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ANNIHILATING AND POWER-COMMUTING GENERALIZED

SKEW DERIVATIONS ON LIE IDEALS IN PRIME RINGS

Vincenzo De Filippis, Messina

(Received June 1, 2015)

Abstract. Let R be a prime ring of characteristic different from 2 and 3, Qr its right
Martindale quotient ring, C its extended centroid, L a non-central Lie ideal of R and n > 1
a fixed positive integer. Let α be an automorphism of the ring R. An additive map D :
R → R is called an α-derivation (or a skew derivation) on R if D(xy) = D(x)y+α(x)D(y)
for all x, y ∈ R. An additive mapping F : R → R is called a generalized α-derivation (or
a generalized skew derivation) on R if there exists a skew derivation D on R such that
F (xy) = F (x)y + α(x)D(y) for all x, y ∈ R.

We prove that, if F is a nonzero generalized skew derivation of R such that F (x)×
[F (x), x]n = 0 for any x ∈ L, then either there exists λ ∈ C such that F (x) = λx for all
x ∈ R, or R ⊆ M2(C) and there exist a ∈ Qr and λ ∈ C such that F (x) = ax + xa + λx

for any x ∈ R.
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MSC 2010 : 16W25, 16N60

1. Introduction

Let R be a prime ring with center Z(R), extended centroid C, right Martindale

quotient ring Qr and symmetric Martindale quotient ring Q. An additive mapping

d : R → R is a derivation on R if d(xy) = d(x)y + xd(y) for all x, y ∈ R. Let a ∈ R

be a fixed element. Many results in literature indicate how the global structure of

a ring R is often tightly connected to the behaviour of additive mappings defined

on R. A well known result of Posner [22] states that if d is a derivation of R such

that [d(x), x] ∈ Z(R) for any x ∈ R, then either d = 0 or R is commutative. In [17]

Lanski generalized Posner’s theorem to a Lie ideal. Later in [2] the following result

was proved:
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Theorem 1.1. Let R be a prime ring of characteristic different from 2, L a Lie

ideal of R, d a nonzero derivation of R such that [d(u), u]n ∈ Z(R) for any u ∈ L.

Then R satisfies s4, the standard identity of degree 4.

In particular, if d satisfies [d(u), u]n = 0 for any u ∈ L, then L ⊆ Z(R).

More recently in [9] the author considered a similar situation in the case the

derivation d is replaced by a generalized derivation. More specifically, an additive

map G : R → R is said to be a generalized derivation if there exists a derivation d

of R such that for all x, y ∈ R, G(xy) = G(x)y + xd(y). More precisely, the main

result in [9] is the following:

Theorem 1.2. Let R be a prime ring of characteristic different from 2 with right

Martindale quotient ring U and extended centroid C, G 6= 0 a generalized derivation

of R, L a non-central Lie ideal of R and n > 1 such that [G(u), u]n = 0 for all u ∈ L.

Then there exists an element a ∈ C such that G(x) = ax for all x ∈ R, unless when R

satisfies s4 and there exist b ∈ U , β ∈ C such that G(x) = bx+xb+βx for all x ∈ R.

In particular, if [G(x), x]n = 0 for all x ∈ R, then there exists an element a ∈ C

such that G(x) = ax for all x ∈ R.

In [24], Wang considered a similar situation in the case the derivation d is replaced

by a nontrivial automorphism σ of R and proved the following:

Theorem 1.3. Let R be a prime ring with center Z, L a noncentral Lie ideal

of R, and σ a nontrivial automorphism of R such that [uσ, u]n ∈ Z for all u ∈ L. If

either char(R) > n or char(R) = 0, then R satisfies s4.

More recently, in [12] Dhara and Mondal extended the results contained in [22],

[17], [2] and [9], by studying an annihilating condition on commutators and proved

the following:

Theorem 1.4 ([12], Theorem 1.2). Let R be a prime ring with right Martindale

quotient ring Qr and extended centroid C, F 6= 0 a generalized derivation of R and

n > 1 such that F (x)[F (x), x]n = 0 for all x ∈ R. Then there exists λ ∈ C such that

F (x) = λx for all x ∈ R, unless when R ⊆ M2(C) and char(R) = 2.

