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ISOTROPIC ALMOST COMPLEX STRUCTURES

AND HARMONIC UNIT VECTOR FIELDS

Amir Baghban and Esmaeil Abedi

Abstract. Isotropic almost complex structures Jδ,σ define a class of Rie-
mannian metrics gδ,σ on tangent bundles of Riemannian manifolds which
are a generalization of the Sasaki metric. In this paper, some results will
be obtained on the integrability of these almost complex structures and the
notion of a harmonic unit vector field will be introduced with respect to the
metrics gδ,0. Furthermore, the necessary and sufficient conditions for a unit
vector field to be a harmonic unit vector field will be obtained.

1. Introduction

Let (M, g) be a Riemannian manifold and π : TM →M be its tangent bundle.
furthermore, for a vector field X on M , let Xh, Xv be the horizontal and vertical
lifts. Using natural lifts of the Riemannian metric g from the base manifold M
to the total space TM of the tangent bundle, some new interesting geometric
structures were studied (e.g. [1, 3, 6]). Maybe the best known Riemannian metric
on the tangent bundle is the Sasaki metric introduced by Sasaki in 1958 (see [13]).

In [4], Aguilar defined a class of almost complex structures Jδ,σ on TM , namely
isotropic almost complex structures with definition

Jδ,σ(Xh) = αXv + σXh , Jδ,σ(Xv) = −σXv − δXh ,

for functions α, δ, σ : TM → R which satisfy αδ − σ2 = 1. He showed that there
exists an integrable isotropic almost complex structure on an open subset A ⊆ TM
if and only if the sectional curvature of (π(A), g) is constant which is a good result
rather than the classical case. Besides, he introduced special class of Riemannian
metrics gδ,σ constructed by the Liouville 1-form on TM together with the isotropic
almost complex structures. They are generalizations of the Sasaki metric and in
some cases, intersect the class of g-natural metrics.

Aguilar proved the existence part of his theorem for integrable structures in
special cases. These special cases induce a class of g-natural metrics on TM . So, it is
natural to ask the following question: Is there any other integrable structures
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on a space form? The authors asked this question in Mathoverflow and R. Bryant
proved there are many other cases. Bryant characterized the integrable isotropic
almost complex structures on TRn and TSn and then answered to the stated
problem.

In this paper, the authors will represent other equivalents to the integrability of
isotropic almost complex structures on TRn and TSn based on PDE’s.

Let (M, g) be a compact Riemannian manifold and (TM, gs) be its tangent
bundle equipped with the Sasaki metric. Moreover, suppose (S(M), i∗gs) is the unit
tangent bundle of (M, g) where i : S(M) −→ TM is the inclusion map and i∗gs is
the induced Sasaki metric on the unit tangent bundle. Denote by Γ(TM) the set
of all smooth vector fields on M . Moreover, let ∇ be the Levi-Civita connection of
g and ∆gX be the rough Laplacian of vector field X with respect to metric g.

Since, every vector field defines a map from (M, g) to (TM, gs), it is natural to
investigate the harmonicity of maps defined by vector fields.

Nouhaud [9] deduced that a vector field X defines a harmonic map from (M, g)
to (TM, gs) if and only if X is a parallel vector field. She found the expression of
the Dirichlet energy associated to the vector field X as

E(X) = n

2 vol(M) + 1
2

∫
M

‖∇X‖2d vol(g) ,

where vol(M) is the volume of M with respect to the metric g and ‖∇X‖ is the
norm of ∇X as a (1, 1)-tensor. She proved that parallel vector fields are the critical
points of the Dirichlet energy defined from C∞((M, g), (TM, gs)) to R+ by using
the stated formula for E(X).

Gil-Medrano [12] investigated the critical points of the energy functional E :
Γ(TM)→ R+ where E is the restricted Dirichlet energy functional to the vector
fields on a compact Riemannian manifold (M, g). She proved that such vector fields
are again parallel vector fields i.e., ∇X = 0.

Wood [9] introduced the notion of harmonic unit vector fields on a compact
Riemannian manifold (M, g) by restricting the Dirichlet energy functional to the
unit vector fields and called the critical points of that functional, harmonic unit
vector fields. Recall that when the Dirichlet energy functional is restricted to the
unit vector fields, the vanishing of ∇X ensures that the unit vector field X is a
harmonic unit vector field. But the inverse is not true; harmonic vector fields need
not be parallel. So, it is natural to investigate the harmonicity of unit vector fields.
Wood demonstrated that a unit vector field X is a harmonic unit vector field if
and only if ∆gX = ‖∇X‖2X.

The contributions on the harmonicity of maps defined by vector fields is not
limited to the tangent bundles equipped with the Sasaki metric. Abbassi et al.
[1] and [2] studied the problem of determining of harmonicity of such maps with
respect to the g-natural metrics. They proved that a unit vector field is harmonic
if and only if its Laplacian is colinear with itself which is a similar result to the
Wood’s. Recently, Calvaruso [7, 8] has started investigating the harmonicity of
vector fields on pseudo-Riemannian manifolds and this subject has been continued
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in [10] and [11]. The generalized metrics gδ,0 is of the form

gδ,0(Xh, Y h) = 1
δ
g(X,Y )oπ ,

gδ,0(Xh, Y v) = 0 ,
gδ,0(Xv, Y v) = δg(X,Y )oπ ,

and so it would be interesting to investigate the harmonicity of vector fields with
respect to these metrics.

The rest of the paper is organized as follows: In Section 2, some propositions
on integrability of isotropic almost complex structures are resulted. It is notable
that one of them is based on R. Bryants answer on Mathoverflow1 2. Section 3 is
devoted to achieve the necessary and sufficient conditions for a unit vector field
to be a critical point of the Dirichlet energy functional when the variations pass
through the unit vector fields.

