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Received September 8, 2017. Published online August 8, 2018.

Abstract. We consider harmonic Bergman-Besov spaces bpα and weighted Bloch spaces b
∞
α

on the unit ball of Rn for the full ranges of parameters 0 < p < ∞, α ∈ R, and determine
the precise inclusion relations among them. To verify these relations we use Carleson
measures and suitable radial differential operators. For harmonic Bergman spaces various
characterizations of Carleson measures are known. For weighted Bloch spaces we provide
a characterization when α > 0.
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1. Introduction

Let n > 2 be an integer and B = Bn be the open unit ball in Rn. We denote the

normalized Lebesgue volume measure on B by dν so that ν(B) = 1. For α ∈ R, we

define the weighted measures dνα on B by

dνα(x) = cα(1− |x|2)α dν(x).

These measures are finite when α > −1 and in this case we choose cα so that

να(B) = 1. When α 6 −1, we set cα = 1. For a measure µ on B, we denote the

Lebesgue classes with respect to µ by Lp(µ), 0 < p < ∞. For short, we also write

Lp
α = Lp(dνα) and Lp = Lp

0.
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For a multi-index m = (m1, . . . ,mn), where m1, . . . ,mn are non-negative integers,

and for smooth f we write

∂mf =
∂|m|f

∂xm1

1 . . . ∂xmn
n

,

where |m| = m1 + . . .+mn.

Let h(B) be the space of all complex-valued harmonic functions on B. When

α > −1 and 0 < p < ∞, the harmonic weighted Bergman space bpα is defined by

bpα = h(B) ∩ Lp
α. This family of spaces can be extended to all α ∈ R. We call the

extended family Bergman-Besov spaces, though they are sometimes called Bergman-

Sobolev spaces or just Besov spaces.

For α ∈ R and 0 < p < ∞, let N be a non-negative integer such that

(1.1) α+ pN > −1.

The harmonic Bergman-Besov space bpα consists of all f ∈ h(B) such that

(1− |x|2)N∂mf ∈ Lp
α,

for every multi-index m with |m| = N . That is, f ∈ h(B) belongs to bpα if and only

if for every multi-index m with |m| = N , we have

∫

B

|∂mf(x)|p(1− |x|2)α+pN dν(x) < ∞.

The space bpα does not depend on the choice of N as long as (1.1) is satisfied.

When α > −1, one can choose N = 0 and the resulting space is a harmonic weighted

Bergman space. When α = −1 and p = 2, the space b2−1 is the harmonic Hardy

space. When α = −n, the measure dν−n is Möbius invariant and the spaces b
p
−n are

called harmonic Besov spaces by many authors. If, in addition, p = 2, the space b2−n

is the harmonic Dirichlet space.

In the definition of bpα, instead of partial derivatives one can use radial derivatives

or more effectively certain radial differential operators Dt
s defined in terms of re-

producing kernels of harmonic Bergman spaces. These matters are studied in detail

in [12] for 1 6 p < ∞ and in [8] for 0 < p < 1 and will be reviewed in Section 2.

For each α ∈ R and 0 < p < ∞ the spaces bpα are nontrivial, since they clearly

contain harmonic polynomials. As will be verified later, all of them are different,

though some of them are included in some others. One of the aims of this paper is

to determine exactly when a Bergman-Besov space bpα is included in another b
q
β . The

result is divided into two cases depending on whether q < p or q > p.
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Theorem 1.1. Let 0 < q < p < ∞ and α, β ∈ R. Then

bpα ⊂ bqβ if and only if
α+ 1

p
<

β + 1

q
.

Theorem 1.2. Let 0 < p 6 q < ∞ and α, β ∈ R. Then

bpα ⊂ bqβ if and only if
α+ n

p
6

β + n

q
.

We emphasize that both theorems are two-directional and together they com-

pletely determine all possible inclusion relations between Bergman-Besov spaces. If

we assign to each bpα the point (p, α) in the right half of pα-plane, then the inclusion

relations are shown in Figure 1. Moreover, the inclusions in the above theorems are

strict (see Corollary 4.3 below).

p

α

−1

−n

bp
α

I

II
III

III

Figure 1. If (q, β) is in region I, then b
p
α ⊂ b

q
β . If (q, β) is in region II, then b

p
α ⊃ b

q
β . If

(q, β) is in region III, then neither bpα nor b
q
β contains the other.

Theorems 1.1 and 1.2 complete the inclusion relations stated in [12], Section 13.2,

where one-directional partial results are shown. For the holomorphic analogues of

these theorems see [21].

Roughly speaking, the “p = ∞” case of Bergman-Besov spaces bpα is the family of

Bloch spaces b∞α . Let α ∈ R. Pick a non-negative integer N such that

(1.2) α+N > 0.

The weighted harmonic Bloch space b∞α consists of all f ∈ h(B) such that

sup
x∈B

(1− |x|2)α+N |∂mf(x)| < ∞,
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for every multi-index m with |m| = N . We mention two special cases. When α = 0,

taking N = 1 shows

b∞0 =
{
f ∈ h(B) : sup

x∈B

(1− |x|2)|∇f(x)| < ∞
}
.

This is the most studied member of the family. When α > 0, one can choose N = 0

and

b∞α =
{
f ∈ h(B) : sup

x∈B

(1 − |x|2)α|f(x)| < ∞
}
, α > 0.

As before, the spaces b∞α do not depend on the choice of N as long as (1.2)

is satisfied and partial derivatives can be replaced with radial derivatives or the

operators Dt
s. These are studied in detail in [9].

