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Symmetric linear operator identities in quasigroups

Reza Akhtar

Abstract. Let G be a quasigroup. Associativity of the operation on G can be
expressed by the symbolic identity RxLy = LyRx of left and right multiplication
maps; likewise, commutativity can be expressed by the identity Lx = Rx. In this
article, we investigate symmetric linear identities: these are identities in left and
right multiplication symbols in which every indeterminate appears exactly once
on each side, and whose sides are mirror images of each other. We determine
precisely which identities imply associativity and which imply commutativity,
providing counterexamples as appropriate. We apply our results to show that
there are exactly eight varieties of quasigroups satisfying such identities, and
determine all inclusion relations among them.
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Classification: 05C78

1. Introduction

A quasigroup is a nonempty set G, equipped with a binary operation (written
as juxtaposition), in which the left multiplication maps La : G → G, x 7→ ax and
the right multiplication maps Ra : G → G, x 7→ xa are bijective for all a ∈ G. The
group M(G) generated by these maps (under function composition) is called the
multiplication group of G, and is a subgroup of the group P (G) of permutations
of G. For more generalities on quasigroups, see [10].

It is well-known that an associative quasigroup is in fact a group. Thus, it
is natural to ask: which identities, if they hold in a quasigroup, imply associati-
vity? Although this question has received considerable attention in the literature
— and recent years have seen greater progress, thanks largely to the advent of
automatic theorem-provers (see, for example, [8], [9]) — it is probably too broad
a question to be treated in full generality. A sharpening of this question was con-
sidered by Niemenmaa and Kepka in [7], who asked: which linear identities —
identities in which each indeterminate appears exactly once on each side — imply
associativity? They showed that for every n ≥ 3, the “generalized associativity”
identity

In : x1(x2(. . . (xn−1xn) . . .)) = ((. . . (x1x2) . . .)xn−1)xn(1)
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is equivalent to associativity for division groupoids. A key insight in their proof
is to rewrite In in terms of left and right multiplication maps, working — to the
extent possible — with maps rather than elements. This approach was exploited
by the present author [1] to show that any division groupoid satisfying the identity
Lx1

Rx2
· · ·Lx2n−1

Rx2n
= Rx2n

Lx2n−1
· · ·Rx2

Lx1
must be an abelian group. Con-

sidering that common identities such as the associative law (xa)y = x(ay) and
the commutative law xa = ax may be expressed as identities of multiplication

operators by the (respective) formulas LxRy = RyLx and Lx = Rx, it is perhaps
natural to define an identity of operators to be linear if each symbol appears
exactly once on each side of the defining equation, and then to ask which linear
identities of operators imply associativity (or commutativity). Of course, not ev-
ery linear identity (in the sense defined above) can be thus obtained; nevertheless,
the ones which do constitute an interesting subfamily of linear identities which is
more easily studied than the whole.

In this article, we study a further restriction of the problem to symmetric linear
identities: these are identities in which the two sides of the defining equation are
mirror images of each other. The simplest nontrivial examples are the associative
law LxRy = RyLx and the identities LxLy = LyLx and RxRy = RyRx. We
answer completely the questions of which such identities imply commutativity,
and which imply associativity. Furthermore, we give a complete classification
of varieties of quasigroups defined by all such identities. Questions of a similar
sort — for different families of identities — have been studied by Krapež (see
[4], [5]). There are also many papers in the literature (for example, [2] and [3])
which are concerned with functional equations on quasigroups. These papers use
terminology and formalism superficially similar to that used in the present article;
however, their focus is primarily on finding operations that satisfy functional
equations of a prescribed type, rather than classifying the varieties of quasigroups
defined by a family of equations.

In preparation for stating our results, we introduce some notation and termi-
nology which will be maintained throughout the article. Let X be a countably
infinite set of independent indeterminates. Define the sets of left multiplication

symbols L = {Lx : x ∈ X} and right multiplication symbols R = {Rx : x ∈ X},
and let S = L ∪ R. The handedness of a symbol φ ∈ S, denoted h(φ), is defined
to be L if φ ∈ L or R if φ ∈ R. If we wish to emphasize that x ∈ X is the
(unique) indeterminate appearing in the symbol φ, then we write φ(x) instead
of φ. A word in S is a formal expression W = φ1 · · ·φd, where d ≥ 0 and φi ∈ S
for 1 ≤ i ≤ d; we denote the empty word by 1 and the set of all words in S
by S∗. We write W = W (x1, . . . , xm) to express the fact that x1, . . . , xm are the
(distinct) indeterminates appearing in W . We call d the length of W and define
the transpose of W by W t = φd · · ·φ1. A word W is called balanced if one element
of {φ1, φd} is from L and the other is from R. Likewise, W is called heterogeneous

if the symbols in W are drawn from both L and R, or homogeneous otherwise.
An alternating word is a word W = φ1 · · ·φd in which φi is a left multiplication
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symbol when i is odd and a right multiplication symbol when i is even (or vice
versa). Finally, W is a palindrome if for every i, 1 ≤ i ≤ d, φi and φd+1−i are
either both in L or both in R. Note that an alternating word is a palindrome if
and only if it has odd length.

We also need some notation to describe the process of substituting elements
of a fixed groupoid G for the indeterminates in a word W ∈ S∗ to obtain a map
from G to itself. One might think of this process as realizing an abstract word
in left and right multiplication symbols as an actual composition of left and right
multiplication maps in G. Specifically, if φ = φ(x) ∈ S, then we write φ(a) to
mean La if h(φ) = L or Ra if h(φ) = R. More generally, if W = W (x1, . . . , xd) =
φ1(x1) · · ·φd(xd) ∈ S∗ and a1, . . . , ad ∈ G, we write W (a1, . . . , ad) to mean the
composition φ1(a1) · · ·φd(ad). Although there are no indeterminates appearing
in the empty word 1, we stipulate that its realization (under any substitution) be
the identity map 1G.