2. Isotropic almost complex structures

Assume (M, g) is an n-dimensional Riemannian manifold and ∇ represents the
Levi-Civita connection of g. Moreover, let π : TM −→ M be its tangent bundle
and K : TTM −→ TM be the connection map with respect to ∇. The tangent
bundle of TM(TTM) can be split to vertical and horizontal vector sub-bundles V
and H, respectively, i.e., for every v ∈ TM , TvTM = Vv ⊕Hv.

If we denote the vertical and horizontal lifts of X ∈ Γ(TM) by Xv and Xh then
the Lie bracket of the horizontal and vertical vector fields at u ∈ TM are expressed
as follows

[Xh, Y h](u) = [X,Y ]hu − (R(X,Y )u)vu ,(1)
[Xh, Y v](u) = (∇XY )vu ,(2)
[Xv, Y v](u) = 0(u) ,(3)

where 0 is the zero vector field on TM . Moreover, if we consider the vector field
X : M −→ TM as a map between manifolds, its derivative X∗ at a point p in M
is given by
(4) X∗p(V ) = V hX(p) + (∇VX)vX(p) ∀ V ∈ Γ(TM) .

Moreover, we have the following useful equations
Xh
(
g(Y,Z)oπ

)
=
(
Xg(Y,Z)

)
oπ ,(5)

Xv
(
g(Y,Z)oπ

)
= 0 .(6)

Now, let (M,J) be an almost complex manifold and TC(M) be the Complexification
of TM . For x ∈M , define the spaces T (0,1)

x (M) and T
(1,0)
x (M) of TCx (M) as

T (0,1)
x (M) =

{
Xx +

√
−1JxXx | X(x) ∈ Tx(M)

}
,

1link: solutions of equations characterizing a complex structure
2link: existence of non constant solutions for this equations

http://mathoverflow.net/questions/230574/solutions-of-equations-characterizing-a-complex-structure
http://mathoverflow.net/questions/234772/existence-of-non-constant-solutions-for-this-equations
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and

T (1,0)
x (M) =

{
Xx −

√
−1JxXx | X(x) ∈ Tx(M)

}
.

Now, let T (0,1)(M) = ∪xT (0,1)
x (M) and T (1,0)(M) = ∪xT (1,0)

x (M). It is a well
known fact that J is an integrable structure if and only if for all sections A,
B ∈ Γ(T (0,1)(M)) we have [A,B] ∈ Γ(T (0,1)(M)); equivalently, for an arbitrary
1-form ζ of the dual space of T (1,0)(M) (where denoted by T (1,0)(M)∗) we have

dζ ∈ ∧2T (1,0)(M)∗.

Definition 1. Let η, η1, . . . , ηn be 1-forms on a differentiable manifold M . We
say that dη ≡ 0 mod {η1, . . . , ηn}, if and only if dη =

∑
i,j fijη

i ∧ ηj , for some
functions fij on M .

So, if ζ1, . . . , ζn are locally (1, 0)-forms generating Γ(T (1,0)(M)∗), then J is
integrable if and only if dζ ≡ 0 mod {ζ1, . . . , ζn}, ∀ ζ ∈ Γ(T (1,0)(M)∗).

Isotropic almost complex structures are a generalized type of the natural almost
complex structure J1,0 : TTM −→ TTM given by

J1,0(Xh) = Xv , J1,0(Xv) = −Xh , ∀X ∈ Γ(TM) .

It is a well-known fact that the necessary condition for integrability of J1,0 is that
the base manifold is flat. Aguilar proved [4] that there is an integrable isotropic
almost complex structure on an open subset A ⊂ TM if and only if (π(A), g) is of
constant sectional curvature.

Definition 2 ([4]). An almost complex structure J on TM is said to be isotropic
with respect to the Riemannian metric g on M , if there are smooth functions α, δ,
σ : TM −→ R such that αδ − σ2 = 1 and

(7) JXh = αXv + σXh , JXv = −σXv − δXh , ∀X ∈ Γ(TM) .

Hereafter, we will represent the isotropic almost complex structure associated
to the maps α, δ and σ by Jδ,σ.

Suppose (M, g) has constant sectional curvature k. Aguilar [4] proved that Jδ,σ
is an integrable structure on an open subset A ⊂ TM if and only if the following
equation holds

(8) dσ + kδΘ−
√
−1(1−

√
−1σ)δ−1dδ ≡ 0 mod {ζ1, . . . , ζn} ,

where ζ1, . . . , ζn are 1-forms generating the space of (1, 0)-forms induced by Jδ,σ
on A ⊂ TM and Θ is the Liouvill 1-form on TM . When α, δ and σ are functions
of E(u) = 1

2g(u, u) then the above equation gives the following solutions for δ and
σ [4]

δ−1 =
√

2kE + b , σ = 0 ,(9)

δ−2 = 1
2{2kE + b+

√
(2kE + b)2 + 4a2k2} σ = akδ2 , a 6= 0 ,(10)

where a, b ∈ R.



ISOTROPIC ALMOST COMPLEX STRUCTURES 19

Remark 3. When we work with Θ, it is convenient to work with a locally ortho-
normal frame field on (M, g) like X1, . . . , Xn. Because, if we suppose that π,K are
the natural projection from TM to M and the connection map, respectively and if
we suppose θi is the dual 1-forms of Xi then

dΘ =
n∑
i=1

(θi ◦K) ∧ (π∗θi) ,

where {θi ◦K,π∗θi} is the dual basis of {Xv
i , X

h
i }.

When k = 0 we prove that the equation (8) is equivalent to the n-complex
equations in the following proposition.

