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Abstract. We study some properties of generalized reduced Verma modules over Z-graded
modular Lie superalgebras. Some properties of the generalized reduced Verma modules
and coinduced modules are obtained. Moreover, invariant forms on the generalized reduced
Verma modules are considered. In particular, for Z-graded modular Lie superalgebras of
Cartan type we prove that generalized reduced Verma modules are isomorphic to mixed
products of modules.
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1. INTRODUCTION

Verma modules proposed by Verma in [20] and Bernshtein, Gel’fand and Gel’fand
in [1] are important objects in the representation theory of Lie algebras and super-
algebras. The main results on the structure of Verma modules were obtained in [2],
[6], [20]. As a natural generalization of Verma modules, generalized Verma modules
are modules induced from a parabolic subalgebra and a complex semisimple Lie al-
gebra (see [3], [5], [12], [13]). The theory of generalized Verma modules is rather
similar to that of Verma modules. Some results of Verma modules were extended to
certain class of generalized Verma modules in [9], [11], [14].

In 1990, Farnsteiner in [7] constructed generalized reduced Verma modules over
modular Lie algebras. Hereafter, some properties of these generalized reduced Verma
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modules were obtained in [4], [8]. Since generalized reduced Verma modules are
closely related to mixed products of modules, the structure of mixed products seems
to be important and interesting. In [17], [18], [19], Shen classified Z-graded irre-
ducible representations of graded Lie algebras of Cartan type. His approach rests on
the notion of the mixed product. In [4], graded modules of graded Cartan type Lie
algebras which possess nondegenerate invariant form were determined by Chiu. In
the case of modular Lie superalgebras of Cartan type, Z-graded modules of Lie super-
algebras W(n) and S(n), H(n), mixed products of modules of infinite-dimensional
Lie superalgebras and Z-graded modules of finite-dimensional Hamiltonian Lie su-
peralgebras were obtained in [22], [23], [25], [26], respectively.

In this paper, we generalize some beautiful results about generalized reduced
Verma modules over modular Lie algebras in [4], [7], [8]. In Section 2, we review
some necessary notions. In Section 3, some relations between generalized reduced
Verma modules and coinduced modules are given. In Section 4, invariant forms on
generalized reduced Verma modules are considered. In Section 5, we prove that gen-
eralized reduced Verma modules are isomorphic to mixed products for modules of
Z-graded modular Lie superalgebras of Cartan type.

All Lie superalgebras and modules treated in the present paper are assumed to
be finite dimensional. All notations and notions of Lie superalgebras and modular
representations are the same as in papers [10], [16], [24], readers can find the precise
definitions in the corresponding references.

2. PRELIMINARIES

Throughout this paper we assume that F is a field of prime characteristic and
Z5 = {0,1} is the residue class ring mod 2. Let L = Ly @ Li be a Lie superalgebra
over F. Then F has a trivial structure of a Zs-graded L-module: F5 = F, F; = 0.
Furthermore, we always assume that the representation of L in F is equal to zero.

The standard notation Z, N and Ny are used for the set of integers, the set of
positive integers and the set of nonnegative integers, respectively. Denote by N§ the
k-tuples with nonnegative integers as entries. For any Lie superalgebra L over [F,

let U(L) denote the universal enveloping algebra of L. If L = € L; is a Z-graded
i€z
Lie superalgebra over [, we customarily put Lt = @ L; and L™ = @ L;. Then
i>0 i<0
L=Lt"®Lo® L™ and U(L) = U(L")U(Lo)U(L™).
Without explicitly mentioning, if d(x) (zd(z)) occurs in some expression in this
paper, then z is assumed to be a Zs-homogeneous (Z-homogeneous) element and

d(z) (zd(z)) is the Zs-degree (Z-degree) of .
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Definition 1 ([21]). Let V and W be L-modules and suppose that f is a Z-
homogeneous element of Homg(V, W). The mapping f is called a homomorphism
of L-modules if (x - f)(v) = (=1)¥®4) f(x-v) for all z € L and v € V. The
mapping f is said to be an isomorphism of L-modules if f is a homomorphism and
if, furthermore, f is a bijection.

Let V be an L-module. The vector space V* := Homg(V, F) obtains the structure
of an L-module by means of (z - f)(v) = —(—1)*@4) f(2 . v), where 2 € L, v € V,
feV*. Clearly, d(x - f) =d(z) + d(f).