Theorem 1.5 ([12], Theorem 1.1). Let R be a prime ring with right Martindale

quotient ring Qr and extended centroid C, F 6= 0 a generalized derivation of R, L

a noncentral Lie ideal of R and n > 1 such that F (x)[F (x), x]n = 0 for all x ∈ L.

Then either there exists λ ∈ C such that F (x) = λx for all x ∈ R, or R ⊆ M2(C)

and there exist a ∈ Qr and λ ∈ C such that F (x) = ax + xa + λx for any x ∈ R,

unless when R ⊆ M2(C) and char(R) = 2.
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Here we continue this line of investigation and examine what happens in case

F 6= 0 is a generalized skew derivation of R such that F (x)[F (x), x]n = 0 for all

x ∈ S, where S is an appropriate subset of R and n > 1 is a fixed integer. More

specifically, let α be an automorphism of a ring R. An additive map D : R → R is

called an α-derivation (or a skew derivation) on R if D(xy) = D(x)y + α(x)D(y)

for all x, y ∈ R. In this case α is called an associated automorphism of D. Basic

examples of α-derivations are the usual derivations and the map α-id, where “id”

denotes the identity map. Let b ∈ Q be a fixed element. Then a map D : R → R

defined by D(x) = bx − α(x)b, x ∈ R, is an α-derivation on R and it is called an

inner α-derivation (an inner skew derivation) defined by b. If a skew derivation D

is not inner, then it is called outer.

An additive mapping F : R → R is called a generalized α-derivation (or a gener-

alized skew derivation) on R if there exists an additive mapping D on R such that

F (xy) = F (x)y + α(x)D(y) for all x, y ∈ R. The map D is uniquely determined

by F and it is called an associated additive map of F . Moreover, it turns out that D

is always an α-derivation (see [19], [20] for more details).

Let us also mention that an automorphism α : R → R is inner if there exists

an invertible q ∈ Q such that α(x) = qxq−1 for all x ∈ R. If an automorphism

α ∈ Aut(R) is not inner, then it is called outer.

The first step in the study of power commuting condition on generalized skew

derivation was done in [3], where the following result is proved:

Theorem 1.6. Let R be a non-commutative prime ring of characteristic different

from 2 with extended centroid C, F 6= 0 a generalized skew derivation of R, and

n > 1 such that [F (x), x]n = 0 for all x ∈ R. Then there exists an element λ ∈ C

such that F (x) = λx for all x ∈ R.

In this paper we would like to extend all the previously cited results to the case

of prime rings of characteristic different from 2 and 3.

The result we obtain is the following:

Theorem 1.7. Let R be a prime ring of characteristic different from 2 and 3, Qr

its right Martindale quotient ring, C its extended centroid, F a nonzero generalized

skew derivation of R, L a non-central Lie ideal of R and n > 1 a fixed positive

integer. If F (x)[F (x), x]n = 0 for any x ∈ L, then either there exists λ ∈ C such

that F (x) = λx for all x ∈ R, or R ⊆ M2(C) and there exist a ∈ Qr and λ ∈ C such

that F (x) = ax+ xa+ λx for any x ∈ R.

In order to prove our result, we need to recall the following known facts:
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Fact 1.8. Let R be a prime ring and I a two-sided ideal of R. Then I, R and Q

satisfy the same generalized polynomial identities with coefficients in Q (see [7]).

Furthermore, I, R and Qr satisfy the same generalized polynomial identities with

automorphisms (Theorem 1 in [5]).

Fact 1.9. If R is a prime ring satisfying a nontrivial generalized polynomial

identity and α an automorphism of R such that α(x) = x for all x ∈ C, then α is an

inner automorphism of R ([1], Theorem 4.7.4).

2. The inner case

Let a, b ∈ Qr and F : R → R, such that F (x) = ax+ α(x)b for all x ∈ R. In this

section we study the case when (ar + α(r)b)[ar + α(r)b, r]n = 0 for all r ∈ [R,R].