Proposition 4. Let (Rn, 〈·, ·〉) be the Euclidean space. Suppose (x1, . . . , xn) and
(x1, . . . , xn, y1, . . . , yn) are the natural coordinate systems for Rn and R2n = TRn,
respectively. Suppose Jδ,σ is an almost complex structure and let z = u+ iv be a
complex function on R2n = TRn with v = 1

δ and u = σ
δ . Then Jδ,σ is integrable if

and only if

(11) ∂z

∂xl
+ z

∂z

∂yl
= 0 ∀ l, 1 ≤ l ≤ n .

Proof. It is easy to check that the 1-forms ul =
√
−1δ(dyl − zdxl), 1 ≤ l ≤ n,

span the space of (1, 0)-forms induced by Jδ,σ. Let ζl = dyl − zdxl then Jδ,σ is
integrable if and only if

dζl ≡ 0 mod{ζ1, . . . , ζn} .(12)

Since dζ1 = −dz ∧ dxl, the equation (12) can only happen if

dz ≡ 0 mod{ζ1, . . . , ζn} .(13)

But dz =
∑n
l=1
(
∂z
∂xl

dxl + ∂z
∂yl

dyl
)

and so

dz ≡
n∑
l=1

( ∂z
∂xl

+ z
∂z

∂yl

)
dxl mod{ζ1, . . . , ζn} .(14)

So the equation (13) holds if and only if ∂z
∂xl

+ z ∂z
∂yl

= 0, ∀ 1 ≤ l ≤ n and the
proof is completed. �

It is natural to think of is there any other integrable structure Jδ,σ except
the types given by (9) and (10)?

The following arguments are based on the Bryant’s answer in Mathoverflow.
For more information we refer the reader to their web addresses mentioned in the
introduction.

Let Rn+1 be given its standard inner product (and extend it complex linearly
to a complex inner product on Cn+1, which will be used below). Then

Sn = {u ∈ Rn+1 | u · u = 1}
and TSn = {(u, v) ∈ R2n+2 | u · u = 1 and u · v = 0}.
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Let H+ = {x+ iy | y � 0} ⊂ C be the upper-half line in C. Define a mapping

Φ: TSn ×H+ −→ Cn+1 \ Rn+1

by Φ((u, v), z) = v− zu where any vector w = (w1, . . . , wn+1) ∈ Rn+1 is considered
as a vector in Cn+1 like this vector w = (w1, 0, . . . , wn+1, 0) and so zu, v − zu can
be done naturally. Φ is a diffeomorphism and establishes a foliation of Cn+1 \Rn+1

where the leaves of the foliation are the image of {(u, v)}×H+ for every (u, v) ∈ TSn
under Φ.

The following proposition characterizes the integrable structures Jδ,σ when the
base manifold is an sphere.

Proposition 5. When n ≥ 2, the almost complex structure Jδ,σ on an open subset
A ⊂ TSn is integrable if and only if the image of the mapping

Φz : A −→ Cn+1 \ Rn+1 ,

with the definition Φz(u, v) = Φ((u, v), z(u, v)) is a holomorphic hypersurface in
Cn+1 \ Rn+1, where z : A −→ H+ is a mapping defined by z(u, v) = σ+i

δ (u, v).

This proposition implies that any holomorphic hypersurface of Cn+1 \ Rn+1

that is transverse to the half-line foliation determined by Φ and intersects each
such half-line in at most one point introduces a complex structure Jδ,σ. So, one
can construct a complex structure Jδ,σ on TSn by using certain holomorphic
hypersurfaces of Cn+1 \ Rn+1.

The following statements gives another equivalent to the integrability of Jδ,σ on
an open subset TU ⊂ TSn where U is an open subset of the unit standard sphere
(Sn, g).

Let E0 : U ⊂ Sn → Rn+1 denote the (vector-valued) inclusion mapping. Let
E1, . . . , En : U → Rn+1 be any (smooth) orthonormal tangential frame field exten-
ding E0, i.e., 〈Ea, Eb〉 = δab for 0 ≤ a, b ≤ n. Define functions vi : TU → R by
vi(u, v) = Ei(u)·v for 1 ≤ i ≤ n, so that v =

∑n
i=1 viEi(u) for all (u, v) ∈ TU .

One can consider ζ1, . . . , ζn as a basis for the (1, 0)-forms on TU with respect
to Jδ,σ. With the above notifications, the almost complex structure Jδ,σ on TU is
an integrable structure if and only if the following equation holds

(15) d(z2 + v2
1 + · · ·+ v2

n) ≡ 0 mod {ζ1, . . . , ζn} .

One can conclude the following proposition using the above notations.

Proposition 6. Let ((x1, . . . , xn), U) be the conformally flat coordinate system
on U ⊂ (Sn, g), (x1, . . . , xn, y1, . . . , yn) be the associated coordinate system on its
tangent bundle and moreover let Jδ,σ be an isotropic almost complex structure on
TU . Then Jδ,σ is an integrable structure if and only if

n∑
i=1

[ ∂z
∂yi

(ys0µi − µs0y
i)− ∂z

∂ys0
yiµi

]
= ys0λ2 −

( ∂z

∂xs0
+ z

∂z

∂ys0

)
,

for all s0 with 1 ≤ s0 ≤ n.
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Proof. By considering λ as the conformal factor, the metric g on U can be written
as follow

(16) g = λ2(dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn) .

So, one can define Ei = 1
λ

∂
∂xi for all i = 1, . . . , n and

vi(u, y) = λ(u)yi , ∀ (u, y) ∈ TU and i = 1, . . . , n .