We consider the subalgebra K := Lo ® LT of a Z-graded Lie superalgebra

L=@ L;. Let {e1,...,ex} be a basis of L™ N Lz and {&,...,&} be a basis of
ez

L~NLi. As L~ N L operates on L by nilpotent transformation, there exist m; € No,

1 < i < k such that

o= cU(LT)NZWU(L), 1<i<k,

where Z(U(L)) is the center of U(L). In particular, {z;: 1 < ¢ < k} are homoge-
neous elements relative to the Z-gradation inherited by U(Lg). An application of the
Poincaré-Birkhoff-Witt theorem (PBW theorem), (see [15]), reveals that the subal-
gebra (L, K) of U(L), which is generated by K and {z1,...,2;}, is isomorphic to
Flz1,..., 2] QU(K), where F[zq,...,2;] is a polynomial ring in k indeterminates.
Then 0(L, K)[Fis a Z-graded subalgebra of U(L).

m
Given a = (o,...,a5) € NE, we put |a| = oy, e¥ = eMed? ... e and
) ) 0> ’ 1 %2 k
i=1

mi= (M, ..., k) = (P™ —1,...,p™ — 1). Set

Bs = {(i1,92,...,8s): 1 <1 <ia<...<is <}

l
and B := |J Bs, where By := 0 and [ € N. For u = (i1,149,...,is) € Bs, set |u| := s,

s=0
0] := 0, =1, & = &8, &, and €F = &6 ... &, u is also used to stand
for the index set {i1,42,...,9s}. Then U(L) is a Z-graded 0(L, K)-module with the
basis
{e“¢": 0< a<n, ue B}

Any K-module V obtains the structure of a §(L, K')-module by letting F[z1, ..., zk]
act via its canonical supplementation which sends z; to 0. Henceforth, K-module will
be regarded as §(L, K )-module in this fashion. Let g be the natural representation
of K in L/K. Then there exists a unique homomorphism o: U(K) — F of F-
superalgebra such that o(z) = str(g(x)), where x is an arbitrary element of K and
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str(o(z)) is the supertrace of p(z), see [10], [16]. We introduce a twisted action on
K-module V by setting

zov=x-v+o(x)y, z€K, veV

Note that o(z) = 0 for x € K3, then

[z,y] ov = [x,y] - v+ o([z,y])v

=z (y-v) — (1) @Wy (z-v) + o(2)o(y)v — (-1 Vo (y)o(x)v
=a-(y-v)+o(y)r-v+ol@)y-v+o(x)o(y
— (-1 1Dy (g 0) — (1) W (y)z v
— (1)1 MW (2)y v — (~1) "W (y)o(z)v
=z (yov) +o(y)wov) - (~1)"Wy. (z0v) - (=)W (y)(a 0 v)

=zo(yov) — (1) Wyo (zow),

i.e. V is a new K-module by the twisted action. The new K-module will be denoted
by V,. If V is an Lg-module, then we can extend the operations on V to K by letting
LT act trivially and regard it as a K-module.

3. GENERALIZED REDUCED VERMA MODULES AND COINDUCED MODULES

Let L be a Z-graded Lie superalgebra over F and V' be a K-module. Following [7],
we give a definition

Definition 2. The induced module Indg (V) := U(L) @ V is called a gen-
0(L,K)
eralized reduced Verma module. The coinduced module Homgyz xy(U(L), V) will be

denoted by Coindg (V).

This definition shows that the modules Indx (V') and Coindg (V') are annihilated
by Zi.
Consider Coindg (V') with U(L)-action given via

(y- (@) = (~)IWEDHO f(g), 2,y € U(L).

ForveV,0< B <rnandu,t € B, let X(ﬁ 2 be the element of Coindg (V) which
sends e“&* onto (—1 )d(X(ﬁ 1))d(§ )6(a, B)6(u, t)v, where 8(i,5) is Kronecker delta. It
suffices to verify that

(3.1) B (P etg) = (— 1)) +d(ED)+d0a)dE) g o o
and d(x\"'") = d(&t) + d(v) for all ¥ € O(L, K) and v € V.
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Lemma 1. There is a natural isomorphism of functors
®: Indg(V,) — Coindg (V)

such that ®(y @ v) = (—1)Wd(®)y . XS,W’E), where y € U(L) and v € V.