An identity (in S∗) is a statement I : W1 = W2, where W1, W2 ∈ S∗ are
words. Such an identity is called linear if every indeterminate present appears
exactly once in each of W1 and W2. This condition necessitates that W1 and W2

have the same length, which we call the length of I. By extension, we call an
identity heterogeneous if it involves both left and right multiplication symbols or
homogeneous otherwise. Likewise, an identity is alternating (palindromic) if both
sides are alternating (respectively, palindromes). Finally, an identity is symmetric

if it takes the form W = W t for some word W ; such an identity is called balanced

if W is balanced. Since alternating symmetric identities will be of key importance
in our results, we reserve certain notation for them. For n ≥ 2, we define:

Alt(2n − 1, L) : Lx1
Rx2

Lx3
· · ·Lx2n−3

Rx2n−2
Lx2n−1

= Lx2n−1
Rx2n−2

Lx2n−3
· · ·Lx3

Rx2
Lx1

Alt(2n − 1, R) : Rx1
Lx2

Rx3
· · ·Rx2n−3

Lx2n−2
Rx2n−1

= Rx2n−1
Lx2n−2

Rx2n−3
· · ·Rx3

Lx2
Rx1

Alt(2n) : Lx1
Rx2

Lx3
· · ·Rx2n−2

Lx2n−1
Rx2n

= Rx2n
Lx2n−1

Rx2n−2
· · ·Lx3

Rx2
Lx1

.

Similarly, we define the left homogeneous identities

LHOn : Lx1
· · ·Lxn

= Lxn
· · ·Lx1

and the right homogeneous identities

RHOn : Rx1
· · ·Rxn

= Rxn
· · ·Rx1

.

Strictly speaking, the definitions above correspond to families of alternating
identities, since there are many possible choices of indeterminates from X . In the
interest of convenience, though, we will abuse terminology and refer to particular
members of these families as Alt(2n − 1, L), etc.
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Let C be a category whose objects are groupoids. An identity I is satisfied in
some object G of C if the two sides of I are equal upon substitution of any choice
of elements of G for the indeterminates appearing in I. We say that an identity
I implies an identity J in C (and write I ⇒C J ) if, whenever I is satisfied in
some object of C, J is also satisfied in G. In this article, C is almost always the
category of quasigroups, so we typically suppress mention of the category and
simply write I ⇒ J .

We summarize our main result as follows:

Theorem (See Theorem 3.1). Let I be a symmetric linear identity of length at

least 2. Then:

• I implies commutativity if and only if I is heterogeneous, of length at

least 3, and not an alternating identity of odd length;

• I implies associativity if and only if I is heterogeneous and of even length.

In Section 4, we apply this result to give a complete classification and descrip-
tion of the varieties of quasigroups satisfying symmetric linear identities of length
at least 2. We then prove:

Theorem (See Theorem 4.1). There are exactly eight varieties of quasigroups

satisfying symmetric linear identities of length at least 2.

When working with quasigroups, we use juxtaposition to denote the principal
operation, and the standard notation / and \ for the operations defined by a/b =
R−1

b (a) and b\a = L−1
b (a), respectively. The identities (a/b)b = a, (ab)/b = a,

a(a\b) = b, and a\(ab) = b all follow directly from the definitions and will be used
frequently without mention. To control proliferation of parentheses, we write
x ·yz in place of x(yz), etc. It is understood that · takes precedence over all other
operators.

Often, arguments may be shortened by recourse to the following device. If
(G, ∗) is a groupoid, we define its opposite groupoid Gop to be the groupoid whose
underlying set is the same as that of G, but equipped with the operation ◦ defined
by a ◦ b = b ∗ a. Clearly, left multiplication in G corresponds to right multiplica-
tion in Gop and vice versa. If W is a word, we define its opposite W as the word
obtained from W by switching the handedness of every symbol in W , but keeping
the same indeterminates throughout. Consequently, an identity I : W1 = W2

holds in G if and only the opposite identity I : W1 = W2 holds in Gop. A partic-
ularly useful observation is that if I and J are identities, then I ⇒ J if and only
if I ⇒ J . This is especially relevant when working with self-opposite identities
like the associative law and the commutative law: if one needs to show that one
of these is implied by some other identity I, it is often more convenient to argue
instead that it is implied by I. We will frequently make use of this principle
without explicit mention.

Many results in this article were inspired by computations performed by the
automatic theorem prover Prover9 and its associated model builder Mace4 [6].
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Nevertheless, with the notable exception of Lemma 2.5, all proofs were developed
by hand, and are not mere transcriptions of Prover9 output.

2. Preliminaries

2.1 Balanced identities and the multiplication group. In preparation for
studying identities implying commutativity, we study balanced identities, which
have particularly pleasant properties. Observe that a balanced identity takes the
form LxWRz = RzW

′Lx for appropriate words W and W ′.

Following [7], we make some definitions. Let G be a groupoid and define:

AL(G) = {f ∈ P (G) : f(xy) = g(x)y for some g ∈ P (G) and all x, y ∈ G}

BL(G) = {f ∈ P (G) : f(xy) = xg(y) for some g ∈ P (G) and all x, y ∈ G}

We say that G is AL-transitive (BL-transitive) if for all x, y ∈ G there exists
f ∈ AL(G) (respectively, f ∈ BL(G)) such that f(x) = y.