It can be proved that in this coordinate system, ζ1, . . . , ζn are given by

ζk = dyk + yj(δkj µldxl + µjdx
k − µkdxj)− zdxk ,

where µi = 1
λ
∂λ
∂xi , i = 1, . . . , n. Moreover, in this coordinate system, one can get

d(u,y)(z2 + v2
1 + · · ·+ v2

n) =
n∑
i=1

[(
2z ∂z
∂xi

+ 2µi‖y‖2
)
dxi + 2

(
yiλ2 + z

∂z

∂yi

)
dyi
]
,

and so

d(u,y)(z2 + v2
1 + · · ·+ v2

n)− 2
2∑
i=1

(
yiλ2 + z

∂z

∂yi

)
ζi(u, y)

= 2z
n∑
s=1

[ ∂z
∂yi

(ysµi − µsyi) + ∂z

∂ys
(z − yjµj)− ysλ2 + ∂z

∂xs

]
dxs .(17)

Using the equations (15) and (17), one can get the conclusion. �

The following example is one of the integrable structures constructed by Bryant
which is different from (9) and (10).

Example 7. Let v = 1
δ and u = σ

δ and define

u(x, y) = x · y
1 + x · x

,

and

v = (x, y) =
√

(1 + x · x)(1 + y · y)− (x · y)2

1 + x · x
,

where x = (x1, . . . , xn), y = (y1, . . . , yn) and “·” denotes the standard product on
Rn. It is easy to check that z = u+ iv satisfies the Proposition 4 and so Jδ,σ is a
complex structure on a certain open subset of TRn.

Now, the metric gδ,σ induced by the isotropic almost complex structure Jδ,σ will
be defined.

Definition 8 ([4]). Let (M, g) be a Riemannian manifold and Jδ,σ be an isotropic
almost complex structure on TM . Then the (0, 2)-tensor

gδ,σ(A,B) = dΘ(Jδ,σA,B) ,

defines a Riemannian metric on TM if α > 0, where A, B ∈ Γ(TTM).
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Let X, Y be local sections of TM . A simple calculation shows that

gδ,σ(Xh, Y h) = αg(X,Y )oπ ,(18)
gδ,σ(Xh, Y v) = −σg(X,Y )oπ ,(19)
gδ,σ(Xv, Y v) = δg(X,Y )oπ .(20)

The following theorem [5] states the formulas of the Levi-Civita connection.

Theorem 9. Let gδ,σ be a Riemannian metric on TM as before. Then the
Levi-Civita connection ∇̄ of gδ,σ at (p, u) ∈ TM is given by

∇̄XhY h = (∇XY )h − σ

α

(
R(u,X)Y

)h + 1
2αX

h(α)Y h + 1
2αY

h(α)Xh

− σ

δ
(∇XY )v − 1

2
(
R(X,Y )u

)v − 1
2δX

h(σ)Y v

− 1
2δ Y

h(σ)Xv − 1
2g(X,Y )∇̄α ,(21)

∇̄XhY v = −σ
α

(∇XY )h + δ

2α
(
R(u, Y )X

)h − 1
2αX

h(σ)Y h

+ 1
2αY

v(α)Xh + (∇XY )v + 1
2δX

h(δ)Y v − 1
2δ Y

v(σ)Xv

+ 1
2g(X,Y )∇̄σ ,(22)

∇̄XvY h = δ

2α
(
R(u,X)Y

)h + 1
2αX

v(α)Y h − 1
2αY

h(σ)Xh

− 1
2δX

v(σ)Y v + 1
2δ Y

h(δ)Xv + 1
2g(X,Y )∇̄σ ,(23)

∇̄XvY v = − 1
2αX

v(σ)Y h − 1
2αY

v(σ)Xh + 1
2δX

v(δ)Y v

+ 1
2δ Y

v(σ)Xv + 1
2g(X,Y )∇̄δ .(24)

Proof. For the first one using the Koszul formula, we have

2gδ,σ(∇̄XhY h, Zh) = Xhgδ,σ(Y h, Zh) + Y hgδ,σ(Xh, Zh)− Zhgδ,σ(Xh, Y h)
+ gδ,σ

(
[Xh, Y h], Zh

)
+ gδ,σ

(
[Zh, Xh], Y h

)
− gδ,σ

(
[Y h, Zh], Xh

)
.
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Using relations (1), (5) and (18) gives us

2gδ,σ(∇̄XhY h, Zh) = Xh(α)g(Y,Z) + αXg(Y,Z) + Y h(α)g(X,Z)
+ αY g(X,Z)− Zh(α)g(X,Y )− αZg(X,Y )
+ αg

(
[X,Y ], Z

)
+ σg

(
R(X,Y )u, Z

)
+ αg

(
[Z,X]Y

)
+ σg

(
R(Z,X)u, Y

)
− αg

(
[Y, Z], X

)
− σg

(
R(Y,Z)u,X

)
.

Using the properties of the Levi-Civita connection of g, one can get

2gδ,σ(∇̄XhY h, Zh) = g
(
Xh(α)Y,Z

)
+ g
(
Y h(α)X,Z

)
− Zh(α)g(X,Y )

+ 2αg(∇XY,Z) + σg
(
R(X,Y )u, Z

)
+ σg

(
R(Z,X)u, Y

)
− σg

(
R(Y,Z)u,X

)
.

Using (18) and the Bianchi’s first identity, we have

2gδ,σ(∇̄XhY h, Zh) = gδ,σ

( 1
α
Xh(α)Y h + 1

α
Y h(α)Xh − g(X,Y )∇̄α

+ 2(∇XY )h − 2σ
α

(
R(u,X)Y

)h
, Zh

)
,

therefore, we have

gδ,σ

(
2∇̄XhY h −

1
α
Xh(α)Y h + 1

α
Y h(α)Xh − g(X,Y )∇̄α

+ 2(∇XY )h − 2σ
α

(
R(u,X)Y

)h
, Zh

)
= 0 ,

for all Z ∈ TM . So,

Horizontal
(

2∇̄XhY h −
1
α
Xh(α)Y h + 1

α
Y h(α)Xh − g(X,Y )∇̄α

+ 2(∇XY )h − 2σ
α

(
R(u,X)Y

)h) = 0 .