Proof. Assume that the bilinear mapping ¢: U(L) x V, — Homg(U(L),V) is
defined by ¢(y,v) = (—1)Wd@)y, . Y Let 0 € 6(L,K) and v’ € U(L). Then
equation (3.1) and d(xs,w’E)) = d(¢) + d(v) imply that

Y(yd,v)(u') = —1)d@)F+d@)dW)y 9 . X(w E)( 0
1)+ ) +d) ) () (3 9)

_1)d( y)(d(v)+d(9)+d(u ))er(ﬁ)d(w)+(d(¢)+d(v))(d(u')+d(y))ﬁOv

- (_1)d( )(d(v)+d(9)+d(u'))+(d(¥)+d(¥)+d(v) (d(w)+dY)) 9 o 4
)
)

_ 1)) (d(v)+d(9)+d(u’ )) (’T E) (u'y)

—1) Ay (B (1)

Consequently, ¥ is 6(L, K )-balanced and induces a mapping

®: U(L) (X) Vo — Homg(U(L),V).
6(L,K)

The verification of the inclusion im ) C Homg(z, k(U (L), V') is routine.
For any z,y € U(L) and v € V,, we have

(¢ @)y ®v) = (=)W1 ((zy) x{TP) = () Pe(z - (y @ v)).

Hence, ® is a homomorphism of U(L)-modules.
For any f € Coindg (V') there exists e*¢* € U(L) such that

)AOAE) L)
f= Z Xf(eoguy:

where 0 < o < mand v € B. Then @(Z(—l)d(f)d(fu)y ® f(e“f“)) = f,ie. ®is

a,u

a surjection.
Ifo= y-qu € Coindg (V) and y = e*¢* € U(L), then there exists u’ = ef¢t €
U(L) such that o+ 8 = nand u + ¢t = E. It follows that

m,E)

0=y x™B (1) = (=1)2W @)+ PN+ ) () W)y,

Therefore, y ® v = 0, i.e., ® is an injection.
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Now we show that ® is a natural homomorphism. If W is a K-module and
p: V. — W is a homomorphism of K-module, then ¢ is also a homomorphism
between V, and W,. We claim that the following diagram is commutative.

Indg (V,) —2> Coind (V)

id®¢l l¢*

Ind s (W, ) —2= Coind g (W)

Note that ¢* and id ® ¢ are homomorphisms of U(L)-modules, the assertion follows
from the ensuing calculation:

prod(l@v)(w) = x,) (W) = (¥ o ([d@ @) (1)), u €U(L)

In conclusion, the proof is completed. ([

Remark 1. (1) If the above result is applied to the module V_,, then we obtain
natural isomorphism Indg (V) = Coindg (V_,).

(2) Suppose that K acts nilpotently on L/K or (o(K))") = o(K). Then ¢ = 0
and every K-module V gives an isomorphism Indx (V') = Coindg (V).

Following [18], we refer to a Z-graded L-module V as positively graded if V =
@ V;and L; - V; C Vii;. A positively graded module V is said to be transitive if
i>0

VWw={veV:z-v=0forallz e L™ }.
Proposition 1. Let P = Coindg (V) be an L-module and

Pi={f € P: f(U(L);)=0, j # —i}.

Then

(1) P is a positively graded L-module;
(2) Py is isomorphic to V' as an Lo-module;
(3) P is transitively graded.

Proof. (1) Let f be an element of P; and suppose that y € U(L),, where i,q € Z.
If 2 € U(L); for j # —i — g, then 2y € U(L);j44, where j € Z. It follows that

(4 (@) = (~1) DA f() = 0,
Consequently, y - f belongs to Pi,.
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Let {z1,...,z,} be a basis of U(L) over §(L, K) and induced by {ei,...,ex}
and {&1,...,&}. In accordance with the basis of U(L), we may assume that x, =
e*&" € U(L);(ry, where i(r) < 0 and 1 < r < n. Any element of U(L), is a sum
of elements x = > hyx,, hy € O(L,K)s_i;y. Given r € {1,2,...,n}, we have

r=1
W (z) = (=1)@d@+d@)d@) g If ¢ £ i(r), then x\*™ (x) = 0. It follows that
1(,&’ “) is an element of P_;(y. For every f € P we have f = Z( 1)d()aE") Eta(;i)gu)
Consequently, P = @P i(r) and P is a positively graded module

(2) We proceed by showmg that u: Py — V; u(f) = f(1) is an isomorphism of

Lo-modules. If x € Ly, then

p(x- f) = (z- f)(1) = (-1)" D f(z) =z f(1) =z p(f),

i.e. ¢ is a homomorphism of Ljy-modules.