The second aim of this paper is to determine the exact inclusion relation between

a Bergman-Besov space bpα and a weighted Bloch space b
∞
β .

Theorem 1.3. Let 0 < p < ∞ and α, β ∈ R. Then

(a) b∞β ⊂ bpα if and only if β < (α+ 1)/p,

(b) bpα ⊂ b∞β if and only if β > (α+ n)/p.

The holomorphic analogue of the above theorem is proved in [20] for α = 0, β > −1

and in [21] for α, β ∈ R.

To prove the above theorems we will use Carleson measures. Various characteriza-

tions of Carleson measures for harmonic Bergman spaces are known. We will recall

them in Section 3 and add a new characterization. On the other hand, as far as

we know, characterizations of Carleson measures for harmonic Bloch spaces do not

exist. In Subsection 3.2 we will provide a characterization for b∞α , α > 0.

2. Preliminaries

In this section we collect some known facts that will be used later. For two positive

expressions X and Y we write X . Y if there exists a positive constant C, whose

exact value is inessential, such that X 6 CY . If both X . Y and Y . X , we write

X ∼ Y .

The Pochhammer symbol (a)b is defined by

(a)b =
Γ(a+ b)

Γ(a)
,

when a and a+ b are off the pole set −N of the gamma function. By Stirling formula

(2.1)
(a)c
(b)c

∼ ca−b, c → ∞.
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A harmonic function f on B has a homogeneous expansion, that is, there exist

homogeneous harmonic polynomials fk of degree k such that f(x) =
∞∑
k=0

fk(x). The

series uniformly and absolutely converges on compact subsets of B.

2.1. Pseudohyperbolic metric. The canonical Möbius transformation on B

that exchanges a and 0 is

ϕa(x) =
(1 − |a|2)(a− x) + |a− x|2a

[x, a]2
.

Here the bracket [x, a] is defined by

[x, a] =
√
1− 2x · a+ |x|2|a|2,

where x·a denotes the inner product of x and a in Rn. The pseudohyperbolic distance

between x, y ∈ B is

̺(x, y) = |ϕx(y)| =
|x− y|

[x, y]
.

For a proof of the following lemma see [2], Lemma 2.2.

Lemma 2.1. Let a, x, y ∈ B. Then

1− ̺(x, y)

1 + ̺(x, y)
6

[x, a]

[y, a]
6

1 + ̺(x, y)

1− ̺(x, y)
.

The following two lemmas show that if x, y ∈ B are close in the pseudohyperbolic

metric, then certain quantities are comparable. Both of them easily follow from

Lemma 2.1 (note that [x, x] = 1− |x|2).

Lemma 2.2. Let 0 < δ < 1. Then

[x, y] ∼ 1− |x|2 ∼ 1− |y|2

for all x, y ∈ B with ̺(x, y) < δ.

Lemma 2.3. Let 0 < δ < 1. Then

[x, a] ∼ [y, a]

for all a, x, y ∈ B with ̺(x, y) < δ.
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For 0 < δ < 1 and x ∈ B we denote the pseudohyperbolic ball with center x and

radius δ by Eδ(x). The pseudohyperbolic ball Eδ(x) is also a Euclidean ball with

center c and radius r, where

c =
(1 − δ2)x

1− δ2|x|2
and r =

(1 − |x|2)δ

1− δ2|x|2
.

It follows that for fixed 0 < δ < 1, we have ν(Eδ(x)) ∼ (1 − |x|2)n. More generally,

for α ∈ R, by Lemma 2.2

(2.2) να(Eδ(x)) = cα

∫

Eδ(x)

(1− |y|2)α dν(y) ∼ (1− |x|2)αν(Eδ(x)) ∼ (1− |x|2)α+n.

Let (ak) be a sequence of points in B and 0 < δ < 1. We say that (ak) is

δ-separated if ̺(aj , ak) > δ for all j 6= k. For a proof of the following lemma see, for

example, [16].

Lemma 2.4. Let 0 < δ < 1. There exists a sequence of points (ak) in B satisfying

the following properties:

(i) (ak) is δ-separated,

(ii)
∞⋃
k=1

Eδ(ak) = B,

(iii) there exists a positive integer N such that every x ∈ B belongs to at most N of

the balls Eδ(ak).

2.2. Reproducing kernels and the operators Dt
s. When α > −1, the point

evaluation functional f 7→ f(x) is bounded on the Hilbert space b2α, so by the Riesz

representation theorem there exists Rα(x, y) such that

f(x) =

∫

B

f(y)Rα(x, y) dνα(y) ∀f ∈ b2α, ∀x ∈ B, α > −1.

It is well-known that Rα is real-valued and Rα(x, y) = Rα(y, x). The homogeneous

expansion of Rα(x, y) can be expressed in terms of zonal harmonics (see [7], [17])

Rα(x, y) =
∞∑

k=0

(1 + 1
2n+ α)k

(12n)k
Zk(x, y) =:

∞∑

k=0

γk(α)Zk(x, y), α > −1.

For definition and details about Zk(x, y), see [1], Chapter 5. By (2.1)

(2.3) γk(α) ∼ kα+1.

The reproducing kernels Rα(x, y) can be extended to all α ∈ R (see [11], [12]),

where the crucial point is not the precise form of the kernel but preserving the

property (2.3).
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Definition 2.5. Let α ∈ R. Define

γk(α) :=





(1 + 1
2n+ α)k

(12n)k
if α > −(1 + 1

2n),

((1)k)
2

(1− (12n+ α))k(
1
2n)k

if α 6 −(1 + 1
2n),

and Rα(x, y) :=
∞∑
k=0

γk(α)Zk(x, y).