Therefore, the horizontal part of ∇̄XhY h is

h(∇̄XhY h) = 1
2αX

h(α)Y h + 1
2αY

h(α)Xh − 1
2g(X,Y )h(∇̄α) + (∇XY )h

− σ

α

(
R(u,X)Y

)h
,

where ∇̄α = h(∇̄α) + v(∇̄α) is the splitting of the gradient vector field of α with
respect to gδ,σ to horizontal and vertical components, respectively. Similarly the
vertical component of ∇̄XhY h can be computed as followings using the Koszul
formula

2gδ,σ(∇̄XhY h, Zv) = Xhgδ,σ(Y h, Zv) + Y hgδ,σ(Xh, Zv)− Zvgδ,σ(Xh, Y h)
+ gδ,σ([Xh, Y h], Zv) + gδ,σ([Zv, Xh], Y h)− gδ,σ([Y h, Zv], Xh) .
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Now, from the definition of gδ,σ and Lie bracket of horizontal and vertical vectors
we will have

2gδ,σ(∇̄XhY h, Zv) = −Xh(σ)g(Y, Z)− σXg(Y,Z)− Y h(σ)g(X,Z)− σY g(X,Z)
− Zv(α)g(X,Y )− σg([X,Y ], Z)− gδ,σ

(
(R(X,Y )u)v, Zv

)
+ σg(∇XZ, Y ) + σg(∇Y Z,X) .

Using the compatibility of ∇̄ and gδ,σ and using the equation Zv(α) = ḡ(Zv, ∇̄α)
we will get

2gδ,σ(∇̄XhY h, Zv) = −X
h(σ)
δ

gδ,σ(Y v, Zv)− Y h(σ)
δ

gδ,σ(Xv, Zv)

− gδ,σ
(
g(X,Y )∇̄α,Zv

)
− gδ,σ

(
(R(X,Y )u)v, Zv

)
− 2σ

δ
gδ,σ

(
(∇XY )v, Zv

)
.

So, the vertical part is

v(∇̄XhY h) = − 1
2δX

h(σ)Y v − 1
2δ Y

h(σ)Xv − 1
2g(X,Y )v(∇̄α)

− σ

δ
(∇XY )v − 1

2(R(X,Y )u)v .

Using the equation (∇̄XhY h) = h(∇̄XhY h) + v(∇̄XhY h), the proof of first part
will be complete. For the second formula and its horizontal part we have

2gδ,σ(∇̄XhY v, Zh) = Xhgδ,σ(Y v, Zh) + Y vgδ,σ(Xh, Zh)− Zhgδ,σ(Y v, Xh)
+ gδ,σ([Xh, Y v], Zh) + gδ,σ([Zh, Xh], Y v)
− gδ,σ([Y v, Zh], Xh) .

After using the definition of gδ,σ and substituting the equation

g(∇ZY,X) = Zg(X,Y )− g([Z,X] +∇XZ, Y )

and puttingR(Z,X, u, Y ) = −R(u, Y,X,Z) andXg(Y,Z) = g(∇XY, Z)+g(Y,∇XZ),
we get

2gδ,σ(∇̄XhY v, Zh) = −X
h(σ)
α

gδ,σ(Y h, Zh) + Y v(α)
α

gδ,σ(Xh, Zh)

+ gδ,σ
(
g(X,Y )∇̄σ, Zh

)
− 2σ

α
gδ,σ

(
(∇XY )h, Zh

)
+ δ

α
gδ,σ

(
(R(u, Y )X)h, Zh

)
,

and so the horizontal part can be given by

Horizontal (∇̄XhY v) = −X
h(σ)
2α Y h + Y v(α)

2α Xh

+ 1
2g(X,Y )h(∇̄σ)− σ

α
(∇XY )h + δ

2α
(
R(u, Y )X

)h
.(25)



ISOTROPIC ALMOST COMPLEX STRUCTURES 25

For the vertical part of ∇̄XhY v we have

2gδ,σ(∇̄XhY v, Zv) = Xhgδ,σ(Y v, Zv) + Y vgδ,σ(Xh, Zv)
− Zvgδ,σ(Y v, Xh) + gδ,σ([Xh, Y v], Zv)
+ gδ,σ([Zv, Xh], Y v)− gδ,σ([Y v, Zv], Xh) .

Using the equations for Lie brackets and definition of gδ,σ and (2), (3) we will get

2gδ,σ(∇̄XhY v, Zv) = Xh(δ)g(Y,Z) + δXg(Y,Z)− Y v(σ)g(X,Z)
Zv(σ)g(X,Y ) + gδ,σ

(
(∇XY )v, Zv

)
− δg(∇XZ, Y ) .

One can use gδ,σ and the compatibility of g and ∇ and substituting the equation
Zv(σ) = gδ,σ(Zv, ∇̄σ) and ca get

2gδ,σ(∇̄XhY v, Zv) = gδ,σ

(Xh(δ)
δ

Y v + 2(∇XY )v − Y v(σ)
δ

Xv + g(X,Y )∇̄σ, Zv
)
.

So, the vertical part is given by

(26) Vertical(∇̄XhY v) = Xh(δ)
2δ Y v + (∇XY )v − Y v(σ)

2δ Xv + 1
2g(X,Y )v(∇̄σ) .

Relations (25) and (26) complete the proof of second equation. The proof of third
equation is a little different. We have

∇̄XvY h = ∇̄Y hXv + [Xv, Y h] .
Using the equation (22) we get the result. The last one will be proved by the
following process
2gδ,σ(∇̄XvY v, Zh) = Xvgδ,σ(Y v, Zh) + Y vgδ,σ(Xv, Zh)− Zhgδ,σ(Xv, Y v)

+ gδ,σ([Xv, Y v], Zh) + gδ,σ([Zh, Xv], Y v)− gδ,σ([Y v, Zh], Xv) .