Since 1 := e“¢% € U(L)o is contained in {z1,...,a,}, (—1)@E)Fd@)dE) (@)
is a pre-image of v € V under pu.

Suppose that f € ker u. Owing to the PBW theorem, for every element x € U(L)o

we may assume that z = Y a;b;, where a; € U(K); and b; € U(L™);. Sincea; =0
i+5=0
for i < 0 and a; € U(Lo)U (L") for i > 0, we obtain

fla)= > ()" WDa, () = (=1)"@0)¥Dag f(bo)
i+5=0
= (-1 )(d(GO)er(bo))d aobof(1) =

As a result, f = 0 on U(Lo) and thereby on all of U(L). Therefore y is an isomor-
phism of Lg-modules.

(3) Suppose that f is an element of P such that - f = 0 for every z € L.
Then each Z-homogeneous constituent of f enjoys the same property. Since g € N

and y is an element of U(L)_,, we assume that f € P, and y = )  a;b;, where
i+j=—q
a; € U(K); and b; € U(L7);. As a; - V =0 for i > 0, we have

)= Y ()" Daif(by) = (=) Dagf ().

i+j=—q

Then f(y) = (—1)(d@0)+d®-a))d(Ngep_ f(1). Since b_, belongs to U(L ™), we obtain
b_g- f=0. Thus f(y) = 0. Similarly, if ¢ < 0, then f(y) also equals zero. Therefore
feh.

Conversely, if f € Py, then f(U(L);) =0 for i # 0. For any € L~ we have

(- f)(y) = (~1)IDEDHOD f (yo) = (-1 @Dy fz) =0, yeUL)*
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and
(- [)(y) = (=)D p(y) =0,y e UL)” @ U(L)o.

Therefore x - f =0 for all z € L™. O

For z,...,z, € L set

(21 ...2,)" = (—1)"F2i= S D d@)d@) g gy

A direct verification shows that 27 = —z; and d(x}) = d(x;) fori € {1,...,n}. Then
the principal anti-automorphism of U(L) is defined by = — zT for all x € U(L).

In the following proposition, the property of adjoint isomorphism will be investi-
gated.

Proposition 2. There is a natural isomorphism
U: (Indg(V))* — Coindg (V*),
namely, for ¢ € (Indg(V))*, x € U(L) andv € V,
U: @ U(p), where U(p)(z): v— ozt ®@v).

Proof. Firstly, we prove that ¥ is a homomorphism of U(L)-modules. Let o1
and @2 be elements of (Indx(V))*. Then

V(1 + p2) (@) (v) = (01 + p2)(z" @)
= (p1)(z" ®v) + (p2)(z" @ v)
= U(p1)(@)(v) + ¥(p2)(z)(v)
= (Y(p1) + ¥(p2))(x)(v),

where x € U(L) and v € V. Therefore ¥(p1 + p2) = ¥(p1) + ¥(p2). For any
z,y € U(L),veV and ¢ € (Indg(V))* we have

1 d(y)(d(¥)+d(p )er(z))\lf(go)(a:y)(v)
1)dW) (@) +d(e)+d()) (g y)T @)

y-¥(p)(2)(v) =

DIy o @)
DAY (y - p)(2)(v).

Therefore y - U(yp) = (—1)2 @4 (y - o).

(1)
=(-1)
= (- 1)d(y)(d(\1')+d(v:)) (yz @ v)
=(-1)
=(-1)
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Next W is injective. In fact, if U(p)(z)(v) = 0, then 0 = ¥(p)(z)(v) = p(zT @ v)
for all x € U(L) and v € V. Thus ¢ = 0 because it vanishes on every generator of
IndK(V)

Now we show that ¥ is surjective. Let f € Coindg(V*). Define p(x ® v) :=
f(2T)(v) for z € U(L) and v € V. Then ¥(p) = f.