Under this assumption, we prove that F is a generalized derivation of R, so that the

conclusions of Theorem 1.5 hold.

The starting point is the case when there exists an invertible element q ∈ Q such

that α(x) = qxq−1 for all x ∈ R.

In the sequel we make a frequent use of the following:

Fact 2.1 ([10]). Let K be an infinite field and n > 2. If A1, . . . , Ak are not scalar

matrices in Mn(K) then there exists an invertible matrix P ∈ Mn(K) such that each

of the matrices PA1P
−1, . . . , PAkP

−1 has all nonzero entries.

Fact 2.2 ([11], Proposition 1). Let H be a field of characteristic different from 2,

R = Mt(H) the matrix ring over H and t > 3. Let a, b be elements of R, with

a =
t
∑

r,s=1

arsers and b =
t
∑

r,s=1

brsers, with ars, brs ∈ H . For any automorphism

ϕ of R, we denote ϕ(a) =
t
∑

r,s=1

ϕ(a)rsers, ϕ(b) =
t
∑

r,s=1

ϕ(b)rsers, with ϕ(a)rs,

ϕ(b)rs ∈ H .

If aijbij = 0 for any i 6= j and ϕ(a)ijϕ(b)ij for any i 6= j and for any ϕ ∈ Aut(R),

then a ∈ Z(R) or b ∈ Z(R).

Lemma 2.3. Let R = Mk(C) be the ring of k × k matrices over C, with k > 3.

If char(R) 6= 2 and (ar + qrq−1b)[ar + qrq−1b, r]n = 0 for all r ∈ [R,R], then either

q ∈ Z(R) or q−1b ∈ Z(R). In any case F is an inner generalized derivation of R.

P r o o f. The symbol eij will always denote the usual matrix unit with 1 at the

(i, j)-entry and zero elsewhere.
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By our assumption R satisfies

(2.1) (a[x1, x2] + q[x1, x2]q
−1b)

[

a[x1, x2] + q[x1, x2]q
−1b, [x1, x2]

]n
.

Say q =
∑

hl

qhlehl and q−1b =
∑

hl

vhlehl for qhl, vhl ∈ C. For i 6= j, [x1, x2] = eij

in (3.1) and right multiplying by eij we have that(−1)nqeijq
−1b(eijqeijq

−1b)neij = 0,

that is qjivji = 0 for any i 6= j. Moreover, for any automorphism ϕ of R one has

that

(ϕ(a)[x1, x2] + ϕ(q)[x1, x2]ϕ(q
−1b))

[

ϕ(a)[x1, x2] + ϕ(q)[x1, x2]ϕ(q
−1b), [x1, x2]

]n

is still an identity for R. Thus, in light of Fact 2.2, it follows that either q ∈ Z(R)

or q−1b ∈ Z(R), as required. �

Lemma 2.4. Let R = M2(C) be the ring of 2 × 2 matrices over C. If (ar +

qrq−1b)[ar+ qrq−1b, r]n = 0 for all r ∈ [R,R], then either q ∈ Z(R) or q−1b ∈ Z(R).

In any case F is an inner generalized derivation of R.

P r o o f. First we recall that for any x, y ∈ M2(C), either [x, y]2 = 0 or 0 6=

[x, y]2 ∈ Z(R).

Assume that there exists r ∈ [R,R] such that 0 6= [ar+ qrq−1b, r]2 ∈ Z(R). Thus,

by our assumption and since [ar + qrq−1b, r] is an invertible matrix, it follows that

ar + qrq−1b = 0, which is a contradiction.

Therefore we may assume that

(2.2) [ar + qrq−1b, r]2 = 0

for all r ∈ [R,R]. Suppose that q /∈ Z(R) and q−1b /∈ Z(R), that is neither q nor q−1b

is a scalar matrix.