By (2.1), the property (2.3) holds for all α ∈ R. Using the coefficients in the

extended kernels we define the radial differential operators Dt
s.

Definition 2.6. Let f ∈ h(B) and f =
∞∑
k=0

fk be its homogeneous expansion.

For s, t ∈ R we define

Dt
sf =

∞∑

k=0

γk(s+ t)

γk(s)
fk.

Dt
sf is also in h(B) and the map Dt

s : h(B) → h(B) is continuous in the topology

of uniform convergence on compact subsets (see [12]). By (2.3), γk(s+ t)/γk(s) ∼ kt

and, roughly speaking, Dt
s multiplies the kth homogeneous part of f by kt. For

t > 0 the operator Dt
s acts as a differential operator and for t < 0 as an integral

operator. The parameter s plays a minor role and is used to have the precise relation

Dt
sRs(x, y) = Rs+t(x, y). Compared to partial or radial derivatives, an important

property of Dt
s is that it is invertible, the inverse of D

t
s being D

−t
s+t.

As mentioned in the introduction, the spaces bpα and b
∞
α can equivalently be defined

by using the operators Dt
s. Given 0 < p < ∞ and α ∈ R, pick s, t ∈ R such that

α + pt > −1. The harmonic Bergman-Besov space bpα consists of all f ∈ h(B) such

that (see [12] for 1 6 p < ∞, and [8] for 0 < p < 1)

‖f‖p
bpα

= ‖(1− |x|2)tDt
sf‖

p
Lp

α
= cα

∫

B

|Dt
sf(x)|

p(1 − |x|2)α+pt dν(x) < ∞.

Strictly speaking, the norm (quasinorm for 0 < p < 1) depends on s and t but this is

not mentioned as it is known that every choice of the pair (s, t) leads to an equivalent

norm.

Given α ∈ R, pick s, t ∈ R such that α + t > 0. The harmonic Bloch space b∞α
consists of all f ∈ h(B) such that (see [9])

‖f‖b∞α = sup
x∈B

(1− |x|2)α+t|Dt
sf(x)| < ∞.

The most important property of the operator Dt
s that we will use later is that

it allows us to pass from one Bergman-Besov (or Bloch) space to another. More

precisely, we have the following isomorphisms.
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Lemma 2.7. Let 0 < p < ∞ and α, s, t ∈ R.

(a) The map Dt
s : bpα → bpα+pt is an isomorphism.

(b) The map Dt
s : b∞α → b∞α+t is an isomorphism.

For a proof of part (a) of the above lemma see [12], Corollary 9.2 for 1 6 p < ∞

and [8] for 0 < p < 1. For part (b) see [9], Proposition 4.6.

2.3. Estimates of reproducing kernels. In the case α > −1, the reproduc-

ing kernels Rα(x, y) are well-studied by various authors. We recall some of their

properties below. For extension of these properties to α ∈ R we refer to [12].

For a proof of the following pointwise estimate see [6], [13], [19] for α > −1 and [12]

for α ∈ R.

Lemma 2.8. Let α ∈ R. For all x, y ∈ B,

|Rα(x, y)| .





1

[x, y]α+n
if α > −n,

1 + log
1

[x, y]
if α = −n,

1 if α < −n.

On the diagonal x = y, the above estimate holds in two directions. For a proof

see [17] for α > −1 and [9] for α ∈ R.

Lemma 2.9. Let α ∈ R. For all x ∈ B,

Rα(x, x) ∼





1

(1 − |x|2)α+n
if α > −n,

1 + log
1

1− |x|2
if α = −n,

1 if α < −n.

The next lemma shows that the first part of the above estimate continues to hold

when x and y are close enough in the pseudohyperbolic metric. It can be proved

along the same lines as [17], Proposition 5.

Lemma 2.10. Let α > −n. There exists 0 < δ < 1 such that for every x ∈ B and

y ∈ Eδ(x),

Rα(x, y) ∼
1

(1− |x|2)α+n
.
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The next lemma gives an estimate of weighted Lp norms of reproducing kernels.

For α > −1 and c > 0, it is proved in [17], Proposition 8. For a full proof see [12],

Theorem 1.5.

Lemma 2.11. Let α ∈ R, 0 < p < ∞ and β > −1. Set c = p(α + n) − (β + n).

Then

∫

B

|Rα(x, y)|
p(1− |y|2)β dν(y) ∼





1

(1 − |x|2)c
if c > 0,

1 + log
1

1− |x|2
if c = 0,

1 if c < 0.

By Lemma 2.8, when α > −n, the kernel Rα(x, y) is dominated by 1/[x, y]α+n.

The next lemma estimates the weighted integrals of these dominating terms. For

a proof see, for example, [14], Proposition 2.2, or [19], Lemma 4.4.

Lemma 2.12. Let β > −1 and s ∈ R. Then

∫

B

(1− |y|2)β

[x, y]β+n+s
dν(y) ∼





1

(1− |x|2)s
if s > 0,

1 + log
1

1− |x|2
if s = 0,

1 if s < 0.

Integral operators involving Rα(x, y) or the above dominating terms are widely

used in the study of Bergman spaces. For s, β ∈ R define the operator

Es,βf(x) := (1− |x|2)s
∫

B

f(y)
(1− |y|2)β

[x, y]β+n+s
dν(y).

For a proof of the following lemma see, for example, [12], Theorem 1.6.

Lemma 2.13. Let 1 6 p < ∞ and α, β, s ∈ R. The operator Es,β : Lp
α → Lp

α is

bounded if and only if −ps < α+ 1 < p(β + 1).