Since ¥ is a natural homomorphism, the proof is completed. O

Corollary 1. Indg(V,) 2 (Indg (V,))* if and only if V = (V,)*.

Proof. If Indg(V,) 2 (Indg (V5))*, by Lemma 1 and Proposition 2, then
Coindg (V') = Coind g ((V5)™).

Proposition 1 shows that V' 2 (V,;)*. The sufficiency is obvious. O

4. INVARIANT FORMS ON GENERALIZED REDUCED VERMA MODULES

The results in this section generalize Chiu’s results in [4] and determine generalized
reduced Verma modules over modular Lie superalgebras which possess a nondegen-
erate super-symmetric or skew super-symmetric invariant bilinear form. Let L be
a Lie superalgebra over F and V' be an L-module. A bilinear form A\: V xV — F
is called super-symmetric (skew super-symmetric) if A(v,w) = (—1)4 )W) \(yw, v)
A(v,w) = —(=1)4WdW \(,v)) for all v,w € V. A super-symmetric (or skew
super-symmetric) bilinear form A\: V' xV — F is called invariant on L if A(z-v,w) =
— (1)@ \(p, 2z - w) for all 2 € L and v,w € V. The subspace rad()\) := {v €
V: AMwv,w) =0 for all w € V'} is called the radical of . The form A is nondegenerate
if rad(\) = 0.

Proposition 3. There exists a nondegenerate super-symmetric (skew super-
symmetric) invariant bilinear form X\ on V if and only if there exists an iso-
morphism of L-modules ¢: V — V* such that ¢(v)(w) = (—1)¥ @) (w)(v)
(p(v)(w) = — (1)) b (w)(v)) for all v,w € V.

Proof. Let A be a nondegenerate super-symmetric (skew super-symmetric) in-
variant bilinear form on V. Define ¢: V — V* such that ¢(v)(w) := A(v,w) for
all v,w € V. Then ¢ is a linear mapping such that ker¢ = rad(A) = 0 and

o(v)(w) = (~1)*Ig(w)(v) (d(v)(w) = —(~1)4D)(w)(v)). Hence ¢ is in-
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jective. Since dim V' = dim V*, ¢ is bijective. For x € L and v, w € V we have

o - v)(w) = A - v,w) = —(~ )M\, 2 - w)
— —(— D) () (@ w) = (1)U z - g(0)) (w).

Thus, ¢ is the desired isomorphism of L-modules.
Conversely, let ¢ be an isomorphism of L-modules such that

¢(v)(w) = (1) (w)(v)($(v) (w) = —(=1)" " g(w)(v))

for all v,w € V. Put Av,w) := ¢(v)(w). Thus, A be a super-symmetric (skew
super-symmetric) bilinear form on V. Since

Mz - v,w) = ¢(z - v)(w) = (=) (2 §(v))(w)
~ (=) () (2 - w) = —(~1) TN (v, - w)

for all z € L and v,w € V, \is invariant. As rad(\) = ker¢ = 0, A is nondegenerate.
O

Corollary 2. Let V' be an irreducible L-module. If V is isomorphic to V* as
L-module, then there exists a nondegenerate invariant bilinear form A on V which
is either super-symmetric or skew super-symmetric.

Theorem 1. Let L be a Z-graded Lie superalgebra over F and V' be an Ly-module.
Then the following statements are equivalent.

(1) There exists a nondegenerate super-symmetric or skew super-symmetric invari-
ant bilinear form on Indg (V).

(2) There exists an isomorphism of Ly-modules : V — (V,)* such that ((v)(w) =
(1) (1) (v) or C(v)(w) = —(~) DU (w)(v), v,w € V.

Proof. Assume that there exists a nondegenerate super-symmetric or skew
super-symmetric invariant bilinear form on Ind (V. ). By Proposition 3, there exists
an isomorphism of L-modules ¢: Indg (V,) = (Indg(V5))* such that

(A1) a1 ®@vi)(wr ®vg) = (1) EIHADN @A 6 (1) @ v3) (21 @ 01)
or

(4.2) P21 ®vi)(z2 ®@v2) = —(—1)dE) Tz Td(w2) (35 @ ) (w1 @ 1),
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where z1,29 € U(L) and v1,v2 € V. Corollary 1 shows that there exists an isomor-
phism of Lyo-modules ¢: V — (V,)*.