Assume first that C is infinite, then, by Fact 2.1, there exists an invertible ma-

trix T ∈ Mm(C) such that each of the matrices TqT−1, T q−1bT−1 has all nonzero

entries. Denote by χ(x) = TxT−1 the inner automorphism induced by T . Say

χ(q) =
∑

hl

q′hlehl and χ(q−1b) =
∑

hl

v′hlehl for 0 6= q′hl, 0 6= v′hl ∈ C. Without loss of

generality, we may replace q, q−1b by χ(q) and χ(q−1b), respectively. As above in

the relation (2.2), let i 6= j, r = eij and multiply on the left by eij . Thus it follows

eij(qeijq
−1beij)

2, which means q′jiv
′

ji = 0, a contradiction.

Now let E be an infinite field which is an extension of the field C and let R =

Mt(E) ∼= R⊗C E. Consider the generalized polynomial

Φ(x1, x2) =
[

a[x1, x2] + q[x1, x2]q
−1b, [x1, x2]

]2
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which is a generalized polynomial identity for R. Moreover,Φ(x1, x2) is homogeneous

in both x1 and x2 of degree 4. Hence the complete linearization of Φ(x1, x2) is

a multilinear generalized polynomial Θ(x1, x2, y1, y2), and

Θ(x1, x2, x1, x2) = 42Φ(x).

Clearly, the multilinear polynomial Θ(x, y) is a generalized polynomial identity for

R and R too. Since char(C) 6= 2, we obtain Φ(r1, r2) = 0 for all r1, r2 ∈ R, and the

conclusion follows from the first part of the present Lemma 2.4. �

Application of Theorem 1.5 to Lemmas 2.3 and 2.4 leads to the following:

Lemma 2.5. Let R = Mk(C) be the ring of k × k matrices over C, with k > 2

and F (x) = ax+ qxq−1b for any x ∈ R, where a, b, q are fixed elements of R and q is

invertible. If char(R) 6= 2 and (ar + qrq−1b)[ar + qrq−1b, r]n = 0 for all r ∈ [R,R],

then either there exists λ ∈ Z(R) such that F (x) = λx for all x ∈ R, or k = 2 and

there exist a′ ∈ R and λ ∈ Z(R) such that F (x) = a′x+ xa′ + λx for any x ∈ R.

As a consequence we also have:

Corollary 2.6. Let R = Mk(C) be the ring of k × k matrices over C with k > 2

and F (x) = ax+ qxq−1b for any x ∈ R, where a, b, q are fixed elements of R and q is

invertible. If char(R) 6= 2 and (ar+ qrq−1b)[ar+ qrq−1b, r]n = 0 for all r ∈ R, then

there exists λ ∈ Z(R) such that F (x) = λx for all x ∈ R.

P r o o f. By using the same argument as in Lemmas 2.3 and 2.4, we have that

either q ∈ Z(R) or q−1b ∈ Z(R). In any case F is an inner generalized derivation

of R and the conclusion follows from Theorem 1.4. �

Proposition 2.7. Let R be a prime ring of characteristic different from 2,

a, b, q ∈ Qr, where q is an invertible element, and n > 1 a fixed integer such that

F (x) = ax+ qxq−1b and

(2.3) (ar + qrq−1b)[ar + qrq−1b, r]n = 0

for all r ∈ [R,R]. Then either q ∈ C or q−1b ∈ C. In any case either there exists

λ ∈ Z(R) such that F (x) = λx for all x ∈ R, or k = 2 and there exist a′ ∈ R and

λ ∈ Z(R) such that F (x) = a′x+ xa′ + λx for any x ∈ R.

P r o o f. In what follows we assume that both q−1b /∈ C and q /∈ C; if not we are

done by Theorem 1.5.
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Thus

(2.4) (a[x1, x2] + q[x1, x2]q
−1b)

[

a[x1, x2] + q[x1, x2]q
−1b, [x1, x2]

]n

is a nontrivial generalized polynomial identity for R. By [21] Qr is a primitive ring,

which is isomorphic to a dense subring of the ring of linear transformations of a vector

space V over a division ring D, and D is finite-dimensional over its center C = Z(D).