These sets are particularly meaningful when G is a division groupoid , a groupoid
in which all left and right multiplication maps are surjective. A key property un-
dergirding our arguments is a rigidity principle which appears in [7] as Lemma 2.5.
We give a slightly modified version of this below.

Lemma 2.1 ([7, Lemma 2.5]). Suppose a division groupoid G is BL-transitive.

If f, f ′ ∈ AL(G) and f(a) = f ′(a) for some a ∈ G, then f = f ′. The same result

holds if G is assumed to be AL-transitive and f, f ′ ∈ BL(G).

Proof: Suppose that G is BL-transitive and f, f ′ ∈ AL(G), a ∈ G are such
that f(a) = f ′(a). Select c ∈ G and then use surjectivity of Lc to find d ∈ G
such that a = cd. Next, given z ∈ G, use BL-transitivity to find h ∈ BL(G)
such that h(a) = z. Let g, g′, k ∈ P (G) witness that the formulas f(xy) = g(x)y,
f ′(xy) = g′(x)y, and h(xy) = xk(y) hold for all x, y ∈ G. Now

f(z) = f(h(a)) = f(h(cd)) = f(ck(d)) = g(c)k(d) = h(g(c)d) = h(f(cd))

= hf(a) = hf ′(a) = hf ′(cd) = h(g′(c)d) = g′(c)k(d) = f ′(ck(d))

= f ′(h(cd)) = f ′(h(a)) = f ′(z).

The proof of the second statement is similar. �

The relevance of balanced identities is made apparent by the next result.

Corollary 2.2. Let G be a division groupoid satisfying a balanced linear identity

LxW (y1, . . . , ym)Rz = RzW
′(y1, . . . , ym)Lx.(2)

Then for every a ∈ G, there exist b1, . . . , bm ∈ G such that

LaW (b1, . . . , bm) = RaW ′(b1, . . . , bm) = 1G.
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Proof: The hypothesis implies that for all a, c1, . . . , cm ∈ G, RaW ′(c1, . . . , cm) ∈
BL(G) and LaW (c1, . . . , cm) ∈ AL(G); it is moreover obvious that 1G ∈ AL(G)∩
BL(G). We next argue that G is AL-transitive. Given x, y ∈ G, choose c1, . . . , cm

∈ G arbtirarily, and let z = W (c1, . . . , cm)x. Since Rz is surjective, there exists
a ∈ G such that az = y, i.e. LaW (c1, . . . , cm)x = y. As LaW (c1, . . . , cm) ∈
AL(G), this shows that G is AL-transitive. A similar argument establishes that
G is BL-transitive.

Now fix a ∈ G and use surjectivity of the multiplication maps to select b1, . . . , bm

∈ G such that LaW (b1, . . . , bm)(a) = a. If we define f = LaW (b1, . . . , bm), then
f = 1G by Lemma 2.1. Substituting x = z = a and yi = bi into (2), we have

1G(aa) = 1GRa(a) = LaW (b1, . . . , bm)Ra(a)

= RaW ′(b1, . . . , bm)La(a) = [RaW ′(b1, . . . , bm)](aa).

Again by Lemma 2.1, RaW ′(b1, . . . , bm) = 1G. �

If G is a quasigroup, then, under the hypothesis of Corollary 2.2, the inverse
of a left or right multiplication map in G is itself a word in left and right multi-
plication maps. Thus, we have the following interesting consequence:

Corollary 2.3. If G is a quasigroup satisfying a balanced linear identity, then the

multiplication group M(G) consists of all words in left and right multiplication

maps.

2.2 The cancellation principle. We will often find it convenient to simplify ar-
guments by replacing an unbalanced identity by a balanced identity, using a short-
ening process which we call the cancellation principle.

Suppose I : W = W t is a symmetric, unbalanced linear identity. Writing
W = φ1 · · ·φd, with φi = φi(xi) ∈ S for 1 ≤ i ≤ d, the condition of being
unbalanced implies h(φ1) = h(φd). Formally setting xd = x1, we obtain the
identity φ1φ2 · · ·φd−1φ1 = φ1φd−1 · · ·φ2φ1. Because the symbols φi represent
formal left and right multiplication maps, which become actual left and right
multiplication maps when elements of a particular quasigroup are substituted for
the indeterminates, bijectivity of these maps allows us to justify canceling φ1 on
the left and right of both sides of the equation to obtain the shorter identity
φ2 · · ·φd−1 = φd−1 · · ·φ2.

Arguing inductively, we deduce a general principle. Suppose I : W = W t is a
nonpalindromic symmetric linear identity, with W = φ1 · · ·φd as above. Because
W is not a palindrome, it must be heterogeneous, and moreover there exists
i, 1 ≤ i ≤ d/2, such that h(φi) 6= h(φd−i+1); let i(W ) denote the smallest such
integer i. Substituting xd+1−i = xi for i, 1 ≤ i ≤ i(W ), and canceling successively,
we obtain the shorter identity

φi(W ) · · ·φd−i(W )+1 = φd−i(W )+1 · · ·φi(W ).
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This identity will still be symmetric and linear, but also has the advantage of
being balanced. Moreover, since terms are canceled in pairs, the length of the
shortened identity has the same parity as that of the original identity. Of course,
even if W is palindromic, it is still possible (for identities of length at least 3) to
cancel terms in pairs to shorten the identity, but this process will never result in a
balanced identity. We refer to this general principle of shortening an unbalanced
identity as the cancellation principle.

