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SOME CHARACTERIZATIONS OF HARMONIC BLOCH

AND BESOV SPACES

Xi Fu, Shaoxing, Bowen Lu, Hangzhou

(Received May 14, 2015)

Abstract. The relationship between weighted Lipschitz functions and analytic Bloch
spaces has attracted much attention. In this paper, we define harmonic ω-α-Bloch space
and characterize it in terms of

ω((1− |x|2)β(1− |y|2)α−β)
∣

∣

∣

f(x)− f(y)

x− y

∣

∣

∣

and

ω((1− |x|2)β(1− |y|2)α−β)
∣

∣

∣

f(x)− f(y)

|x|y − x′

∣

∣

∣

where ω is a majorant. Similar results are extended to harmonic little ω-α-Bloch and Besov
spaces. Our results are generalizations of the corresponding ones in G.Ren, U.Kähler
(2005).
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1. Introduction

Let B be the unit ball in R
n with n > 2, where dv is the normalized volume

measure on B and dσ is the normalized surface measure on the unit sphere S = ∂B.

We denote the class of all harmonic functions on the unit ball by H(B). The ball

centered at x with radius r will be denoted by B(x, r).

For each α > 0, the harmonic α-Bloch space Bα consists of all functions f ∈ H(B)

such that

‖f‖α = sup
x∈B

(1− |x|2)α|∇f(x)| < ∞,

The research was partly supported by NSF of China (No. 11501374) and NSF of Zhejiang
(No. LQ14A010006).
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and the little α-Bloch space Bα
0 consists of the functions f ∈ Bα such that

lim
|x|→1−

sup
x∈B

(1 − |x|2)α|∇f(x)| = 0.

The harmonic Besov space Bp is the space of all functions in H(B) for which

∫

B

(1 − |x|2)p|∇f(x)|p dτ(x) < ∞,

where p > n− 1 and dτ(x) = (1− |x|2)−n dv(x) is the invariant measure on B.

Let f be a continuous function in B. If there exists a constant C such that

Lf (x, y) = (1− |x|2)1/2(1− |y|2)1/2
∣∣∣
f(x)− f(y)

x− y

∣∣∣ 6 C

for any x, y ∈ B, then we say that f satisfies the weighted Lipschitz condition. By

means of it, Ren and Kähler [11] obtained the following:

Theorem 1.1. Let f ∈ H(B). Then f ∈ B1 if and only if it satisfies the weighted

Lipschitz condition.

Moreover, they characterized the spaces B1
0 and Bp as follows:

Theorem 1.2. Let f ∈ H(B). Then f ∈ B1
0 if and only if

lim
|x|→1−

sup
x,y∈B,x 6=y

Lf (x, y) = 0.

Theorem 1.3. Let f ∈ H(B) and p ∈ (2(n− 1),∞). Then f ∈ Bp if and only if

∫

B

∫

B

Lp
f (x, y) dτ(x) dτ(y) < ∞.

Note that if p ∈ (1, 2(n − 1)), then the integral condition in Theorem 1.3 forces

the function f to be a constant (see [11]). We refer to [5], [6], [8], [12], [13], [17] for

the corresponding results in the complex unit ball for holomorphic orM-harmonic
functions. See [7], [10], [16], [15], [18] for various characterizations of the Bloch, little

Bloch, and Besov spaces in the unit ball of Cn.

Let ω : [0,∞) → [0,∞) be a continuous increasing function with ω(0) = 0. We

call ω a majorant if ω(t)/t is non-increasing for t > 0 (see [4]). Following [1], the

harmonic ω-α-Bloch space Bα
ω consists of all functions f ∈ H(B) such that

‖f‖ω,α = sup
x∈B

ω((1− |x|2)α)|∇f(x)| < ∞,
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and the little ω-α-Bloch space Bα
ω,0 consists of the functions f ∈ Bα

ω such that

lim
|x|→1−

sup
x∈B

ω((1− |x|2)α)|∇f(x)| = 0.

In particular, when ω(t) = t, we remark that the space Bα
ω (or Bα

ω,0) is Bα (or Bα
0 ).

The main purpose of this paper is to give some characterizations for the spaces

Bα
ω ,Bα

ω,0, and Bp. In Section 2, we collect some known results that will be needed in

the proof of our results. Our main results and their proofs are presented in Sections 3

and 4.