Let 71 = e*¢* € U(L™) and 22 = eP¢* € U(L™), where 0 < a < 7, 0 < 8 < mand
u,t € B. By the proof of Lemma 1 and Proposition 2, we have

(4.3) ¢(z1 ®v1) (w2 @ vy) = (—1) M+ B (T ) (1)

— (_1)d(ﬂcl)d($2)+d(ﬂc1)d(vl)+(d(C)+d(v1)+d(£E))(d($1)+d(ﬂc2))

X d(m, a0+ B)O(E, u + t)¢(v1)(va)
— (_1)(1(951)d($2)+d($2)d(vl)+(d(C)+d(5E))(d($1)+d($2))<(v1)(vz).

Combining (4.1), (4.2) and (4.3), we have

C(1) () = (=)D (v3) (1) or ((v1)(v2) = —(=1) VU2 (v2) (v1)

for all v1,vp € V.
The converse also follows from Lemma 1, Corollary 1, Propositions 2 and 3. [J

Remark 2. Following the notations in the proof of Theorem 1, we have the
following results:

(1) If d(x1) and d(xz) need not all 1, then there exists a nondegenerate super-
symmetric (skew super-symmetric) invariant bilinear form on Indg (V5 ) if and
only if there exists an isomorphism of Lyo-modules ¢: V — (V,)* such that

(1) (v2) = (1)1 (u) (01), (C(01)(v2) = =(=1) 4 (0g) (v1))

for all v,vp € V.

(2) If d(z1) = d(z2) = 1, then there exists a nondegenerate super-symmetric
(skew super-symmetric) invariant bilinear form on Ind g (V5 ) if and only if there
exists an isomorphism of Lg-modules (: V' — (V,)* such that ((vi)(ve) =
—(=1) AU () (v1) (C(v1)(v2) = (1)1 ((vs) (v1)) for all vy, vz € V.

5. GENERALIZED REDUCED VERMA MODULES AND MIXED
PRODUCTS OF MODULES

In this section, the relation between generalized reduced Verma modules and mixed
products of modules over Z-graded modular Lie superalgebras of Cartan type will
be discussed.
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Proposition 4. Let L be a Z-graded Lie superalgebra over F and V = @ V; be
20
a positively and transitively graded L-module such that z; -V =0, 1 < ¢ < k. Then

the linear mapping v: V — Coindg (Vy) defined by (v)(z) = (-1 )d(’”)d(“)pro(x )
for all x € U(L) and v € V is an injective homomorphism of L-modules, where
pro: V — V, denotes the canonical projection. In particular, (V) = Coindg (Vo)o
and zd(y) = 0.

Proof. Note that pry is a homomorphism of §(L, K)-modules. In fact, for any
hj € O(L,K); and v; € V; we have pry(h; - v;) = (—=1)4r)d®ro)p, . pro(v;), where
i,j € No. Since the mapping U(L) — V defined by x ~ (—1)4®)4()z. ¢ also satisfies
this property, ¥ is well-defined. Moreover, for an arbitrary element [ € L we obtain

Pl 0)(w) = (1)1 pr (1))
= (DI () (- 1) = (~1) MU h(0)) ()

Therefore v is a homomorphism of L-modules. To prove that v is injective, we
assume that ker # 0. Evidently, zd(¢)) = 0 and thereby ker) is a Z-homogeneous
subspace of V. Then kerty # 0 leads to the existence of a minimal ¢ > 0 such
that keryy N V; # 0. Let v; € keryy N V; and [ € L_j;, j > 0. This implies that
z-v; = pro(x - v;) = (=1)¥ @4 (v)(x) = 0 for every x € U(L)_;. If ¢ # 5 — 1,
then

(- v;)(z) = (_1)d(x)(d(l)+d(v,;))pr0(x “(l-v;)) =0,

where z € U(L)q. If ¢ = j — i, then @l € U(L)_; and (zl) - v; = 0. Consequently,
[ - v; belongs to the trivial subspace kery N V;_;. Since V is transitive, v; € Vg
and ¢ = 0. As a result, - vg = 0 for all € U(L)o. It follows from 1 € U(L)o
that vgp = 0. This conclusion refutes the assumption kerty # 0 and thereby v is an
injective homomorphism of L-modules.