As an immediate application of the cancellation principle, we obtain the fol-
lowing result about homogeneous identities.

Proposition 2.4.

• All left-homogeneous identities of even (odd) length are equivalent, as are

all right-homogeneous identities of even (respectively, odd) length.

• Every left (right) homogeneous identity of even length implies every left

(respectively, right) homogeneous identity of odd length.

Proof: For n ≥ 1, the implication LHO2n ⇒ LHO2 follows from the cancel-
lation principle. The identity LHO2 is simply the statement that any two left
multiplication operators commute, so clearly LHO2 ⇒ LHOk for all k ≥ 2. Thus,
a left homogeneous identity of even length implies every left homogeneous iden-
tity. Similarly, cancellation shows LHO2n+1 ⇒ LHO3, so it only remains to prove
LHO3 ⇒ LHO2n+1. We argue by induction on n, the case n = 1 being trivial.
Assume that n > 1 and LHO3 ⇒ LHO2n−1. The following argument establishes
LHO3 ⇒ LHO2n+1, by application of LHO2n−1 to the parenthesized expressions
and LHO3 to the expression in square brackets.

(Lx1
· · ·Lx2n−1

)Lx2n
Lx2n+1

= Lx2n−1
(Lx2n−2

· · ·Lx1
Lx2n

)Lx2n+1

= Lx2n−1
Lx2n

(Lx1
· · ·Lx2n−2

Lx2n+1
)

= [Lx2n−1
Lx2n

Lx2n+1
]Lx2n−2

· · ·Lx2
Lx1

= Lx2n+1
Lx2n

Lx2n−1
Lx2n−2

· · ·Lx2
Lx1

.

By arguing in the opposite groupoid, we see that the analogous statements
hold for right-homogeneous identities. �

2.3 Alternating identities. The goal of this section is to prove that all alter-
nating identities of odd length are equivalent. The nontrivial part is to show that
Alt(3, L) and Alt(3, R) are equivalent; by arguing in the opposite quasigroup, it
is sufficient to show Alt(3, L) ⇒ Alt(3, R). The proof of this assertion proceeds in
two phases. In the first phase, we show that Alt(3, L) implies the so-called medial

(or entropic) identity xz · yu = xy · zu. In the second phase, we derive further
consequences of Alt(3, L), which, when combined with the medial identity, imply
Alt(3, R).

Lemma 2.5. A quasigroup satisfies Alt(3, L) if and only if it satisfies Alt(3, R).
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Proof: Observe that Alt(3, L), which is the identity x((yz)u) = y((xz)u), is
equivalent, via the substitutions x 7→ x/z and y 7→ y/z, to x/z · yu = y/z · xu.
Renaming variables, we have

x/y · zu = z/y · xu.(3)

Substitute z 7→ zy to obtain

(x/y)(zy · u) = z · xu.(4)

On the other hand, substituting y 7→ xy, u 7→ y into (3) yields

x/(xy) · zy = z.(5)

Putting z 7→ z/y in (5), we obtain

(x/(xy))z = z/y(6)

and multiplying both sides of (6) on the right by y, we have

(x/(xy))z · y = z.(7)

Next, we interchange x and z in (6) and rewrite it as (z/(zy))x = x/y; then,
substituting y 7→ z\y, we deduce z/(z(z\y)) · x = x/(z\y), i.e. x/(z\y) = z/y · x.
Renaming variables once more, we conclude

x/(y\z) = y/z · x.(8)

Starting from (7) and substituting y 7→ x\y, we have

(x/y)z · (x\y) = z,(9)

which, upon making the substitution x 7→ xy, becomes xz · ((xy)\y) = z. Renam-
ing variables once again, we obtain

xy · ((xz)\z) = y.(10)

Using (8), we have

xz = (xz)/z · z = z/((xz)\z),

whereas replacing y by means of (10) yields

yu = (xy · ((xz)\z))u.

For convenience, set w = (xz)\z. From the formulas immediately above, we
obtain

xz · yu = (z/w) · ((xy · w)u).(11)
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Finally, applying (4) to the right side of (11), we deduce the medial identity

xz · yu = xy · zu.(12)

Returning to (5), substitute y 7→ x\y to get x/y · z(x\y) = z; then substitute
x 7→ xy to obtain x · z((xy)\y) = z. Renaming variables gives x · y((xz)\z) = y,
and dividing each side on the left by x yields

y((xz)\z) = x\y.(13)

From the medial identity (12), we have xy ·u((zw)\w) = xu·y((zw)\w). Applying
(13) to both sides of this equation, we conclude

xy · (z\u) = xu · (z\y).(14)

Now substitute u 7→ zu and y 7→ zy to conclude (x(zy))u = (x(zu))y, which is
precisely Alt(3, R). �

Remark. Even though Alt(3, L) (or, equivalently, Alt(3, R)) implies the medial
identity, the converse implication does not hold. A counterexample is furnished
by the quasigroup A whose Cayley table is given in Section 3.1.

Corollary 2.6. All alternating identities of odd length are equivalent.