Throughout this paper, constants are denoted by C, they are positive and may

differ from one occurrence to the other. The notation A ≍ B means there is a positive

constant C such that C/B 6 A 6 CB.

2. Preliminaries

We shall use the following notation: we write x, y ∈ R
n in polar coordinates as

x = |x|x′ and y = |y|y′. For any a, b ∈ R
n, the symmetry lemma shows that

∣∣|a|b− a′
∣∣ =

∣∣|b|a− b′
∣∣.

For any a ∈ B, denote by ϕa the Möbius transformation in B. It is an involution of

B such that ϕa(0) = a and ϕa(a) = 0, and has the form

ϕa(x) =
|x− a|2a− (1− |a|2)(x − a)

∣∣|a|x− a′
∣∣2 , x ∈ B.

By a simple computation, we have

|ϕa(x)| =
|x− a|∣∣|x|a− x′

∣∣ ,

1− |ϕa(x)|2 =
(1− |x|2)(1− |a|2)

∣∣|a|x− a′
∣∣2 ,

and

|Jϕa(x)| =
(1− |a|2)n
∣∣|x|a− x′

∣∣2n ,

where Jϕa denotes the Jacobian of ϕa.

For any a ∈ B and r ∈ (0, 1), we define the pseudo-hyperbolic ball with center a

and radius r as

E(a, r) = {w ∈ B : |ϕa(w)| < r}.
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Clearly, E(a, r) = ϕa(B(a, r)).

The following result comes from [11], Lemma 2.1.

Lemma 2.1. Let r ∈ (0, 1) and y ∈ E(x, r). Then 1−|x|2 ≍ 1−|y|2 ≍
∣∣|x|y−x′

∣∣.

As an application of Lemma 1, we easily get the following:

Corollary 2.1. Let r ∈ (0, 1) and η = inf
a∈B, x,y∈E(a,r)

(1− |x|2)/(1− |y|2). Then
η ∈ (0, 1).

For f ∈ H(B), we define ∇̃f(x) of f at x by

∇̃f(x) = ∇(f ◦ ϕx)(0)

for x ∈ B. We call |∇̃f(x)| the invariant gradient of f at x by the following propo-
sition, which is proved in [3].

Proposition 2.1. Let f ∈ H(B) and x ∈ B. Then |∇̃f(x)| = (1 − |x|2)|∇f(x)|
and

|∇̃(f ◦ ϕ)(x)| = |(∇̃f) ◦ ϕ(x)|

for any Möbius transformation ϕ.

In order to prove our main results, we need the following lemma, which follows

from a discussion similar to the proof of [9], Lemma 2.5.

Lemma 2.2. Suppose that f : B(a, r) → R is continuous and harmonic in B(a, r).

Then

|∇f(a)| 6 n3/2

r

∫

S

|f(a+ rζ) − f(a)| dσ(ζ).

P r o o f. Without loss of generality, we assume that a = 0 and f(0) = 0. Then

for x ∈ B

f(x) =

∫

S

K(x, ζ)f(rζ) dσ(ζ),

where

K(x, ζ) =
rn−2(r2 − |x|2)

|x− rζ|n

is the Poisson kernel for the ball. By a simple calculation,

∂

∂xj
K(x, ζ) = rn−2

[ −2xj

|x− rζ|n − n(r2 − |x|2)(xj − rζj)

|x− rζ|n+2

]
.

420



Hence, we have

|∇f(0)| =
[ n∑

j=1

∣∣∣∣
∫

S

∂

∂xj
K(0, ζ)f(rζ) dσ(ζ)

∣∣∣∣
2]1/2

6

n∑

j=1

∣∣∣∣
∫

S

∂

∂xj
K(0, ζ)f(rζ) dσ(ζ)

∣∣∣∣

6

∫

S

|f(rζ)|
n∑

j=1

∣∣∣
∂

∂xj
K(0, ζ)

∣∣∣dσ(ζ)

6
n3/2

r

∫

S

|f(rζ)| dσ(ζ).

�

Lemma 2.3 ([11]). Let α > −1 and β ∈ R. Then for any x ∈ B,

∫

B

(1− |y|2)α
|x|y − x′|n+α+β

dv(y) ≍





(1 − |x|2)−β , β > 0,

log
1

1− |x|2 , β = 0,

1, β < 0.

We end this section with two inequalities which will be used in the sequel.

Lemma 2.4. Let ω(t) be a majorant and u ∈ (0, 1], v ∈ (1,∞). Then for t ∈
(0,∞),

ω(ut) > uω(t),

ω(vt) 6 vω(t).