Finally, we mention the following well-known growth estimate for elements of the

Bergman space bpα, α > −1. See [12], Theorem 13.1 for generalization to α ∈ R.

Lemma 2.14. Let 0 < p < ∞ and α > −1. Then for all f ∈ bpα and for all x ∈ B,

|f(x)| .
‖f‖bpα

(1− |x|2)(α+n)/p
.
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3. Carleson measures

Let X ⊂ h(B) be a Banach or more generally a quasi-Banach space of harmonic

functions and let 0 < q < ∞. A positive Borel measure µ on B is called a q-Carleson

measure for X if the inclusion i : X → Lq(µ) is bounded, that is, if

(∫

B

|f(x)|q dµ(x)

)1/q

. ‖f‖X ∀f ∈ X.

Carleson measures for various function spaces are extensively studied; a frequent

theme is characterizing Carleson measures in terms of averaging functions and

Berezin transforms.

For 0 < δ < 1 the averaging function µ̂δ is defined by

µ̂δ(x) =
µ(Eδ(x))

ν(Eδ(x))
, x ∈ B.

More generally, for α ∈ R we define

µ̂α,δ(x) :=
µ(Eδ(x))

να(Eδ(x))
, x ∈ B.

By (2.2), µ̂α,δ(x) ∼ µ(Eδ(x))/(1 − |x|2)α+n. The following lemma shows that

weighted Lp behaviour of µ̂α,δ is independent of δ. For a proof see [2], Proposi-

tion 3.6, for α = 0. The proof also works for all α ∈ R.

Lemma 3.1. Let 0 < p < ∞, α, β ∈ R and 0 < δ, ε < 1. Then µ̂α,δ ∈ Lp
β if and

only if µ̂α,ε ∈ Lp
β.

The Berezin transform of a positive measure µ on B is

µ̃(x) =

∫

B

|R(x, y)|2

‖R(x, ·)‖2L2

dµ(y),

where R(x, y) = R0(x, y). More generally, instead of R(x, y) one can use weighted

kernels Rα(x, y). We will restrict ourselves to the case α > −1.

For α > −1 and t > 1, the (α, t)-Berezin transform of µ is defined by

µ̃α,t(x) :=

∫

B

|Rα(x, y)|
t

‖Rα(x, ·)‖tLt
α

dµ(y).

Since (α+ n)t− (α+ n) > 0, by Lemma 2.11

(3.1) µ̃α,t(x) ∼ (1− |x|2)(α+n)t−(α+n)

∫

B

|Rα(x, y)|
t dµ(y).
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Applying also Lemma 2.8 we obtain the estimate

(3.2) µ̃α,t(x) . (1− |x|2)(α+n)t−(α+n)

∫

B

dµ(y)

[x, y](α+n)t
.

Using the dominating term on the right-hand side, for α > −1 and s > 0, we define

(α, s)-Berezin-type transform µ̄α,s by

µ̄α,s(x) := (1 − |x|2)s
∫

B

dµ(y)

[x, y]α+n+s
.

The following proposition shows that Lp
α behaviour of µ̃α,t, µ̄α,s and µ̂α,δ are the

same when p > 1.

Proposition 3.2. Let 1 < p < ∞ and α > −1. The following are equivalent:

(a) µ̂α,δ ∈ Lp
α for some (every) 0 < δ < 1.

(b) µ̄α,s ∈ Lp
α for some (every) s > 0.

(c) µ̃α,t ∈ Lp
α for some (every) t > 1.

P r o o f. (a) ⇒ (b): Suppose µ̂α,δ ∈ Lp
α for some 0 < δ < 1. By Lemma 2.3

and (2.2)

∫

B

dµ(y)

[x, y]α+n+s
∼

∫

B

1

(1− |y|2)α+n

∫

Eδ(y)

dνα(z)

[x, z]α+n+s
dµ(y).

Applying Fubini’s theorem (note that z ∈ Eδ(y) if and only if y ∈ Eδ(z)) and

Lemma 2.2 we obtain

∫

B

dµ(y)

[x, y]α+n+s
∼

∫

B

1

[x, z]α+n+s

∫

Eδ(z)

dµ(y)

(1 − |y|2)α+n
dνα(z)(3.3)

∼

∫

B

µ̂α,δ(z)

[x, z]α+n+s
dνα(z).

Since µ̂α,δ ∈ Lp
α, by Lemma 2.13, µ̄α,s ∈ Lp

α for every s > 0.

(b) ⇒ (c): This part follows from (3.2).

(c) ⇒ (a): Suppose µ̃α,t ∈ Lp
α for some t > 1. Pick 0 < δ0 < 1 as promised in

Lemma 2.10. By (3.1) and Lemma 2.10

µ̃α,t(x) & (1 − |x|2)(α+n)t−(α+n)

∫

Eδ0
(x)

|Rα(x, y)|
t dµ(y)(3.4)

∼
µ(Eδ0(x))

(1 − |x|2)α+n
= µ̂α,δ0(x).

Hence µ̂α,δ0 ∈ Lp
α. By Lemma 3.1, µ̂α,δ ∈ Lp

α for every 0 < δ < 1. �
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The next proposition is about a similar result concerning pointwise bounds.

Proposition 3.3. Suppose γ > 0 and α > −1. The following are equivalent:

(a) µ̂α,δ(x) . (1− |x|2)γ for some (every) 0 < δ < 1.

(b) µ̄α,s(x) . (1− |x|2)γ for some (every) s > γ.