Proof: The cancellation principle shows that for all n ≥ 1, Alt(2n+1, L) implies
Alt(3, L) if n is even or Alt(3, R) if n is odd. Likewise, Alt(2n + 1, R) implies
Alt(3, R) if n is even or Alt(3, L) if n is odd. Because Alt(3, L) and Alt(3, R)
are equivalent by Lemma 2.5, we conclude that any alternating identity of odd
length implies both alternating identities of length 3. It remains to show that for
all n ≥ 1, Alt(2n + 1, L) and Alt(2n + 1, R) can be deduced from Alt(3, L) (or
equivalently from Alt(3, R)). We proceed by induction on n. The base case n = 1
is Lemma 2.5, so suppose n > 1 and Alt(3, L) holds. By induction, Alt(2n−1, L)
and Alt(2n− 1, R) hold. Then, reasoning as in the proof of Proposition 2.4:

(Lx1
Rx2

· · ·Rx2n−2
Lx2n−1

)Rx2n
Lx2n+1

= (Lx2n−1
Rx2n−2

· · ·Rx2
Lx1

)Rx2n
Lx2n+1

= Lx2n−1
(Rx2n−2

Lx2n−3
· · ·Lx1

Rx2n
)Lx2n+1

= Lx2n−1
(Rx2n

Lx1
· · ·Lx2n−3

Rx2n−2
)Lx2n+1

= Lx2n−1
Rx2n

(Lx1
Rx2

· · ·Rx2n−2
Lx2n+1

)

= Lx2n−1
Rx2n

(Lx2n+1
Rx2n−2

· · ·Rx2
Lx1

)

= (Lx2n−1
Rx2n

Lx2n+1
)Rx2n−2

· · ·Rx2
Lx1

= (Lx2n+1
Rx2n

Lx2n−11
)Rx2n−2

· · ·Rx2
Lx1

Thus, Alt(3, L) ⇒ Alt(2n +1, L). By recourse to the opposite quasigroup, we see
Alt(3, R) ⇒ Alt(2n + 1, R). �
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3. Main result

We now come to the statement of our main theorem, which will be proven by
stages in Sections 3.1 and 3.2.

Theorem 3.1. Let I be a symmetric linear identity of length at least 2. Then:

• I implies commutativity if and only if I is heterogeneous, of length at

least 3, and not an alternating identity of odd length;

• I implies associativity if and only if I is heterogeneous and of even length.

3.1 Negative results. In this section, we prove those parts of Theorem 3.1
involving the exhibition of counterexamples. We begin by considering quasigroups
represented by the Cayley tables below.

A B

* 0 1 2
0 1 2 0
1 0 1 2
2 2 0 1

* 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

C D

* (0,0) (0,1) (1,0) (1,1)
(0,0) (0,0) (1,0) (1,1) (0,1)
(0,1) (1,1) (0,1) (0,0) (1,0)
(1,0) (0,1) (1,1) (1,0) (0,0)
(1,1) (1,0) (0,0) (0,1) (1,1)

* (0,0) (0,1) (1,0) (1,1)
(0,0) (0,0) (0,1) (1,0) (1,1)
(0,1) (1,0) (1,1) (0,1) (0,0)
(1,0) (1,1) (1,0) (0,0) (0,1)
(1,1) (0,1) (0,0) (1,1) (1,0)

To facilitate computation, it is convenient to have formulas for the respective
operations ∗ on each of these quasigroups. In each of the following formulas, +
denotes either addition modulo 3 (on the underlying set {0, 1, 2} of the quasi-
groups A and B) or coordinatewise addition modulo 2 (on the underlying set
{(0, 0), (0, 1), (1, 0), (1, 1)} of the quasigroups C and D).

A : x ∗ y = 2x + y + 1

B : x ∗ y = 2x + 2y

C : (x1, y1) ∗ (x2, y2) = (x2 + y1 + y2, x1 + x2 + y1)

D : (x1, y1) ∗ (x2, y2) = (x1 + x2 + y1, x1 + y2 + (x1 + y1)x2)

Proposition 3.2.

• No homogeneous linear identity implies either commutativity or associa-

tivity.

• No symmetric linear identity of odd length implies associativity.

• No alternating identity of odd length implies either commutativity or

associativity.
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Proof: It is clear that none of these quasigroups are groups, and that B is com-
mutative, whereas A and C are not. It is easy to check that in A, L2 = L2

0 and
L1 = L3

0, so all left multiplication maps commute and hence every homogeneous
linear identity in left multiplication symbols is satisfied in A. Likewise, every ho-
mogeneous linear identity in right multiplication symbols is satisfied in Aop. Thus,
homogeneous linear identities imply neither commutativity nor associativity.

Now consider a symmetric identity I of odd length. Because B is commutative,
we have Lx = Rx; hence to verify that I holds in B, it suffices to show that
Lx1

· · ·Lxn
= Lxn

· · ·Lx1
holds for n odd. For i, j ∈ {0, 1, 2}, Li(i) = i and

Li(j) 6= j for j 6= i, so L0, L1, and L2 are transpositions in the symmetric group
S{0,1,2}. If b1, . . . , bn ∈ B, then σ = Lb1 · · ·Lbn

, being the product of an odd
number of transpositions in S{0,1,2}, is an odd permutation and hence must itself

be a transposition. Therefore, Lb1 · · ·Lbn
= σ = σ−1 = L−1

bn
· · ·L−1

b1
= Lbn

· · ·Lb1 ,
and so a symmetric linear identity of odd length does not imply associativity.

To prove the last statement, it suffices (by Corollary 2.6) to show that Alt(3, L)
holds in the quasigroup C. This can be done by brute force; however, we instead
give a more conceptual argument that any alternating identity of odd length holds
in C. Direct computation shows that the identity Rx = L2

x holds in C, and that
x2 = x for all x ∈ C. Since L3

x = 1, it follows that Rx = L−1
x and Lx = R−1

x . By
identifying the multiplication group M(C) with a subgroup of S4 in the natural
manner, the various left and right multiplication maps in M(C) correspond to
the eight elements of order 3 in S4. Thus, M(C) ∼= A4.