From the definition of gδ,σ and after substituting the equations Zg(X,Y ) =
g(∇ZX,Y ) + g(∇ZY,X) and Zh(δ) = gδ,σ(∇̄δ, Zh) we get

2gδ,σ(∇̄XvY v, Zh) = gδ,σ

(−Xv(σ)
α

Y h − Y v(σ)
α

Xh − g(X,Y )∇̄δ, Zh
)
,

this shows that the horizontal part is

Horizontal(∇̄XvY v) = −X
v(σ)

2α Y h − Y v(σ)
2α Xh − 1

2g(X,Y )h(∇̄δ) .

The following step is the computation of the vertical part
2gδ,σ(∇̄XvY v, Zv) = Xv(δ)g(Y,Z) + Y v(δ)g(X,Z)− Zv(δ)g(X,Y )

gδ,σ

(Xv(δ)
δ

Xv + Y v(δ)
δ

Xv − g(X,Y )∇̄δ, Zv
)
.

And so

Vertical(∇̄XvY v) = Xv(δ)
2δ Xv + Y v(δ)

2δ Xv − 1
2g(X,Y )v(∇̄δ) .

�
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Note that the Levi-Civita connection of gδ,0 can be easily computed from the above
formulas by setting σ = 0. When we work with gδ,0, its connection will be denoted
by ∇̄, too.

Now, we want to investigate the general characteristics of Jδ,σ in the sense of
gδ,σ. It is easy to show that there are examples of almost complex structures on
the tangent bundle TM like J such that the (0, 2)-tensor Λ(A,B) = dΘ(JA,B) is
not a symmetric tensor. Let

J̄(Xh) = αXv + J1(Xh) , J̄(Xv) = J2(Xv)− δXh ,(27)
be an almost complex structure on the tangent bundle of (M, g) where α, δ : TM →
R+ are mappings, J1 : HTM → HTM and J2 : VTM → VTM are linear bundle
maps. Suppose G(A,B) = dΘ(J̄A,B) be a Riemannian metric on TM . Then one
can state the following

Proposition 10. Let (M, g) be a Riemannian manifold and J̄ : TTM −→ TTM be
an almost complex structure on TM given by (27). Suppose G(A,B) = dΘ(J̄A,B)
be a Riemannian metric on TM . Then π∗J1X

h = −KJ2X
v and αδ − 1 ≥ 0 and

J1 is symmetric with respect to G, i.e., G(J1X
h, Y h) = G(Xh, J1Y

h), and has at
most two eigen-values −

√
αδ − 1 = −σ,

√
αδ − 1 = σ.

Proof. Since G is a Riemannian metric, using the symmetric property of G
for given horizontal and vertical vectors Xh, Y v, i.e., G(Xh, Y v) = G(Y v, Xh),
gives us π∗J1X

h = −KJ2X
v. Moreover, from G(J̄Xh, J̄Y v) = G(J̄Y v, J̄Xh) and

π∗J1X
h = −KJ2X

v one can get that J1 is a symmetric linear bundle map. Finally,
J̄2 = − id gives us the equation

J2
1 = (αδ − 1) id ,

and since J1 is symmetric it has at most two real eigenvalues
√
αδ − 1 and−

√
αδ − 1.

�

3. Harmonic unit vector fields

We denote harmonic vector fields by HVF and harmonic unit vector fields by
HUVF. In this section after calculating the tension field of a map defined by a unit
vector field X : (M, g)→ (TM, gδ,σ), we shall compute its tension field as a map
from (M, g) to the (S(M), i∗gδ,0) and finally deduce some results on HUVFs.

3.1. Tension field of unit vector fields. In this sub-section, the formula of the
tension field associated to a map between Riemannian manifolds is retrieved from
[14]. So, one can refer to [14] for more details.

Suppose (M, g) and (M ′, g′) are two Riemannian manifolds, with M compact.
The Dirichlet energy associated to the Riemannian manifolds (M, g) and (M ′, g′)
is defined by

E : C∞(M,M ′) −→ R+

f 7−→ 1
2
∫
M
||df ||2d vol(g) ,

where ‖df‖ is the Hilbert-Schmidt norm of df , i.e., ‖df‖2 = trg(f∗g′) and d vol(g)
is the Riemannian volume form on M with respect to g.
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The critical points of E are defined as harmonic maps. It is proved [14] that
a map f : (M, g) −→ (M ′, g′) is a harmonic map if and only if the tension field
associated to f vanishes identically. Therefore, one can investigate the harmonicity
of a map defined by a vector field by calculating the tension field associated to this
map.

Suppose (M, g) is a compact Riemannian manifold and gδ,σ be a given metric on
TM defined as before and W ∈ Γ(TM). Let {V1, . . . , Vn} be a local orthonormal
basis for the vector fields on M , defined in a neighborhood of p ∈ M such that
∇Vi = 0 at p. The Dirichlet energy of the map W : (M, g) −→ (TM, gδ,σ) defined
by W can be calculated as following

E(W ) = 1
2

∫
M

(nα− 2σ div(W ) + δ‖∇W‖2)d vol(g) .

The tension field associated to the map X : (M, g) −→ (TM, gδ,σ) is locally
defined by τq(X) =

∑n
i=1{∇̄X∗(Vi)X∗(Vi)−X∗(∇ViVi)}(X(q)) for every q in the

domain of Vi, i = 1, . . . , n, which can be expressed [5] as following,

τp(X) = 1
α

{(
1− nα

2

)
X1 −

α

2 ‖∇X‖
2Y1 + α div(X)Z1 + trg(∇·)v(α)·

− σRic(X)−∇αZ1−σZ2X − trg(∇·X)v(σ)∇·X
− σ trg(∇·∇·X) + δ trg R(X,∇·X)·

}h(
X(p)

)
+ 1
δ

{
− nδ

2 X2 −
δ

2‖∇X‖
2Y2 + δ div(X)Z2 − αZ1 + σZ2

− trg(∇·X)v(σ)·+∇αY1−σY2X + trg(∇·X)v(δ)∇·X
+ δ∆gX

}v(
X(p)

)
,(28)

where X1 = π∗∇̄α ◦ X, X2 = K∇̄α ◦ X, Y1 = π∗∇̄δ ◦ X, Y2 = K∇̄δ ◦ X,
Z1 = π∗∇̄σ ◦X and Z2 = K∇̄σ ◦X.