(c) µ̃α,t(x) . (1− |x|2)γ for some (every) t > (α+ n+ γ)/(α+ n).

P r o o f. The proof is similar to the proof of the previous proposition. To see that

(a) implies (b) suppose that (a) holds for some 0 < δ < 1. By (3.3)

(1− |x|2)s
∫

B

dµ(y)

[x, y]α+n+s
∼ (1− |x|2)s

∫

B

µ̂α,δ(y)

[x, y]α+n+s
dνα(y)

. (1− |x|2)s
∫

B

(1 − |y|2)α+γ

[x, y]α+n+s
dν(y).

Part (b) follows from Lemma 2.12. That (b) implies (c) is immediate from (3.2). To

see that (c) implies (a), pick δ0 as in Lemma 2.10. Relation (3.4) shows that (a) holds

with δ = δ0. That it holds for every 0 < δ < 1 is a consequence of Lemma 3.2 of [5].

�

3.1. q-Carleson measures for harmonic Bergman spaces. Characterizations

of q-Carleson measures for harmonic Bergman spaces bpα, α > −1 in terms of µ̂α,δ

and µ̃α,t are established by various authors in more general settings. In this

subsection we will recall these results and add a new characterization in terms

of µ̄α,s. The characterizations are divided into two cases depending on whether

q < p or q > p. In the case q < p note that the conjugate exponent of p/q

is p/(p− q).

Theorem 3.4. Let 0 < q < p < ∞, α > −1 and µ > 0. The following are

equivalent:

(a) µ is a q-Carleson measure for bpα.

(b) µ̂α,δ ∈ L
p/(p−q)
α for some (every) 0 < δ < 1.

(c) µ̃α,t ∈ L
p/(p−q)
α for some (every) t > 1.

(d) µ̄α,s ∈ L
p/(p−q)
α for some (every) s > 0.

P r o o f. That (a) and (b) are equivalent is proved in [15] and [16] for the un-

weighted holomorphic Bergman space on the unit disc D. As mentioned in the

remarks of [15], the method works also for weighted harmonic Bergman spaces on

the unit ball of Rn. The equivalence of (a), (b) and (c) is proved in [4], Theorem 3.4,

not just for the ball but for bounded smooth domains. The equivalence of (b), (c)

and (d) follows from Proposition 3.2. �
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We now consider the case q > p.

Theorem 3.5. Let 0 < p 6 q < ∞, α > −1 and µ > 0. The following are

equivalent:

(a) µ is a q-Carleson measure for bpα.

(b) µ̂α,δ . (1− |x|2)(α+n)(q/p−1) for some (every) 0 < δ < 1.

(c) µ̃α,t . (1 − |x|2)(α+n)(q/p−1) for some (every) t > q/p.

(d) µ̄α,s . (1− |x|2)(α+n)(q/p−1) for some (every) s > (α+ n)(q/p− 1).

Note that (b) is equivalent to

µ(Eδ(x)) . (1− |x|2)(α+n)q/p for some (every) 0 < δ < 1

and (d) is equivalent to

(1− |x|2)c
∫

B

dµ(y)

[x, y](α+n)q/p+c
. 1 for some (every) c > 0.

P r o o f. Equivalence of (a) and (b) is proved in [18]. Equivalence of (a), (b)

and (c) is proved in [4], Theorem 3.1, for bounded smooth domains. That (b), (c)

and (d) are equivalent follows from Proposition 3.3. �

3.2. q-Carleson measures for harmonic Bloch spaces b∞α , α > 0. In this sub-

section we will characterize q-Carleson measures for b∞α , α > 0, in terms of a weighted

integral of µ. It is also possible to give characterizations in terms of µ̂α,δ, µ̃α,t or µ̄α,s

similar to the previous two theorems, but the following result will be sufficient for

our purposes.

Theorem 3.6. Let 0 < q < ∞, α > 0 and µ > 0. The following are equivalent:

(a) µ is a q-Carleson measure for b∞α .

(b)
∫
B
dµ(x)/(1 − |x|2)αq < ∞.

For the holomorphic counterpart of the above theorem see [10], Theorem 1.2.

The proof in [10] uses the so-called holomorphic Ryll-Wojtaszcyk polynomials which

do not seem to have harmonic analogues. Our proof below is based on an idea of

Luecking, see [16], and employs Khinchine’s inequality.

Define the Rademacher functions rk on R by

r1(t) =

{
1 if 0 6 t− [t] < 1

2 ,

−1 if 1
2 6 t− [t] < 1

rk(t) = r1(2
k−1t), k = 2, 3, . . .
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Let (ck) ∈ l2 be a sequence of complex numbers and f(t) =
∞∑
k=1

ckrk(t). Khinchine’s

inequality states that for any 0 < q < ∞, the Lq[0, 1] norm of f is comparable to

the l2 norm of (ck).

Lemma 3.7 (Khinchine’s inequality). Let 0 < q < ∞ and (ck) ∈ l2. The series
∞∑
k=1

ckrk(t) converges almost everywhere and if f(t) =
∞∑
k=1

ckrk(t), then

(∫ 1

0

|f(t)|q dt

)1/q

∼

( ∞∑

k=1

|ck|
2

)1/2

.

A proof of Khinchine’s inequality can be found in [22], Section V.8. In the proof

of Theorem 3.6 we will use some special functions in b∞α that are defined in the next

lemma. For the α = 0 version of this lemma, see [3].