We claim that the identities LxRy = LyRx and RxLy = RyLx also hold in C.

If a, b ∈ C are distinct, then Rb = L−1
b 6= L−1

a , so LaRb 6= 1C . However, LaRb

fixes neither a nor b, so LaRb must have order 2 as a member of M(C). Thus,
LaRb = (LaRb)

−1 = R−1
b L−1

a = LbRa. Since LaRb = LbRa obviously holds when
a = b, we have established the identity LxRy = LyRx. From this, we can easily
deduce the other identity:

RxLy = L−1
y LyRxLy = L−1

y LxRyLy = L−1
y Lx = RyLx.

Using these two identities, it is easy to see that for all n ≥ 1, both Alt(2n + 1, L)
and Alt(2n + 1, R) hold in C. Therefore, an alternating identity of odd length
implies neither commutativity nor associativity. �

3.2 Positive results. The results of this section will finish the proof of Theo-
rem 3.1.

Lemma 3.3. A quasigroup satisfying a left- (right-)homogeneous symmetric iden-

tity of even length has a left (respectively, right) neutral element.

Proof: Suppose G is a quasigroup satisfying Lx1
· · ·Lx2d

= Lx2d
· · ·Lx1

. Select
a ∈ G arbitrarily and choose e ∈ G such that Le(a) = a. Now suppose b ∈ G.
Select a2, . . . , ad ∈ G arbitrarily; then use bijectivity of the multiplication maps
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to select ad+1 ∈ G such that La2
· · ·Lad

Lad+1
Lad

· · ·La2
a = b. Then

Leb = LeLa2
· · ·Lad

Lad+1
Lad

· · ·La2
a = La2

· · ·Lad
Lad+1

Lad
· · ·La2

Lea = b.

The assertion for right multiplication maps can be proved by reference to the
opposite quasigroup. �

We begin with the case of symmetric balanced identities.

Proposition 3.4. Every heterogeneous nonpalindromic linear identity implies

commutativity.

Proof: Let I be a heterogeneous nonpalindromic linear identity. By the cancel-
lation principle, we may assume without loss of generality that I is balanced, i.e.
I takes on the form LxW (y1, . . . , ym)Rz = RzW

′(y1, . . . , ym)Lx. Now fix a ∈ G;
by Corollary 2.2 there exist b1, . . . , bm ∈ G such that W (b1, . . . , bm) = L−1

a and
W ′(b1, . . . , bm) = R−1

a . Then, substitute yi = bi in the original identity and apply
the above formulae to obtain LxL−1

a Rz = RzR
−1
a Lx. Setting x = z = a, we

deduce Ra = La. Since a was arbitrary, we have established the commutative
law. �

Proposition 3.5. Every heterogeneous, palindromic, symmetric linear identity

of even length 2d ≥ 4 implies commutativity.

Proof: Let W = φ1(x1) · · ·φd(xd)φd(yd) · · ·φ1(y1) be a heterogeneous, palin-
dromic word of length at least 4, and consider the identity I : W = W t. By
considering the opposite identity if necessary, we may assume without loss of gen-
erality that h(φd) = R. Since I is heterogeneous, there exists i, 1 ≤ i < d, such
that h(φi) = L. By choosing i as large as possible, we see that our identity takes
on the form

φ1(x1) · · ·φi−1(xi−1)Lxi
Rxi+1

· · ·Rxd
Ryd

· · ·Ryi+1
Lyi

φi−1(yi−1) · · ·φ1(y1)

= φ1(y1) · · ·φi−1(yi−1)Lyi
Ryi+1

· · ·Ryd
Rxd

· · ·Rxi+1
Lxi

φi−1(xi−1) · · ·φ1(x1),

which after cancellation implies

(15) Lxi
Rxi+1

· · ·Rxd
Ryd

· · ·Ryi+1
Lyi

= Lyi
Ryi+1

· · ·Ryd
Rxd

· · ·Rxi+1
Lxi

.

Applying further cancellation to (15) yields the identity:

Rxd
Ryd

= Ryd
Rxd

.(16)

By Lemma 3.3, G has a right neutral element e ∈ G. Now substitute xj = e
and yj = e in (15) for j, i+1 ≤ j ≤ d, to obtain Lxi

Lyi
= Lyi

Lxi
. Applying both

sides of this identity to e, we have xiyi = yixi, which is the commutative law. �

The analogous statement for identities of odd length is more difficult to prove.

Proposition 3.6. Every heterogeneous, palindromic, nonalternating, symmetric

linear identity of odd length 2d + 1 ≥ 3 implies commutativity.
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Proof: Let W = φ1(x1) · · ·φd(xd)φd+1(xd+1)φd(xd+2) · · ·φ1(x2d+1) be a hetero-
geneous, palindromic, nonalternating word of length at least 3, and consider the
identity I : W = W t. By substituting x2d+2−i = xi for 1 ≤ i ≤ d − 1 into I and
applying the cancellation principle, we obtain the shorter identity

(17) φd(xd)φd+1(xd+1)φd(xd+2) = φd(xd+2)φd+1(xd+1)φd(xd)

which we call the core of I. We separate the proof into two cases, according to
whether the core is homogeneous or heterogeneous.

If the core of I is homogeneous, then, since I is heterogeneous and palindromic,
there exists some largest value i, 1 ≤ i < d, such that h(φi) 6= h(φd). By
considering the opposite groupoid, we may assume without loss of generality that
h(φi) = h(φ2d−i+2) = L, and that h(φj) = R for j, i+1 ≤ j ≤ 2d−i+1. Rewriting
the core (17) as RxRyRz = RzRyRx, or ((uz)y)x = ((ux)y)z, substitute x 7→ u\x
and z 7→ u\z to obtain (zy)(u\x) = (xy)(u\z), which can be recast as

(18) Ru\xLz = Ru\zLx.