Lemma 2.5. Let a, b > 0, 0 < s < 1. Then sa+ (1− s)b > asb1−s.

3. Harmonic Bloch space

In this section, we give some characterizations of the spaces Bα
ω and Bα

ω,0.

Theorem 3.1. Let r ∈ (0, 1), f ∈ H(B), 0 < β 6 α. Then f ∈ Bα
ω if and only if

Lω,f = sup
y∈E(x,r),x 6=y

ω
(
(1− |x|2)β(1 − |y|2)α−β

)∣∣∣
f(x)− f(y)

x− y

∣∣∣ < ∞.
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P r o o f. We follow the proof of Theorem 3.1 in [11]. First, we prove the suffi-

ciency. Let f ∈ H(B). For each x ∈ B, by Lemma 2.2,

|∇f(x)| 6 C

̺

∫

S

|f(x+ ̺ζ)− f(x)| dσ(ζ),

where ̺ < r(1 − |x|2)/2. A straightforward calculation shows that E(x, r) is a Eu-

clidean ball with center (1− r2)x/(1 − r2|x|2) and radius (1− |x|2)r/(1 − r2|x|2).
Note that if y ∈ B(x, ̺), then

|ϕx(y)| =
|x− y|∣∣|x|y − x′

∣∣ 6
|x− y|
1− |x| 6

2|x− y|
1 − |x|2 < r.

It follows immediately that B(x, ̺) ⊂ E(x, r) and

|∇f(x)| 6 CLω,f

ω
(
(1− |x|2)β(1− |y|2)α−β

) .

By letting y → x, f ∈ Bα
ω .

Conversely, let f ∈ Bα
ω and for any y ∈ E(x, r), y 6= x,

|f(x)− f(y)| =
∣∣∣∣
∫ 1

0

df

ds
(sx+ (1 − s)y) ds

∣∣∣∣

6

n∑

k=1

∣∣∣∣(xk − yk)

∫ 1

0

∂f

∂xk
(sx+ (1− s)y) ds

∣∣∣∣

6
√
n |x− y|

∫ 1

0

|∇f(sx+ (1 − s)y)| ds

6 C|x− y|‖f‖ω,α

∫ 1

0

ds

ω((1 − |sx+ (1− s)y|2)α) .

Since for s ∈ [0, 1],

1− |sx+ (1− s)y|2 > 1− |sx+ (1− s)y|
> s(1− |x|) + (1− s)(1− |y|)

> s
(1− |x|2

2

)
+ (1 − s)

(1− |y|2
2

)

>
1

2
(1− |x|2)s(1 − |y|2)1−s
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and 1− |y|2 > η(1 − |x|2) by Lemma 2.5 and Corollary 2.1, we infer that

∣∣∣
f(x)− f(y)

x− y

∣∣∣ 6 C

∫ 1

0

ds

ω
(
2−α(1− |x|2)αs(1− |y|2)α−αs

)

6 C

∫ 1

0

ds

ω
(
2−α(1− |x|2)αηα−αs

)

6
C

ω
(
(1− |x|2)α

)
∫ 1

0

2α ds

ηα−αs

6
C

ω
(
(1− |x|2)α

)

by Lemma 2.4 for y ∈ E(x, r), y 6= x. Thus,

sup
y∈E(x,r),x 6=y

ω
(
(1− |x|2)α

)∣∣∣
f(x)− f(y)

x− y

∣∣∣ < ∞.

For each y ∈ E(x, r),

(1− |x|2)α = (1− |x|2)β(1− |x|2)α−β > (1− |x|2)β(1− |y|2)α−βηα−β .

By Lemma 2.4, we deduce that

ω
(
(1 − |x|2)α

)
> ηα−βω

(
(1− |x|2)β(1− |y|2)α−β

)
,

from which we see that Lω,f < ∞. �

Theorem 3.2. Let r ∈ (0, 1), f ∈ Bα
ω . Then f ∈ Bα

ω,0 if and only if

(1) lim
|x|→1−

sup
y∈E(x,r), x 6=y

ω
(
(1 − |x|2)β(1 − |y|2)α−β

)∣∣∣
f(x)− f(y)

x− y

∣∣∣ = 0.