Lemma 3.8. Let 0 < δ < 1 and (ak) be a δ-separated sequence. Let α > 0 and

s > α− 1. Then for (λk) ∈ l∞

(3.5) f(x) =

∞∑

k=1

λk(1− |ak|
2)s+n−αRs(x, ak)

is in b∞α and ‖f‖b∞α . ‖λk‖l∞ .

P r o o f. The first estimate in Lemma 2.8 shows

|f(x)| . ‖λk‖l∞
∞∑

k=1

(1− |ak|
2)s+n−α

[x, ak]s+n
.

By Lemma 2.2, 2.3 and (2.2)

(1− |ak|
2)s+n−α

[x, ak]s+n
∼

∫

Eδ/2(ak)

(1− |y|2)s−α

[x, y]s+n
dν(y).

Using this and the fact that the balls Eδ/2(ak) are disjoint we obtain

|f(x)| . ‖λk‖l∞
∞∑

k=1

∫

Eδ/2(ak)

(1− |y|2)s−α

[x, y]s+n
dν(y) 6 ‖λk‖l∞

∫

B

(1− |y|2)s−α

[x, y]s+n
dν(y).

The required result follows from Lemma 2.12. �
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We are now ready to prove Theorem 3.6.

P r o o f of Theorem 3.6. (a) ⇒ (b): Pick s > α− 1. By Lemma 2.10 there exists

0 < δ < 1 such that

(3.6) Rs(x, y) ∼
1

(1− |y|2)s+n
when x ∈ Eδ(y).

Let (ak) be such that the properties listed in Lemma 2.4 hold with δ as above.

Let (λk) ∈ l∞ and f be defined as in (3.5). By assumption (a) and Lemma 3.8

∫

B

∣∣∣∣
∞∑

k=1

λk(1− |ak|
2)s+n−αRs(x, ak)

∣∣∣∣
q

dµ(x) . ‖f‖qb∞α
. ‖λk‖

q
l∞ .

For t ∈ [0, 1] replace λk with λkrk(t) (which does not affect the l∞ norm) and

integrate as t ranges from 0 to 1 to obtain

∫ 1

0

∫

B

∣∣∣∣
∞∑

k=1

λkrk(t)(1 − |ak|
2)s+n−αRs(x, ak)

∣∣∣∣
q

dµ(x) dt . ‖λk‖
q
l∞ .

Applying Fubini’s theorem shows

∫

B

∫ 1

0

∣∣∣∣
∞∑

k=1

λkrk(t)(1 − |ak|
2)s+n−αRs(x, ak)

∣∣∣∣
q

dt dµ(x) . ‖λk‖
q
l∞ .

To use Khinchine’s inequality we first check that (λk(1 − |ak|
2)s+n−αRs(x, ak)) is

in l2. For fixed x ∈ B, we have |Rs(x, ak)| . 1 and by Lemma 2.2, (2.2) and

Lemma 2.4 (i),

∞∑

k=1

(1− |ak|
2)2(s+n−α) ∼

∞∑

k=1

∫

Eδ/2(ak)

(1− |y|2)2(s−α)+n dν(y)

6

∫

B

(1 − |y|2)2(s−α)+n dν(y),

which is finite since 2(s − α) + n > 0. We now apply Khinchine’s inequality and

deduce

∫

B

( ∞∑

k=1

|λk|
2(1 − |ak|

2)2(s+n−α)|Rs(x, ak)|
2

)q/2

dµ(x) . ‖λk‖
q
l∞ .

By part (iii) of Lemma 2.4 for any function g > 0 on B, we have

∞∑

j=1

∫

Eδ(aj)

g dµ 6 N

∫

B

g dµ.
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Thus

∞∑

j=1

∫

Eδ(aj)

( ∞∑

k=1

|λk|
2(1− |ak|

2)2(s+n−α)|Rs(x, ak)|
2

)q/2

dµ(x) . ‖λk‖
q
l∞ .

In the second sum above, taking only the term corresponding to k = j gives

∞∑

j=1

∫

Eδ(aj)

|λj |
q(1− |aj|

2)q(s+n−α)|Rs(x, aj)|
q dµ(x) . ‖λk‖

q
l∞ .

Setting λj = 1 for j = 1, 2, . . . and using (3.6) we conclude that

∞∑

j=1

µ(Eδ(aj))

(1− |aj |2)αq
. 1.

Finally, by part (ii) of Lemma 2.4 and Lemma 2.2

∫

B

dµ(x)

(1 − |x|2)αq
6

∞∑

j=1

∫

Eδ(aj)

dµ(x)

(1 − |x|2)αq
.

∞∑

j=1

µ(Eδ(aj))

(1− |aj |2)αq
. 1.

(b) ⇒ (a): This part immediately follows from the fact that when α > 0 and

f ∈ b∞α , we have (1 − |x|2)α|f(x)| 6 ‖f‖b∞α for all x ∈ B. �

4. Inclusion relations

We begin with the inclusion relations between two Bergman-Besov spaces. For

future reference we record the following immediate consequence of Lemma 2.7.

Lemma 4.1. Let 0 < p, q < ∞ and α, β, t ∈ R. Then

bpα ⊂ bqβ ⇔ bpα+pt ⊂ bqβ+qt.

P r o o f. Pick any s ∈ R, apply (the invertible operator) Dt
s to the lefthand side

and use Lemma 2.7. �

P r o o f of Theorem 1.1. We first assume α, β > −1. Since pointwise evaluation

is bounded on bpα and bqβ, by the closed graph theorem

bpα ⊂ bqβ ⇔ ‖f‖bqβ . ‖f‖bpα ∀f ∈ bpα,

⇔

(∫

B

|f(x)|q(1− |x|2)β dν(x)

)1/q

. ‖f‖bpα ∀f ∈ bpα.