Applying the cancellation principle to I again, but this time cancelling off only
i − 1 pairs, we obtain the identity

(19) Lxi
Rxi+1

· · ·Rx2d−i+1
Lx2d−i+2

= Lx2d−i+2
Rx2d−i+1

· · ·Rxi+1
Lxi

.

Apply both sides to a new indeterminate v and write w = Rx2d−i
· · ·Rxi+1

Lxi
v

to yield

(20) Lxi
Rxi+1

· · ·Rx2d−i+1
Lx2d−i+2

v = x2d−i+2(wx2d−i+1).

Next, substitute x2d−i+1 7→ w\x2d−i+1 to obtain

(21) Lxi
Rxi+1

· · ·Rx2d−i
Rw\x2d−i+1

Lx2d−i+2
v = x2d−i+2x2d−i+1.

In light of (18), we see that the left side of (21) is invariant upon permuta-
tion of x2d−i+1 and x2d−i+2. The same must be true of the right side; hence,
x2d−i+2x2d−i+1 = x2d−i+1x2d−i+2, and so commutativity holds.

Now suppose the core of I is heterogeneous. Since I is assumed to be palin-
dromic and not alternating, it must contain two consecutive symbols of the same
handedness. By considering the opposite quasigroup, we may assume without
loss of generality that h(φi) = h(φi+1) = L for some i, 1 ≤ i < d. The core
of I is then either Alt(3, L) or Alt(3, R); however, since these two are logically
equivalent by Lemma 2.5, we may assume in either case that Alt(3, L) holds,
i.e. LxRyLz = LzRyLx. Thus x((zu)y) = z((xu)y), which, upon making the
substitutions x 7→ x/u, z 7→ z/u, may be recast as (x/u)(zy) = (z/u)(xy), or

(22) Lx/uLz = Lz/uLx.
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Now applying the cancellation principle to I, we obtain

(23)
Lxi

Lxi+1
φi+2(xi+2) · · ·φ2d−i(x2d−i)Lx2d−i+1

Lx2d−i+2

= Lx2d−i+2
Lx2d−i+1

φ2d−i(x2d−i) · · ·φi+2(xi+2)Lxi+1
Lxi

.

Apply both sides to a new indeterminate v, and write
w = φ2d−i(x2d−i) · · ·φxi+2

Lxi+1
Lxi

v to deduce

(24)
Lxi

Lxi+1
φi+2(xi+2) · · ·φ2d−i(x2d−i)Lx2d−i+1

Lx2d−i+2
v

= Lx2d−i+2
Lx2d−i+1

w = x2d−i+2(x2d−i+1w).

Now substitute x2d−i+1 7→ x2d−i+1/w to obtain

(25) Lxi
Lxi+1

· · ·Lxd
Rxd+1

Lxd+2
· · ·Lx2d−i+1/wLx2d−i+2

v = x2d−i+2x2d−i+1.

By (22), the left side of (25) is invariant under permutation of x2d−i+1 and
x2d−i+2. Thus, x2d−i+2x2d−i+1 = x2d−i+1x2d−i+2, and commutativity holds in
this case also. �

We have now proved all assertions of Theorem 3.1 involving commutativity.
The remaining statements now follow readily.

Proposition 3.7. Every heterogeneous symmetric identity of even length implies

associativity.

Proof: Suppose I takes on the form

(26) φ1(x1) . . . φd(x2d) = φd(x2d) . . . φ1(x1).

If d = 1, there is nothing to prove, so assume d ≥ 2. If G is a quasigroup
in which I is satisfied, then by Proposition 3.4 or 3.5, the commutative law
Lx = Rx holds in G. Replacing every right multiplication symbol in I with its
corresponding left multiplication symbol, we observe that G satisfies a homoge-
neous symmetric identity of even length. By Lemma 3.3, G has a left neutral
element e, which, by commutativity, must be a two-sided neutral element. Now
choose integers i and j, 1 ≤ i, j ≤ d, such that h(φi) = L and h(φj) = R; without
loss of generality, we may assume i < j. Then, set xk = e for all k 6= i, j in (26)
to conclude Lxi

Rxj
= Rxj

Lxi
. This shows that associativity holds in G. �

4. Varieties

We apply the results of Section 3 to classify varieties of quasigroups satisfying
symmetric linear identities. For convenience of reference, we abbreviate by LLR
the identity LxLyRz = RzLyLx.

Theorem 4.1. There are exactly eight varieties of quasigroups satisfying sym-

metric linear identities of length at least 2. Their names and descriptions, along

with a representative identity from each, is given in Table 1.
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Table 1

Name Identity Description

Ab Alt(4) Abelian groups: heterogeneous, of even length ≥ 4
Gr Alt(2) Groups: heterogeneous, of length 2
AltO Alt(3, L) Alternating, of odd length ≥ 3
LHom(2) LHO2 Homogeneous in L, of even length ≥ 2
LHom(3) LHO3 Homogeneous in L, of odd length ≥ 3
RHom(2) RHO2 Homogeneous in R, of even length ≥ 2
RHom(3) RHO3 Homogeneous in R, of odd length ≥ 3
HeON LLR Heterogeneous, nonalternating, of odd length ≥ 3

The inclusions among these varieties are described by the following Hasse

Diagram. Superscripts indicate properties enjoyed by quasigroups in that va-

riety (c=commutative, 2=two-sided neutral element, L=left neutral element only,

R=right neutral element only, 0=no neutral element).