P r o o f. We follow the proof of Theorem 3.2 in [11]. To prove sufficiency, assume

that (1) holds. Then for any ε > 0, there exists δ ∈ (0, 1) such that

sup
y∈E(x,r), x 6=y

ω
(
(1− |x|2)β(1− |y|2)α−β

)∣∣∣
f(x)− f(y)

x− y

∣∣∣ < ε,

whenever δ < |x| < 1. By an argument similar to that in the proof of Theorem 3.1,

we have

ω
(
(1−|x|2)α

)
|∇f(x)| < C sup

y∈E(x,r), x 6=y

ω
(
(1−|x|2)β(1−|y|2)α−β

)∣∣∣
f(x)− f(y)

x− y

∣∣∣ < Cε,
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whenever δ < |x| < 1. Hence

lim
|x|→1−

ω
(
(1− |x|2)α

)
|∇f(x)| = 0.

To prove necessity, we assume that f ∈ Bα
ω,0. For λ ∈ (0, 1), let fλ = f(λx). By

the proof of Theorem 3.1, we have

ω
(
(1− |x|2)β(1− |y|2)α−β

)∣∣∣
(f − fλ)(x)− (f − fλ)(y)

x− y

∣∣∣ 6 C‖f − fλ‖ω,α

and

ω
(
(1− |x|2)β(1− |y|2)α−β

)∣∣∣
fλ(x) − fλ(y)

x− y

∣∣∣

<
ω
(
(1− |x|2)β(1− |y|2)α−β

)

ω
(
(1 − |λx|2)α

) ω
(
(1− |λx|2)α

)∣∣∣
f(λx)− f(λy)

λx− λy

∣∣∣

6 C
ω
(
(1− |x|2)β(1− |y|2)α−β

)

ω((1− |λx|2)α) ‖f‖ω,α

for all y ∈ E(x, r). By the triangle inequality, we have

sup
y∈E(x,r), x 6=y

ω
(
(1− |x|2)β(1− |y|2)α−β

)∣∣∣
f(x)− f(y)

x− y

∣∣∣

6 C‖f − fλ‖ω,α +
ω
(
(1 − |x|2)β(1− |y|2)α−β

)

ω
(
(1− |λx|2)α

) ‖f‖ω,α.

In the above inequality, first by letting |x| → 1− and then letting λ → 1−, we obtain

the desired result. �

Remark 3.1. It is worth noting that for ω(t) = t, Li and Wulan [8] obtained

the holomorphic version of Theorems 3.1 and 3.2 in the unit ball of Cn.

Section 2 gives that for any x, y ∈ B, |x− y| 6
∣∣|x|y− x′

∣∣. Motivated by this fact,
we remove the restriction y ∈ E(x, r), replace x− y by |x|y− x′ in Theorem 3.1 and

obtain the following:

Theorem 3.3. Let f ∈ H(B), 0 6 β < 1, β 6 α < 1 + β. Then f ∈ Bα
ω if and

only if

(2) L = sup
x,y∈B, x 6=y

ω
(
(1− |x|2)β(1− |y|2)α−β

)∣∣∣
f(x)− f(y)

|x|y − x′

∣∣∣ < ∞.
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P r o o f. Assume that (2) holds. Fix r ∈ (0, 1). It follows from [11] that

|∇f(x)| 6 C

(1 − |x|2)

∫

E(x,r)

|f(y)| dτ(y).

Fixing x ∈ B and replacing f by f − f(x), we have

ω
(
(1− |x|2)α

)
|∇f(x)| 6 Cω

(
(1 − |x|2)α

)

(1− |x|2)

∫

E(x,r)

|f(y)− f(x)| dτ(y).

By Lemmas 2.1, 2.4 and Corollary 2.1,

ω
(
(1− |x|2)α

)
|∇f(x)| 6 Cηβ−α

∫

E(x,r)

ω
(
(1 − |x|2)β(1− |y|2)α−β

)∣∣∣
f(x)− f(y)

|x|y − x′

∣∣∣dτ(y)

6 CLηβ−α

∫

E(x,r)

dτ = CLηβ−ατ(B(0, r)).

Since τ(B(0, r)) = n
∫ r

0
tn−1(1− t2)−n dt is a constant, we see that

sup
x∈B

ω
(
(1− |x|2)α

)
|∇f(x)| < ∞.

Hence f ∈ Bα
ω .