Let p1: Coindg (Vp)o — Vo such that u(f) = f(1). Let  be an element of U(L);.
If j # 0, then pry(x- f(1)) = 0 and f(x) = 0. In the case of j = 0, the PBW theorem
provides a presentation z = i > aijbi;, where a;; € U(K); and b;; € U(L™)—;.

j=1i>0
Then

f(@) = (=) Dpry(a - £(1))
=3 2 a1 0) = () Pagproia (1))
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n

((—=1)H@0)dW) gy f(bo;) — (—=1)* U Dag;pry(bo, f(1)))

<.
Il
—

(= 1) M9 (ag;bo; £ (1) — agzbo; £(1)) = 0.

I
M3

<.
Il
—

For an arbitrary element z € U(L), f(z) = (—1)*®4Ppr (z - f(1)). Consequently,
Yo p = idcoind g (vo), and ¥ (Vo) = Coindg (Vo)o.- O

k
For a = (a1,...,ax) € N§ we put |of := Y «;. Let O(k,m) denote the divided
i=1
power algebra over F with an F-basis {z(®): a € A(k,m)}, where

A(k,m) = {a = (a1,...,o0) ENF: 0<a; <p™ —1,i=1,2,...,k}.

Let A(l) be the exterior superalgebra over [F in [ variables &1,&s,...,&. Denote by
O(k,l, m) the tensor product O(k,m) & A(l).
F

Put Yo :={1,2,...,k} and Y; := {1,2,...,1}. Suppose that u — (j) € Bs_1 and
{u— ()} ={u} \ {s}, when u € By, j € {u}. Let u(j) = |{l € {u}: I <j}|. If j €
Y1\ {u}, then we put u(j) = 0 and =% = 0. Thus, {2(®¢*: a € A(k,m), u € B}
constitutes an F-basis of O(k,1,m) and zd(2(®)¢%) = |a| + |u| > 0.

Let Dy,...,Dy,dy,...,d; be the linear transformations of O(k,l,m) and ¢; :=
(6(i,1),...,9(i, k)) such that

Di(z\™Mer) = zlems)¢n e Yo,
dj(a:(“)gu) — (—1)“(j)x(a)§“‘<j>, jeYr.

Modular Lie superalgebras of Cartan type L(k,l,m), L = W, S, H, K, are subalge-
bras of the derivation superalgebras of O(k,l,m). For the precise definitions please
refer to [24]. If L = W, S, H, then {D», ..., Dy} is the canonical basis of L(k,l,m)™ N
L(k,l,m); and {ds,...,d;} is the canonical basis of L(k,l,m)” N L(k,l,m);. The

definition of the product in L(k,l,m) (see [24]) entails the vanishing ad DY * on
L(k,l,m), so we define z; := Dfmz, 1<i<k.

Theorem 2. Let L(k,l,m), L = W, S, H, denote a Z-graded Lie superalgebra
of Cartan type. If V is an L(k,l,m)o-module, then Indg (V,) is isomorphic to the
mixed product O(k,l,m)® V.

Proof. Since (O(k,l,m) @ V), := (a®@wv: a € O(k,l,m), v € V), the mixed
product is a positively graded module. According to the definition of the mixed
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product, see [22], we have

Di(z ¢  @v) = 2@t @ v, i€ Y,
dj(z'Ve" @ v) = (-1)*WVa VeV gu, jeY,

where o € A(k,m), u € Band v € V. The first equality shows z;(O(k,l,m)®V) = 0,
1 < i < k. The above equalities also ensure the transitivity of O(k,l,m) ® V.
Proposition 4 furnishes an embedding from O(k,l, m) ® V into Coindg (V). Since

dim(Coindg (V) = dim(O(k, 1, m) ® V) = 2!pm Mt dim V

the mapping is bijective. Then Lemma 1 gives an isomorphism between Indg (V)
and O(k,l,m)® V. O

Remark 3. Let the notation be as in Theorems 1 and 2. Then the following
statements are equivalent.

(1) There exists a nondegenerate super-symmetric or skew super-symmetric invari-
ant bilinear form on the mixed product O(k,l,m) @ V.

(2) There exists an isomorphism of L(k,l,m)o-modules (: V' — (V;)* such that
CW)w) = (1AM (w)(v) or C(v)w) = —(~1)AHC(w)(v) for all
v,we V.
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