Ab
c,2, Alt(4)

fffffffffffffffffffffffffffff

llllllllllllll

RRRRRRRRRRRRRR

Gr
2, Alt(2) LHom2

L, LHO2 HeON
c,0, LLR

llllllllllllll

RRRRRRRRRRRRRR
RHom2

R, RHO2

LHom3
0, LHO3 AltO

0, Alt(3, L) RHom3
0, RHO3

The first step in the proof is to show that the list of varieties in Table 1 is
exhaustive, and that all the implications in the above Hasse diagram are valid.
Observe that LHO2 ⇒ LHO3 and RHO2 ⇒ RHO3 by Proposition 2.4. All
left (respectively, right) homogeneous identities of even (respectively, odd length)
are equivalent by Proposition 2.4 and all alternating identities of odd length are
equivalent by Corollary 2.6. The remaining implications are proven below.

Lemma 4.2.

• Let G be a quasigroup. Then

G is an abelian group ⇔ Alt(2n) holds in G for some n ≥ 2

⇔ Alt(2n) holds in G for all n ≥ 2.

• Every nonalternating heterogeneous identity of odd length implies LHO3,

RHO3, and Alt(3, L). All nonalternating heterogeneous identities of odd

length are equivalent.
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Proof: In an abelian group, the identities LxRy = RyLx, LxLy = LyLx and
RxRy = RyRx are all satisfied, so any symmetric linear identity will hold. Con-
versely, if G is a quasigroup in which Alt(2n) holds for some n ≥ 2, then by
Theorem 3.1 the operation on G must be both commutative and associative.

Now suppose m, n ≥ 1, and I, I ′ are nonalternating heterogeneous identities of
respective lengths 2m + 1 and 2n + 1. By Theorem 3.1, I implies commutativity,
i.e. Lx = Rx holds; this in turn implies LHO2m+1. By Proposition 2.4, LHO3

holds; in conjunction with commutativity, this means that any symmetric identity
of length 3 holds. On the other hand, Proposition 2.4 shows LHO3 ⇒ LHO2n+1;
in conjunction with commutativity, this implies that any symmetric identity of
length 2n + 1 holds. In particular, I ⇒ I′. �

It remains to show that there are no further inclusions among the varieties. To
this end, we construct a table summarizing which defining identities hold in each of
the quasigroups A, B, C, and D defined in Section 3.1. A bullet in an entry means
that the identity is satisfied in that quasigroup. A tuple of elements represents
data constituting a counterexample: these are the elements to be substituted for
the indeterminates appearing in the defining identity (read in order of appearance
from left to right), the last coordinate being the element to which each side of
that identity is to be applied. For instance, the entry (1, 0, 0, 0) for the identity
Alt(3, L) and the quasigroup A means that (L1R0L0)0 6= (L0R0L1)0. As none of
the quasigroups in question are associative, we omit the columns corresponding
to the varieties Ab and Gr. Since LLR implies commutativity by Theorem 3.1,
we use the symbol ‘NC’ (noncommutative) to indicate the reason that LLR is not
satisfied in the quasigroups A, C, and D. Finally, for brevity we use the notation
ab in place of (a, b) for elements of the quasigroups C and D.

Table 2

Quasigroup Alt(3, L) LHO2 LHO3 RHO2 RHO3 LLR

A (1, 0, 0, 0) • • (1, 0, 0) • NC
B • (1, 0, 0) • (1, 0, 0) • •
C • (01, 00, 00) (01, 00, 00, 00) (01, 00, 00) (01,00,00,00) NC
D (10, 00, 00, 00) • • (10, 00, 00) (10, 00, 00, 00) NC

Lemma 4.3. The only implications among the varieties in Table 1 are those

shown in the Hasse diagram.

None of the quasigroups in Table 2 satisfies associativity, yet each of the
identities LHO2, RHO2, LLR is satisfied in at least one of these quasigroups.
Thus Alt(2), which defines the variety of groups, cannot be implied by any of
these identities. Furthermore, direct computation in the group S3 shows that
L(1 3 2)L(1 2)L(1 2 3) 6= L(1 2 3)L(1 2)L(1 3 2), so LHO3 is not satisfied in S3. Since
S3 is the unique nonabelian group of order 6, it is isomorphic to its opposite group,
and thus RHO3 is not satisfied in it, either. Finally, letting e denote the iden-
tity element of S3, we have L(1 2)ReL(1 3) 6= L(1 3)ReL(1 2); hence, Alt(3, L) is
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not satisfied in S3. Thus, Alt(2) does not imply any among LHO3, Alt(3, L),
and RHO3.

From the table, we see that LHO2 implies neither Alt(3, L) nor RHO3. Since
Alt(3, L) ⇔ Alt(3, R) by Lemma 2.5, it follows (by consideration of opposite
structures) that RHO2 implies neither Alt(3, L) nor LHO3. The quasigroup B
witnesses that LLR implies neither LHO2 nor RHO2. Likewise, B shows that
LHO3 does not imply LHO2; D shows that LHO3 does not imply RHO3, and A
shows that LHO3 does not imply Alt(3, L). By consideration of opposite struc-
tures, we see that RHO3 does not imply any identity among RHO2, Alt(3, L),
and LHO3. Finally, C shows that Alt(3, L) does not imply any among LHO3,
RHO3, and LLR. This concludes the proof that there are no further containment
relations among the varieties in the Hasse diagram. �
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