Conversely, assume that f ∈ Bα
ω . We argue as in the proof of Theorem 3.1. Since

for x, y ∈ B, s ∈ [0, 1],

(
1− |sx+ (1 − s)y|2

)α
>

(
s
(1− |x|2

2

)
+ (1− s)

(1− |y|2
2

))α

>

(s
2

)β(1− s

2

)α−β

(1− |x|2)β(1− |y|2)α−β ,

we get

∣∣∣
f(x)− f(y)

x− y

∣∣∣ 6 C

∫ 1

0

ds

ω
(
(1− |sx+ (1− s)|y|2)α

)

6 C

∫ 1

0

ds

ω
(
(s/2)β((1 − s)/2)α−β(1− |x|2)β(1 − |y|2)α−β

)

6
C

ω
(
(1− |x|2)β(1− |y|2)α−β

)
∫ 1

0

ds

sβ(1− s)α−β

6
C

ω
(
(1− |x|2)β(1− |y|2)α−β

) ,

where the last integral converges since α < 1 + β. Thus

ω
(
(1− |x|2)β(1 − |y|2)α−β

)∣∣∣
f(x)− f(y)

|x|y − x′

∣∣∣ < ∞.

�
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Similarly, we can prove the following.

Theorem 3.4. Let f ∈ Bα
ω , 0 6 β < 1, β 6 α < 1+β. Then f ∈ Bα

ω,0 if and only

if

lim
|x|→1−

sup
x,y∈B, x 6=y

ω
(
(1 − |x|2)β(1− |y|2)α−β

)∣∣∣
f(x)− f(y)

|x|y − x′

∣∣∣ = 0.

4. Harmonic Besov space

In this section, we show some characterizations of Besov space Bp for H(B). First,

we generalize Theorem 1.3 into the following form.

Theorem 4.1. Let f ∈ H(B) and p ∈ (2(n− 1),∞). Then f ∈ Bp if and only if

(3)

∫

B

∫

B

(1− |x|2)p/2(1 − |y|2)p/2
∣∣∣
f(x)− f(y)

|x|y − x′

∣∣∣
p

dτ(x) dτ(y) < ∞.

P r o o f. Assume that f ∈ Bp. Since

1∣∣|x|y − x′
∣∣ 6

1

|x− y|

for all x, y ∈ B, it follows from Theorem 1.3 that (3) holds.

Conversely, assume that (3) holds. Fix r ∈ (0, 1). From the proof of Theorem 3.3,

by taking ω(t) = t, α = 1 and β = 1/2, we have

(1− |x|2)|∇f(x)| 6 C

∫

E(x,r)

(1− |x|2)1/2(1− |y|2)1/2
∣∣∣
f(x)− f(y)

|x|y − x′

∣∣∣ dτ(y).

As an application of Hölder’s inequality,

(1− |x|2)p|∇f(x)|p 6 C

∫

E(x,r)

(1− |x|2)p/2(1− |y|2)p/2
∣∣∣
f(x)− f(y)

|x|y − x′

∣∣∣
p

dτ(y)

6 C

∫

B

(1− |x|2)p/2(1− |y|2)p/2
∣∣∣
f(x)− f(y)

|x|y − x′

∣∣∣
p

dτ(y).

Hence
∫

B

(1− |x|2)p|∇f(x)|p dτ(x)

6 C

∫

B

∫

B

(1− |x|2)p/2(1− |y|2)p/2
∣∣∣
f(x)− f(y)

|x|y − x′

∣∣∣
p

dτ(x) dτ(y).

The result follows. �
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An immediate consequence of Theorems 3.1 and 4.3 is the following corollary.

Corollary 4.1. Let f ∈ H(B), p ∈ (2(n− 1),∞) and 0 6 k 6 p. Then f ∈ Bp if

and only if

∫

B

∫

B

(1− |x|2)p/2(1− |y|2)p/2 |f(x)− f(y)|p
∣∣|x|y − x′

∣∣k|x− y|p−k
dτ(x) dτ(y) < ∞.

Second, we give a new characterization of Bp in terms of a double integral of the

function |f(x)− f(y)|p/
∣∣|x|y − x′

∣∣2n.

Theorem 4.2. Let f ∈ H(B) and p ∈ (n− 1,∞). Then f ∈ Bp if and only if

(4) I =

∫

B

∫

B

|f(x)− f(y)|p
∣∣|x|y − x′

∣∣2n dv(x) dv(y) < ∞.