Now, one can make the harmonicity discussion on the unit tangent bundle.

Definition 11. The unit tangent bundle S(M) on a Riemannian manifold (M, g)
is a fiber bundle on (M, g) which its fibers at every point p ∈M is the set

Sp(M) = {v ∈ TpM | g(v, v) = 1} .

The tangent space of S(M) is H⊕ V̄, where H is the horizontal sub-bundle of
TTM with respect to the Levi-Civita connection ∇ of g and V̄ is a vector bundle
on S(M) such that at (p, u) ∈ S(M) is defined by

V̄(p,u) = {Y vp ∈ Vu | g(Yp, u) = 0 , ∀Yp ∈ TpM}
= {Y vp − g(Yp, u)uv | Yp ∈ TpM} ,(29)

where Y vp ∈ Vu is the vertical lift of Yp to Vu.
Let now gδ,σ be the Riemannian metric on TM defined as before. Assume

N(p, u) =
√
α(σαu

h + uv) is a vector field on TM . One can simply derive N is
normal unit vector field to TS(M) with respect to the metric gδ,σ.
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We equip S(M) with the induced metric i∗gδ,0 and represent its Levi-Civita
connection by ∇̃.

Lemma 12. Let τ1(X) be the tension field of the unit vector field X : (M, g) →
(S(M), i∗gδ,0) and τ(X) be its tension field considered as the map X : (M, g) →
(TM, gδ,0). Then

τ1(X) = tan τ(X) ,

with respect to gδ,0.

Proof. By using the Gauss formula for the Levi-Civita connections ∇̃ of i∗gδ,0
and ∇̄ of gδ,0, one can get the result. �

The following proposition calculates the formula of τ1(X).

Proposition 13. The tension field τ1(X) can be expressed as follows

(τ1)p(X) = 1
α

{(
1− nα

2 + 1
2α‖∇X‖

2
)
X1 + trg

(
(∇·X)v(α)·)

+ 1
α

trg R(X,∇·X)·
}h(

X(p)
)

+ α
{−1
α
∇X1X −

1
α2 trg

(
(∇·X)v(α)∇·X

)
+ 1
α

∆gX +
( 1

2α3 ‖∇X‖
2 − n

2α

)
X2 −

[ 1
α
g(∆gX,X)

+
( 1

2α3 ‖∇X‖
2 − n

2α

)
g(X2, X)

]
X
}v(

X(p)
)
.(30)

Proof. Substituting σ = 0, δ = 1
α , Y1 = − 1

α2X1, Y2 = − 1
α2X2, Z1 = 0 and

Z2 = 0 in (28) and using the last lemma we get the result. �

The condition τ1(X) = 0 for the special vector fields can be reduced to a simple
equation. Specially, for a parallel unit vector field X, we have the following corollary.

Corollary 14. Let (S(M), i∗gδ,0) be the unit tangent bundle equipped with the
induced metric i∗gδ,0 for a compact Riemannian manifold (M, g). Then, a map
X : (M, g) −→ (S(M), i∗gδ,0) defined by a parallel unit vector field X on M is a
harmonic map if and only if

(1− nα

2 )X1 = 0 , and X2 = ‖X2‖X .

3.2. Variations through unit vector fields and HUVF. Let (M, g) be a
compact Riemannian manifold and let

E : C∞((M, g), (S(M), i∗gδ,0) −→ R+

f 7−→ 1
2
∫
M
‖df‖2d vol(g) ,(31)

be the Dirichlet energy functional where ‖df‖2 = trg(f∗(i∗gδ,0)). The first variation
formula of E is

d

dt

∣∣
t=0E(Ut) = −

∫
M

i∗gδ,0
(
V, τ1(f)

)
d vol(g) ,(32)
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where Ut is a variation along f for |t| < ε which U0(x) = f(x) and Ut(x) ∈ S(M)
for every x ∈ M and V(x) = d

dt |t=0{t 7−→ Ut(x)} is the variation vector field.
Following proposition is useful for proving the main theorems.

Proposition 15 ([9]). Let X be a unit vector field on M and U : M × (−ε, ε) −→
S(M) be a smooth 1-parameter variation of X through unit vector fields. Then the
variation vector field V associated to this variation is of the form V(x) = V vX(x) for
some perpendicular vector field V to X.

Next proposition proves the inverse of the Proposition 15.

Proposition 16 ([9]). Let X be a unit vector field on M and let
S = {V ∈ Γ(TM) | g(V,X) = 0} .

Then for every V ∈ S there exists a smooth variation along X through unit vector
fields whose variation vector field is V v. Indeed let V be an arbitrary element of S
and let us set Wt = X + tV , Ut = ‖Wt‖−1Wt, |t| < ε. It is not hard to check that
Ut is a variation along X through unit vector fields with variation vector field V v.

The following definition is analogous to the definition of harmonic unit vector
fields with respect to the Sasaki metric and g-natural metrics.

Definition 17. Let (M, g) be a compact Riemannian manifold and (S(M), i∗gδ,0)
be its unit tangent bundle equipped with the Riemannian metric i∗gδ,0. A unit
vector field X ∈ Γ(S(M)) is called a HUVF if and only if the equation

d

dt
{E(Ut)} |t=0= −

∫
M

gδ,0
(
V v, τ1(X)

)
d vol(g) ,(33)

vanishes for all vector field V ∈ S.