If dimD V = k is finite, then R is a simple ring which satisfies a nontrivial generalized

polynomial identity. By Lemma 2 in [16] (see also Theorem 2.3.29 in [23]), R ⊆

Mt(K) for a suitable field K, moreover,Mt(K) satisfies the same generalized identity

of R, hence Mt(K) satisfies (2.4). In this case we are done by using Lemma 2.5.

Let now dimD V = ∞. As in Lemma 2 in [25], the set [R,R] is dense on R. By

the fact that (2.4) is a generalized polynomial identity of R, we know that R satisfies

(2.5) (ax+ qxq−1b)[ax+ qxq−1b, x]n.

Suppose first that there exist v ∈ V such that {v, q−1bv} are linearly D-independent.

Since dimD V = ∞, there exists w ∈ V such that {v, q−1bv, w} are linearly D-in-

dependent. By the density of R, there exists s ∈ R such that sv = 0, sq−1bv = q−1w

and sw = −v. In this case we also have [as+ qsq−1b, s]nv = v and (2.5) implies the

contradiction

0 = (as+ qsq−1b)[as+ qsq−1b, s]nv = w 6= 0.

This means that for any choice of v ∈ V , v, q−1bv are linearlyD-dependent. Standard

arguments prove that there exists β ∈ D such that q−1bv = vβ for all v ∈ V and

also, by using this fact, that q−1b ∈ Z(R). Thus R satisfies

(2.6) (a+ b)x[(a+ b)x, x]n

and by Theorem 1.4, we have that a+b = λ ∈ Z(R) and F (x) = λx for all x ∈ R. �

Proposition 2.8. Let R be a non-commutative prime ring of characteristic

different from 2, a, b ∈ Qr, α : R → R an outer automorphism of R such that

(ax+ α(x)b)[ax + α(x)b, x]n = 0 for all x ∈ [R,R]. Then a ∈ C and b = 0.

P r o o f. In the following, we assume that either a /∈ C or b 6= 0.

Hence, by [6] R is a GPI-ring and Qr is also a GPI-ring by [7]. By Martindale’s

theorem in [21], Qr is a primitive ring having nonzero socle and its associated division

ring D is finite-dimensional over C. Hence Qr is isomorphic to a dense subring of

the ring of linear transformations of a vector space V over D, containing nonzero

linear transformations of finite rank.
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By [15], page 79, there exists a semi-linear automorphism T ∈ End(V ) such that

α(x) = TxT−1 for all x ∈ Qr. Hence, Qr satisfies (ax+ TxT−1b)[ax+ TxT−1b, x]n.

If for any v ∈ V there exists λv ∈ D such that T−1cv = vλv, then, by a standard

argument, it follows that there exists a unique λ ∈ D such that T−1bv = vλ for all

v ∈ V . In this case

(ax+ α(x)b)v = (ax+ TxT−1b)v = axv + T (xvλ) = axv + T ((xv)λ)

= axv + T (T−1bxv) = axv + bxv = (a+ b)xv.

Hence, for all v ∈ V ,

(ax+ α(x)b − (a+ b)x)v = 0

which implies ax+ α(x)b = (a+ b)x for all x ∈ Qr, since V is faithful. Therefore we

have both (a + b)x[(a + b)x, x]n = 0 and α(x)b = bx for all x ∈ Q. Thus a + b ∈ C

follows from Theorem 1.5. Moreover, since Qr satisfies α(x)b = bx and the α(x)-word

degree is 1, Theorem 3 in [5] yields that yb − bx is an identity for Q. This implies

b = 0, which is a contradiction.

In light of the previous argument, we may suppose there exists v ∈ V such that

{v, T−1bv} is linearly D-independent.

Consider first the case dimD V > 4.

Thus there exist w,w′ ∈ V such that {w,w′, v, T−1bv} are linearly D-independent.

Moreover, by the density of Qr, there exists r, s ∈ Qr such that

rv = sv = v, rT−1bv = 0, sT−1bv = w, rw = T−1w′, rw′ = 0, sw′ = v.

