, z) = 1, r > 0, s > 0, r, s ∈ Z, z ∈ N.

In this respect, by [3] we have the following result:

Lemma 3.2. If p > 17 and x > 2p, then the integral points do not satisfy r = 0

or s = 1.

By Lemma 3.1 and 3.2, it suffices to prove the theorem for the following four cases:

Case I : r = 1 and s = 0.

By (1.2) and (3.1) we have z = 2z and

(3.2) 8z(z2 − p2) = y2.

Since gcd(2p, z) = 1, we get gcd(z, 8(z2 − p2)) = 1 , and by (3.2),

(3.3) z = f2, z2 − p2 = 8g2, y = 8fg, 2 ∤ f, gcd(f, g) = 1, f, g ∈ N.
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By (3.3) we have

(3.4) f4 − p2 = 8g2, p ∤ fg

and

(3.5) f2 + λ1p = 2l2, f2 − λ1p = 4m2, g = lm, 2 ∤ l, gcd(l,m) = 1,

λ1 ∈ {1,−1}, l,m ∈ N.

Further, by (3.5) we get

(3.6) f2 = l2 + 2m2

and

(3.7) p = λ1(l
2 − 2m2).

Furthermore, by (3.6) we have

(3.8) f + λ2l = 2a2, f − λ2l = 4b2, m = 2ab, 2 ∤ a, gcd(a, b) = 1,

λ2 ∈ {1,−1}, a, b ∈ N,

whence we get

(3.9) f = a2 + 2b2

and

(3.10) l = λ2(a
2 − 2b2).

Substituting (3.8) and (3.10) into (3.7) yields

(3.11) p = λ1(a
4 − 12a2b2 + 4b4).

Therefore, since p > 17, applying Lemma 2.3 and 2.4 to (3.11), by (3.3), (3.8), (3.9)

and (3.10), we obtain the integral points of type (iii).

Case II : r > 1 and s = 0.

Now we see that x = 2rz and

(3.12) 2r+2z(22r−2z2 − p2) = y2.
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Since gcd(z, 2r+2(22r−2z2 − p2)) = 1, by (3.12) we get

(3.13) r = 2t, z = f2, 22r−2z2 − p2 = g2, y = 2t+1fg, 2 ∤ fg,

gcd(f, g) = 1, f, g, t ∈ N.

But by the third equality of (3.13), we have

0 ≡ 22r−2z2 ≡ p2 + g2 ≡ 1 + 1 ≡ 2 (mod 4),

a contradiction.

Case III : r = 1 and s > 1.

Now we see that x = 2psz and

(3.14) 8ps+2z(p2s−2z2 − 1) = y2.

Since gcd(z, 8ps+2(p2s−2z2 − 1)) = 1, we get from (3.14) that

(3.15) s = 2t, z = f2, p2s−2z2 − 1 = 8g2, y = 8pt+1fg, 2 ∤ f,

gcd(f, g) = 1, f, g, t ∈ N,

whence we obtain

(3.16) (p2t−1f2)2 − 2(2g)2 = 1.

Comparing (3.16) with (1.6), we have

(3.17) p2t−1f2 = U2l, 2g = V2l, l ∈ N.

Further, since p > 17, applying Lemma 2.5 to the first equality of (3.17), we get 2 | l.
So we have l = 2k, where k is a positive integer. Therefore, by the definition of

quadratic free number, we see from (3.17) that

(3.18) p = Q(U4k), pt−1f = R(U4k).

Thus, by (3.15) and (3.18) we obtain the integral points of type (iv).

Case IV : r > 1 and s > 1.

Now we see that x = 2rpsz and

(3.19) 2r+2ps+2z(22r−2p2s−2z2 − 1) = y2.

Since gcd(z, 2r+2ps+2(22r−2p2s−2z2− 1)) = 1, we see from (3.19) that 2 | r, 2 | s and

(3.20) 22r−2p2s−2z2 − 1 = g2, g ∈ N.

But by (3.20) we get 1 = (2r−1ps−1z)2 − g2 > 2r−1ps−1z + g > 1, a contradiction.

To sum up, the theorem is proved. �
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4. Proof of the corollary

Let Ni(p) (i = 1, 2, 3, 4) denote the numbers of pairs of integral points of type (i),

(ii), (iii) and (iv), respectively. Then we have

(4.1) N(p) =

4
∑

i=1

Ni(p).

By Lemma 2.1 and 2.2, we have

(4.2) Nj(p)

{

6 1 if p ≡ 1 (mod 8),

= 0 if p ≡ −1 (mod 8)
for j = 1, 2.

Notice that

4V2k+1 + 3δ ≡
{

−1 (mod 8) if δ = 1,

1 (mod 8) if δ = −1,

and {4V2k+1 + 3δ}∞k=1
is an increasing sequence, where δ ∈ {1,−1}. Therefore, by

Lemma 2.3 and 2.4, we get

(4.3) N3(p) 6 1.

By Lemma 2.5 and 2.6, we have

(4.4) N4(p)

{

6 1 if p ≡ 1 (mod 8),

= 0 if p ≡ −1 (mod 8).

Thus, the combination of (4.1), (4.2), (4.3) and (4.4) yields (1.7). The corollary is

proved. �
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