Now, the necessary and sufficient conditions for a unit vector field to be a HUVF
can be resulted by the following theorems.

Theorem 18. Let (M, g) be a compact Riemannian manifold and X be a unit
vector field on M . Then, X : (M, g) −→ (S(M), i∗gδ,0) is a HUVF if and only if
the vertical part of τ1(X) is zero.

Proof. (=⇒) Let X be a HUVF. Suppose
(τ1)p(X) = ζXh

X(p) + λXv
X(p) + V vX(p) +Wh

X(p) , ∀ p ∈M ,(34)
for some vector fields V and W perpendicular to X and for some functions λ, ζ on
X(M) ⊆ S(M). We will show that V = 0 and λ = 0. From (34), we have

‖V vX(p)‖
2 = gδ,0

(
(τ1)p(X), V vX(p)

)
, ∀ p ∈M ,(35)

and then from the Proposition 16 and the Proposition 15 and the Definition 17 we
have

∫
M
‖V v‖2d vol(g) =

∫
M
gδ,0(τ1(X), V v)d vol(g) = 0. This shows that V = 0,

and the equation
(τ1)p(X) = τp(X)− α

(
X(p)

)
gδ,0
(
τp(X), Xv

X(p)
)
Xv
X(p) ,(36)

shows that τ1(X) hasn’t any component in direction of Xv, i.e., λ = 0. From (34)
and V = 0 and λ = 0, one can get K(τ1(X)) = 0.
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(⇐=) Let K(τ1(X)) = 0, we will show that X is a HUVF. If Ut is an arbitrary
variation along X through unit vector fields and V = V v is its variation vector field
then K(τ1(X)) = 0 shows that

d

dt
{E(Ut)} |t=0= −

∫
M

gδ,0
(
V v, τ1(X)

)
d vol(g) = 0 .(37)

Note that the vertical and the horizontal sub-bundles are perpendicular to each
other with respect to gδ,0. The equation (37) completes the proof. �

The next theorem gives an equation characterizing the HUVFs.
Theorem 19. A vector field X : (M, g) −→ (S(M), i∗gδ,0) is a HUVF if and only
if

∆gX =
[
‖∇X‖2 +

( 1
2α2 ‖∇X‖

2 − n

2

)
g(X2, X)

]
X

+
(n

2 −
1

2α2 ‖∇X‖
2
)
X2 +∇X1X

+ 1
α

trg
(
(∇.X)v(α)∇.X

)
(38)

Proof. We know that X is HUVF if and only if K(τ1(X)) = 0. From (30) we have

K
(
τ1(X)

)
= α

{−1
α
∇X1X −

1
α2 trg

(
(∇·X)v(α)∇·X

)
+ 1
α

∆gX +
( 1

2α3 ‖∇X‖
2 − n

2α

)
X2 −

[ 1
α
g(∆gX,X)

+
( 1

2α3 ‖∇X‖
2 − n

2α

)
g(X2, X)

]
X
}
.(39)

Using g(∆gX,X) = 1
2 ∆(‖∇X‖2) + ‖∇X‖2 = ‖∇X‖2 and K(τ1(X)) = 0, we get

∆gX =
[
‖∇X‖2 +

( 1
2α2 ‖∇X‖

2 − n

2

)
g(X2, X)

]
X

+
(n

2 −
1

2α2 ‖∇X‖
2
)
X2 +∇X1X

+ 1
α

trg
(
(∇·X)v(α)∇·X

)
.(40)

(⇐=) Let (38) holds. Substituting (38) in (39) gives us, K(τ1(X)) = 0, i.e., the
vertical part of τ1(X) is zero which implies that X is a HUVF. �

Remark 20. Let gs be the Sasaki metric. It is proved [9] that a unit vector field
X : (M, g) −→ (S(M), i∗gs) is a harmonic unit vector field with respect to i∗gs if
and only if ∆gX = ‖∇X‖2X.

The following corollary gives an analogous result to the Sasaki metric.
Corollary 21. If we suppose that (M, g) is a Riemannian manifold of constant
sectional curvature k and gδ,0 is defined by α = δ−1 =

√
2kE + b and σ = 0

(mappings defined in the equation (9)) then X : (M, g) → (S(M), i∗gδ,0) is a
HUVF if and only if

∆gX = ‖∇X‖2X .(41)



ISOTROPIC ALMOST COMPLEX STRUCTURES 31

Proof. Since, every space form is locally isomorphic to the one of En,Sn or Hn
then one can consider there exists a locally coordinate system (x1, . . . , xn) on M
such that the metric g is of the form g = λ2∑n

i=1 dx
i⊗dxi where λ is the conformal

factor. Let Xi = 1
λ

∂
∂xi for i = 1, . . . , n, be the locally orthonormal vector fields on

M . Furthermore, suppose
θi = λdxi , i = 1, . . . , n ,

be thier dual 1-forms. Suppose (x1, . . . , xn, y1, . . . , yn) is the associated locally
coordinate system on TM and ξi = λdyi, i = 1, . . . , n. From [4], we know that

dE(Av) =
n∑
i=1

θi(v)ξi(Av) , Av ∈ TvTM

and so for the given α, one can deduce that dα = −λkα
∑n
i=1 θ

idyi. This implies
that the gradient vector field of α with respect to the given metric gδ,0 is given by

(∇̄α)V = − k

λ(πoV )V
v
V ,(42)

for all vectors V ∈ TM . The equation (42) shows that the vector fields X1, X2
stated in the theorem 19 are X1 = 0 and X2(p) = − k

λ(p)X(p) for all p ∈M . Since
X is a unit vector field and (∇̄α)X(p) = − k

λ(p)X
v
X(p) then

(∇YX)v(α) = 0 ,
for all Y ∈ TM . Now, using the stated properties the equation (38) can be easily
reduced to this equation:

∆gX = ‖∇X‖2X .

�
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