518



That is, bpα ⊂ bqβ if and only if

dµ(x) = (1− |x|2)β dν(x)

is a q-Carleson measure for bpα. Using part (b) of Theorem 3.4 and (2.2) we deduce

that
bpα ⊂ bqβ ⇔ (1− |x|2)β−α ∈ Lp/(p−q)

α

⇔

∫

B

(1− |x|2)(β−α)p/(p−q)+α dν(x) < ∞.

The last integral is finite if and only if

(β − α)
p

p− q
+ α > −1,

which is equivalent to (α+ 1)/p < (β + 1)/q. This finishes the proof for α, β > −1.

We generalize above to all α, β ∈ R by using Lemma 4.1. Let α, β ∈ R. Pick

arbitrary s ∈ R and t ∈ R such that

α+ pt > −1, β + qt > −1.

By Lemma 4.1, we have bpα ⊂ bqβ ⇔ bpα+pt ⊂ bqβ+qt. The first part of the proof shows

that the inclusion on the right holds if and only if (α + pt+ 1)/p < (β + qt + 1)/q.

Canceling t we get the desired result. �

P r o o f of Theorem 1.2. The idea of the proof is similar to the previous one, the

main difference is that we refer to Theorem 3.5 instead of Theorem 3.4.

First assume α, β > −1. As in the previous proof, bpα ⊂ bqβ if and only if

dµ(x) = (1− |x|2)β dν(x)

is a q-Carleson measure for bpα. By part (b) of Theorem 3.5 and (2.2) this is true if

and only if

(1 − |x|2)β−α . (1 − |x|2)(α+n)(q/p−1).

This estimate holds if and only if β − α > (α + n)(q/p − 1), which is equivalent to

(α+ n)/p 6 (β + n)/q.

Generalization to α, β ∈ R follows from Lemma 4.1 as in the previous proof. �

Combining Theorems 1.1 and 1.2 leads to the following corollary.

Corollary 4.2. All Bergman-Besov spaces are different.
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P r o o f. Suppose first that p = q. In this case bpα ⊂ bpβ if and only if α < β and

the inclusion is strict. This is well-known for α, β > −1 and can easily be generalized

to α, β ∈ R by using Lemma 4.1 and arguing as in the proof of Theorem 1.1. So

bpα = bpβ if and only if α = β.

We now consider the case p 6= q. Without loss of generality assume q < p. Suppose

bpα = bqβ. Since b
p
α ⊂ bqβ , by Theorem 1.1, we must have (α+1)/p < (β+1)/q. Adding

this to the inequality (n− 1)/p < (n− 1)/q we obtain

α+ n

p
<

β + n

q
.

On the other hand, by Theorem 1.2, the inclusion bqβ ⊂ bpα implies

β + n

q
6

α+ n

p
.

This contradiction shows bpα 6= bqβ. �

Corollary 4.3. The inclusions in Theorems 1.1 and 1.2 are strict unless p = q

and α = β.

P r o o f. By the previous corollary bpα 6= bqβ unless p = q and α = β. �

We now turn to the inclusion relations between Bergman-Besov and Bloch spaces.

P r o o f of Theorem 1.3. We prove part (a) first with the assumptions α > −1

and β > 0. As before, the boundedness of pointwise evaluation functional on bpα
and b∞β and the closed graph theorem imply

b∞β ⊂ bpα ⇔ ‖f‖bpα . ‖f‖b∞β ∀f ∈ b∞β .

In other words, b∞β ⊂ bpα if and only if

dµ(x) = (1− |x|2)α dν(x)

is a p-Carleson measure for b∞β . By Theorem 3.6 this holds if and only if

∫

B

(1− |x|2)α

(1 − |x|2)βp
dν(x) < ∞.

Since the above integral is finite if and only if α−βp > −1, equivalently β < (α+1)/p,

the proof is complete in the case α > −1 and β > 0.
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We generalize the above result to all α, β ∈ R by using Lemma 2.7. Let α, β ∈ R.

Pick arbitrary s ∈ R and t ∈ R such that

α+ pt > −1, β + t > 0.(4.1)

Since b∞β ⊂ bpα if and only if D
t
sb

∞
β ⊂ Dt

sb
p
α, by Lemma 2.7

(4.2) b∞β ⊂ bpα ⇔ b∞β+t ⊂ bpα+pt.

By the first part of the proof, the righthand side holds if and only if β + t <

(α+ pt+ 1)/p, which is same as β < (α+ 1)/p.

We now prove part (b). We, again, first consider the case α > −1 and β > 0. To

see the “if” part suppose β > (α+ n)/p. If f ∈ bpα, then by Lemma 2.14

(1 − |x|2)(α+n)/p|f(x)| . ‖f‖bpα .

Using first β > 0 and then β > (α+ n)/p, we obtain

‖f‖b∞β = sup
x∈B

(1 − |x|2)β |f(x)| 6 sup
x∈B

(1− |x|2)(α+n)/p|f(x)| . ‖f‖bpα .

Hence bpα ⊂ b∞β .

To see the “only if” part suppose β < (α + n)/p. If bpα ⊂ b∞β , then as before we

must have

(4.3) ‖f‖b∞
β

. ‖f‖bpα ∀f ∈ bpα.

Choose γ such that β < γ < (α + n)/p. For a ∈ B, define ga : B → R,

ga(x) = Rγ−n(x, a).