P r o o f. Assume that f ∈ Bp. By the formula
∣∣|x|ϕx(u) − x′

∣∣2 = (1 − |x|2)×
(1− |ϕx(u)|2)/(1− |u|2) and by making the change of variables y = ϕx(u) we have

I =

∫

B

∫

B

|f ◦ ϕx(0)− f ◦ ϕx(u)|p∣∣|x|ϕx(u)− x′
∣∣2n |Jϕx(u)| dv(x) dv(u)

=

∫

B

∫

B

|f ◦ ϕx(0)− f ◦ ϕx(u)|p
(1− |x|2)n(1− |ϕx(u)|2)n

(1− |u|2)n(1 − |x|2)n
∣∣|x|u− x′

∣∣2n dv(u) dv(x)

=

∫

B

∫

B

|f ◦ ϕx(0)− f ◦ ϕx(u)|p dv(u) dτ(x)

6 C

∫

B

dτ(x)

∫

B

|∇̃(f ◦ ϕx)(u)|p dv(u).

The last inequality follows from [2], Theorem 1.3, and Proposition 2.1.

Since |∇̃(f ◦ ϕx)(u)| = |∇̃f(ϕx(u))|, changing variables again leads to

I 6 C

∫

B

dτ(x)

∫

B

|∇̃(f ◦ ϕx)(u)|p dv(u)

6 C

∫

B

dτ(x)

∫

B

|∇̃f(w)|p (1− |x|2)n
∣∣|x|w − x′

∣∣2n dv(w).

It follows from Fubini’s theorem and Lemma 2.3 that

I 6 C

∫

B

|∇̃f(w)|p dτ(w) = C

∫

B

(1 − |w|2)p|∇f(w)|p dτ(w).
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For the converse, we assume that (4) holds. For x ∈ B, from [11],

(1− |x|2)|∇f(x)| 6 C

∫

E(x,r)

|f(x)− f(y)| dτ(y).

Applying Hölder’s inequality and Lemma 2.2,

∫

B

(1− |x|2)p|∇f(x)|p dτ(x) 6 C

∫

B

∫

E(x,r)

|f(x)− f(y)|p
∣∣|x|y − x′

∣∣2n dv(x) dv(y) 6 I,

from which we see that f ∈ Bp. �

As an application of Theorem 4.2, we end this section with the following result,

which can be regarded as an extension of [6], Theorem 1, into the harmonic setting.

Theorem 4.3. Let f ∈ H(B) and p ∈ (n− 1,∞), n 6 α, β < ∞. Then f ∈ Bp if

and only if

(5) J =

∫

B

∫

B

|f(x)− f(y)|p
∣∣|x|y − x′

∣∣α+β
(1− |x|2)α(1− |y|2)β dτ(x) dτ(y) < ∞.

P r o o f. Similarly as in the proofs of the above theorems, we have

(1− |x|2)p|∇f(x)|p 6 C

∫

E(x,r)

|f(x)− f(y)|p dτ(y)

6 C

∫

E(x,r)

|f(x)− f(y)|p
∣∣|x|y − x′

∣∣α+β
(1− |x|2)α(1− |y|2)β dτ(y)

6 C

∫

B

|f(x)− f(y)|p
∣∣|x|y − x′

∣∣α+β
(1− |x|2)α(1− |y|2)β dτ(y),

from which f ∈ Bp.

Now, we prove the converse. Suppose that f ∈ Bp. Then

J =

∫

B

∫

B

|f(x)− f(y)|p
∣∣|x|y − x′

∣∣2n
(1− |x|2)α−n(1− |y|2)β−n

∣∣|x|y − x′
∣∣α+β−2n

dv(x) dv(y)

6 C

∫

B

∫

B

|f(x)− f(y)|p
∣∣|x|y − x′

∣∣2n dv(x) dv(y)

by Lemma 2.3 applied twice. Following Theorem 4.2, we get that J < ∞, as desired.
The proof is completed. �
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Remark 4.1. After submission, the authors have learned of the interesting pa-

per [14], in which some more general results on the characterizations of harmonic

Besov spaces are presented. Specifically, Theorem 4.1 in this note is Corollary 1.6

of [14], which is a special case of Theorem 1.2 there. Theorem 4.2 is contained in

Corollary 6.2 of [14], which is a special case of Theorem 6.1 there. Theorem 4.3 is

closely related to Theorem 6.6 of [14]. However, the methods of proof in these two

works are quite different from each other.

Acknowledgment. The authors are grateful to the referee for drawing their

attention to the results in [14] as well as for many helpful comments.
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