Hence, by the main assumption, we get the contradiction

0 = (a[r, s] + T [r, s]T−1b)
[

a[r, s] + T [r, s]T−1b, [r, s]
]n
v = w′ 6= 0.

Therefore, we have just to consider the case when dimD V 6 3.

Of course in this case Qr satisfies

(a[x1, x2] + α([x1, x2])b)
[

a[x1, x2] + α([x1, x2])b, [x1, x2]
]3
.

Therefore the α(xi)-word degree is 4. Since either char(R) = 0 or char(R) > 5,

Theorem 3 in [5] implies that Qr satisfies

(2.7) (a[x1, x2] + [t1, t2]b)
[

a[x1, x2] + [t1, t2]b, [x1, x2]
]3
.

In particular, Qr satisfies both

(2.8) a[x1, x2]
[

a[x1, x2], [x1, x2]
]3
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and

(2.9) (a[x1, x2] + [x1, x2]b)
[

a[x1, x2] + [x1, x2]b, [x1, x2]
]3
.

Applying Theorems 1.4 and 1.5 respectively to (2.8) and (2.9) we have simultaneously

that a ∈ C and a− b ∈ C, that is both a ∈ C and b ∈ C. Since if b = 0 we are done,

here we assume b 6= 0 and prove that a contradiction follows.

In fact, if a, b ∈ C and b 6= 0 then (2.7) is a polynomial identity for Qr with

coefficients in C. By the well known Posner’s theorem, there exists a field K such

that Qr and the matrix ring Mm(K) satisfy the same polynomial identities, in par-

ticular Mm(K) satisfies (2.7). Moreover, we may assume m > 2 since Qr is not

commutative. Therefore, for [x1, x2] = e12 and [t1, t2] = e21 in relation (2.7) we have

the contradiction ae12 + (−1)nbe21 = 0. �

3. The proof of main result

Here we can finally prove the main theorem of this paper. We remark that Chang,

in [4] showed that any (right) generalized skew derivation of R can be uniquely

extended to the right Martindale quotient ring Qr of R as follows: a (right) gen-

eralized skew derivation is an additive mapping F : Qr → Qr such that F (xy) =

F (x)y+α(x)d(y) for all x, y ∈ Qr, where d is a skew derivation of R and α is an au-

tomorphism of R. Notice that there exists F (1) = a ∈ Qr such that F (x) = ax+d(x)

for all x ∈ R.

P r o o f of Theorem 1.7. It is easy to see that R is non-commutative as L is non-

central. Notice that, in case α is the identity map onR, then F is a generalized deriva-

tion of R and we conclude by Theorem 1.5. Moreover, since char(R) 6= 2, there exists

an ideal I of R such that 0 6= [I, R] ⊆ L (see [14], pages 4–5, [13], Lemma 2, Proposi-

tion 1, [18], Theorem 4). By the assumption, we have F ([x, y])[F ([x, y]), [x, y]]n = 0

for all x, y ∈ I and also for all x, y ∈ Qr (see [8], Theorem 2). This implies that

(a[x, y] + d(x)y + α(x)d(y) − d(y)x− α(y)d(x))
[

a[x, y] + d(x)y(3.1)

+ α(x)d(y) − d(y)x− α(y)d(x), [x, y]
]n

= 0, x, y ∈ Qr,

that is

(a[x1, x2] + d(x1)x2 + α(x1)d(x2)− d(x2)x1 − α(x2)d(x1))
[

a[x1, x2](3.2)

+d(x1)x2 + α(x1)d(x2)− d(x2)x1 − α(x2)d(x1), [x1, x2]
]n

is an identity for Qr.
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In what follows we may assume that the associated automorphism α is not the

identity map and also that d 6= 0. In fact, if either α = id or d = 0, then F is

a generalized derivation of R and the result follows from Theorem 1.5.

Suppose that d is X-inner. Then there exist c ∈ Qr and α ∈ Aut(Qr) such that

d(x) = cx − α(x)c for all x ∈ R. In this case F (x) = (a + c)x − α(x)c. It follows

from Propositions 2.7 and 2.8 that either F (x) = λx, where λ ∈ C, or R ⊆ M2(C)

and F (x) = a′x+ xa′ + λx, with a′ ∈ Qr and λ ∈ C.