Lemma 2.11 implies that ga ∈ bpα for each a ∈ B and

‖ga‖bpα =

(
cα

∫

B

|Rγ−n(x, a)|
p(1− |x|2)α dν(x)

)1/p

∼ 1.

On the other hand, by Lemma 2.9

‖ga‖b∞
β

= sup
x∈B

(1− |x|2)β |Rγ−n(x, a)| > (1 − |a|2)β |Rγ−n(a, a)| ∼
1

(1− |a|2)γ−β
.

The contradiction with (4.3) as |a| → 1− shows that bpα ⊂ b∞β only if β > (α+ n)/p.

This completes the proof of part (b) when α > −1 and β > 0.

To generalize to all α, β ∈ R we argue as in part (a). Choose t satisfying (4.1).

Similar to (4.2) we have bpα ⊂ b∞β if and only if b
p
α+pt ⊂ b∞β+t and last inclusion holds

if and only if β > (α+ n)/p. �
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It is known that weighted Bloch spaces with different parameters are different,

that is b∞α = b∞β if and only if α = β; see, for example, [9], Remark 4.9. Theorem 1.3

immediately implies that a Bergman-Besov space and a weighted Bloch space cannot

be the same. Together with Corollary 4.2 we deduce the following.

Corollary 4.4. All Bergman-Besov spaces and all weighted Bloch spaces are dif-

ferent.
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[12] S.Gergün, H.T.Kaptanoğlu, A. E.Üreyen: Harmonic Besov spaces on the ball. Int. J.
Math. 27 (2016), Article ID 1650070, 59 pages. zbl MR doi

[13] M.Jevtić, M.Pavlović: Harmonic Bergman functions on the unit ball in Rn. Acta Math.
Hung. 85 (1999), 81–96. zbl MR doi

[14] C.W.Liu, J. H. Shi: Invariant mean-value property andM-harmonicity in the unit ball
of Rn. Acta Math. Sin. 19 (2003), 187–200. zbl MR doi

[15] D.H. Luecking: Multipliers of Bergman spaces into Lebesgue spaces. Proc. Edinburgh
Math. Soc. 29 (1986), 125–131. zbl MR doi

[16] D.H. Luecking: Embedding theorems for spaces of analytic functions via Khinchine’s
inequality. Michigan Math. J. 40 (1993), 333–358. zbl MR doi

[17] J.Miao: Reproducing kernels for harmonic Bergman spaces of the unit ball. Monatsh.
Math. 125 (1998), 25–35. zbl MR doi

[18] V.L.Oleinik, B. S. Pavlov: Embedding theorems for weighted classes of harmonic and
analytic functions. J. Soviet Math. 2 (1974), 135–142 (In English. Russian original.);
translation from Zap. Nauch. Sem. LOMI Steklov 22 (1971), 94–102. zbl MR doi

522

https://zbmath.org/?q=an:0959.31001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1805196
http://dx.doi.org/10.1007/b97238
https://zbmath.org/?q=an:1155.47030
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2443376
http://dx.doi.org/10.4064/sm189-1-6
https://zbmath.org/?q=an:1154.47019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2405697
https://zbmath.org/?q=an:1077.47028
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2053321
http://dx.doi.org/10.2748/tmj/1113246553
https://zbmath.org/?q=an:1067.47039
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2066107
http://dx.doi.org/10.1017/S0027763000008837
https://zbmath.org/?q=an:0472.46040
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0604369
https://zbmath.org/?q=an:0667.30032
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1021691
https://zbmath.org/?q=an:06909437
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3800965
http://dx.doi.org/10.1007/s11785-017-0645-9
https://zbmath.org/?q=an:1191.32003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2593344
http://dx.doi.org/10.1016/j.jfa.2009.10.028
https://zbmath.org/?q=an:1179.31003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2543973
http://dx.doi.org/10.1016/j.crma.2009.04.016
https://zbmath.org/?q=an:1354.31005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3546608
http://dx.doi.org/10.1142/S0129167X16500701
https://zbmath.org/?q=an:0956.32004
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1713093
http://dx.doi.org/10.1023/A:1006620929091
https://zbmath.org/?q=an:1031.31001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1968481
http://dx.doi.org/10.1007/s10114-002-0203-9
https://zbmath.org/?q=an:0587.30048
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0829188
http://dx.doi.org/10.1017/S001309150001748X
https://zbmath.org/?q=an:0801.46019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1226835
http://dx.doi.org/10.1307/mmj/1029004756
https://zbmath.org/?q=an:0907.46020
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1485975
http://dx.doi.org/10.1007/BF01489456
https://zbmath.org/?q=an:0278.46032
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0318867
http://dx.doi.org/10.1007/BF01099672


[19] G.Ren: Harmonic Bergman spaces with small exponents in the unit ball. Collect. Math.
53 (2002), 83–98. zbl MR

[20] W.Yang, C.Ouyang: Exact location of α-Bloch spaces in L
p
a and Hp of a complex unit

ball. Rocky Mt. J. Math. 30 (2000), 1151–1169. zbl MR doi
[21] R.Zhao, K. Zhu: Theory of Bergman spaces in the unit ball of Cn. Mém. Soc. Math.

Fr. 115 (2008), 103 pages. zbl MR doi
[22] A.Zygmund: Trigonometric Series. Vol. I, II. Cambridge Mathematical Library, Cam-

bridge University Press, Cambridge, 2002. zbl MR

Authors’ addresses: Öm e r Fa r u k D o ğ a n, Department of Mathematics, Tekirdağ
Namık Kemal University, Kampüs Cad No:1, 59030 Süleymanpaşa/Tekirdağ, Turkey, e-mail:
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