Assume that d is outer. By [8], Theorem 1, and (3.2) it follows that Qr satisfies

the generalized polynomial identity

(a[x1, x2] + t1x2 + α(x1)t2 − t2x1 − α(x2)t1)
[

a[x1, x2] + t1x2

+ α(x1)t2 − t2x1 − α(x2)t1, [x1, x2]
]n

and in particular,

(3.3) (a[x1, x2] + t1x2 − α(x2)t1)
[

a[x1, x2] + t1x2 − α(x2)t1, [x1, x2]
]n

is an identity for Qr.

Moreover, for t1 = 0 in (3.3) we have that Qr satisfies a[x1, x2]
[

a[x1, x2], [x1, x2]
]n
,

and by Theorem 1.5 it follows easily that a ∈ C.

Let us first consider the case when α is an inner automorphism of R. Then there

exists an invertible element q ∈ Qr such that α(x) = qxq−1. Since 1 6= α ∈ Aut(R),

we may assume q /∈ C. Thus we may write (3.3) as

(3.4) (a[x1, x2] + t1x2 − qx2q
−1t1)

[

a[x1, x2] + t1x2 − qx2q
−1t1, [x1, x2]

]n
.

Replace in (3.4) t1 by qx1, then it follows that Qr satisfies

(a+ q)[x1, x2]
[

(a+ q)[x1, x2], [x1, x2]
]n

and as above we get a+ q ∈ C, that is q ∈ C, which is a contradiction.

Finally, we assume that α is outer. By [6] R is a GPI-ring and Qr is also GPI-ring

by [7]. By Martindale’s theorem in [21], Qr is a primitive ring having nonzero

socle and its associated division ring D is finite-dimensional over C. Hence Qr is

isomorphic to a dense subring of the ring of linear transformations of a vector space V

over D, containing nonzero linear transformations of finite rank.

Moreover, we know that there exists a semi-linear automorphism T ∈ End(V )

such that α(x) = TxT−1 for all x ∈ Qr. Hence, by (3.3), Qr satisfies

(a[x1, x2] + t1x2 − Tx2T
−1t1)

[

a[x1, x2] + t1x2 − Tx2T
−1t1, [x1, x2]

]n
.(3.5)
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Notice that, if for any v ∈ V there exists λv ∈ D such that T−1v = vλv, then, by

a standard argument, it follows that there exists a unique λ ∈ D such that T−1v = vλ

for all v ∈ V . In this case

α(x)v = (TxT−1)v = Txvλ

and

(α(x) − x)v = T (xvλ)− xv = T (T−1xv) − xv = 0,

which implies the contradiction that α is the identity map, since V is faithful.

Therefore, there exists v ∈ V such that {v, T−1v} is linearly D-independent.

Consider first the case dimD V > 3. Thus there exists w ∈ V such that {w, v,

T−1v} is linearly D-independent. Moreover, by the density of Qr, there exists

r, s, t ∈ Qr such that

rv = sv = tv = v, sT−1bv = T−1w, rw = 0, sw = v.

Hence, by (3.5), we get the contradiction

0 = (a[r, s] + ts− TsT−1t)
[

a[r, s] + ts− TsT−1t, [r, s]
]n
v = v − w 6= 0.

Therefore, we have just to consider the case when dimD V 6 2.

In this case, by (3.3), since a ∈ C, α(xi)-word degree is 3 and either char(R) = 0

or char(R) > 5, it follows by Theorem 3 in [5] that Qr satisfies

(3.6) (a[x1, x2] + t1x2 − y2t1)
[

t1x2 − y2t1, [x1, x2]
]2
.

For x1 = e12, x2 = e21, t1 = e22, y2 = e12 in (3.6) it follows that

4(ae11 − ae22 + e21 − e12) = 0

and easy computations show that a = 0 and 4(e21−e12) = 0, which is a contradiction.

�
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