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Abstract. Let R be an associative ring with identity and F a class of R-modules. In this
article: we first give a detailed treatment of Cartan-Eilenberg F complexes and extend the
basic properties of the class F to the class CE(F). Secondly, we study and give some equiv-
alent characterizations of Cartan-Eilenberg projective, injective and flat complexes which
are similar to projective, injective and flat modules, respectively. As applications, we char-
acterize some classical rings in terms of these complexes, including coherent, Noetherian,
von Neumann regular rings, QF rings, semisimple rings, hereditary rings and perfect rings.

Keywords: Cartan-Eilenberg projective complex; Cartan-Eilenberg injective complex;
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1. Introduction and preliminaries

In his thesis Verdier [16] introduced the notion of Cartan-Eilenberg injective com-

plexes. Of course, there is an obvious dual notion, that of Cartan-Eilenberg projective

complexes. Cartan-Eilenberg projective and injective complexes have origin in [4]

to give the definitions of projective and injective resolutions of a complex of mod-

ules. Furthermore, Enochs [7] considered Cartan-Eilenberg flat complexes which are

extensions of Cartan-Eilenberg projective complexes and showed that they are pre-

cisely the direct limits of finitely generated Cartan-Eilenberg projective complexes.

Recently, Yang and Liang [19] gave some characterizations of Cartan-Eilenberg flat

complexes and proved that a ring R is right coherent if and only if every complex

of R-modules has a Cartan-Eilenberg flat preenvelope (for the rest of the article, we

will use the abbreviation CE for Cartan-Eilenberg).

Research supported by National Natural Science Foundation of China (11261050,
11401475).
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Motivated by the above work, in this article we continue to study some basic

properties of CE projective, injective and flat complexes. Also, we will give some

equivalent characterizations of these CE complexes which are similar to projective,

injective and flat modules, respectively. As applications, we will characterize some

classical rings by CE projective, injective and flat complexes, e.g. coherent rings,

Noetherian rings, von Neumann regular rings, semisimple rings, hereditary rings and

perfect rings.

Throughout this article, R denotes an associative ring with identity. Unless stated

otherwise, an R-module will be understood to be a left R-module, an R-complex

(complex of R-modules) will be understood to be a left R-complex. We use R-Mod

to denote the category of R-modules, and C(R-Mod) to denote the category of

R-complexes.

An R-complex

C = . . . Cn+2

δC
n+2

−→ Cn+1

δC
n+1

−→ Cn

δC
n−→ Cn−1

δC
n−1

−→ Cn−2

δC
n−2

−→ . . .

will be denoted by (C, δ) or C. The nth cycle module is defined as Ker δCn and

is denoted by Zn(C), nth boundary module is defined as Im δCn+1 and is denoted

by Bn(C), and nth homology module is Hn(C) = Zn(C)/Bn(C). The complexes of

cycles and boundaries, and the homology complex of C are denoted by Z(C), B(C)

and H(C), respectively. For any i ∈ Z, ΣiC denotes the complex with the degree-n

term (ΣiC)n = Cn−i whose boundary operators are (−1)iδCn−i. We set ΣC = Σ1C.

Given an R-module M , we will denote by M the complex

. . . −→ 0 −→ M
id
−→ M −→ 0 −→ . . .

with M in the 0th and 1st position. Also, by M we mean the complex with M in

the 0th place and 0 elsewhere.

For objects X and Y of C(R-Mod), we will denote by Hom(X,Y ) the complex

of abelian groups with Hom(X,Y )n =
∏
i∈Z

Hom(Xi, Yi+n) such that if f = (fi)i∈Z ∈

Hom(X,Y )n then δn(f) = (δYi+nfi − (−1)nfi−1δ
X
i )i∈Z. A map f is called a chain

map of degree n if δn(f) = 0. A chain map of degree 0 is called a morphism. We

will use Hom(X,Y ) to denote the abelian group of morphisms from X to Y and

Exti for i > 1 will denote the groups we get from the right derived functor of Hom.

Let Hom(X,Y ) = Z(Hom(X,Y )). It is not hard to see that Hom(X,Y ) is the

complex of Z-modules with the nth component Hom(X,Y )n = Hom(X,Σ−nY ) =

Hom(ΣnX,Y ).

If C is a complex of right R-modules and D is a complex of left R-modules, the

tensor product of C and D is the complex of abelian groups C ⊗̇D with (C ⊗̇D)n =⊕
i∈Z

(Ci ⊗Dn−i). Define C ⊗D = C ⊗̇D/B(C ⊗̇D).
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We recall some notion and results needed in the article.

Definition 1.1 ([20]). Let F be a class of R-modules. A complex A is called

a CE F complex if A, Z(A), B(A) and H(A) are all in C(F), where C(F) is the class

of complexes with all components in F . We let CE(F) denote the class of CE F

complexes.

Definition 1.2 ([7]). A sequence of complexes . . . → C1 → C0 → C−1 → . . . is

said to be CE exact if

(1) . . . → C1 → C0 → C−1 → . . .,

(2) . . . → Z(C1) → Z(C0) → Z(C−1) → . . .,

(3) . . . → B(C1) → B(C0) → B(C−1) → . . .,

(4) . . . → C1/Z(C1) → C0/Z(C0) → C−1/Z(C−1) → . . .,

(5) . . . → C1/B(C1) → C0/B(C0) → C−1/B(C−1) → . . .,

(6) . . . → H(C1) → H(C0) → H(C−1) → . . . are all exact.

Remark 1.3. From [7], Lemma 5.2, we know that if (1) and (2), or (1) and (5)

in the above definition are exact then all of (1)–(6) are exact.

Let X and Y be two R-complexes. In [7], Theorems 5.5 and 5.7, Enochs de-

fined CE resolutions in terms of preenvelopes and precovers by CE injective and CE

projective complexes. By [7], Proposition 6.3, we can compute derived functors of

Hom(−,−) using either of the two CE resolutions. We denote these derived functors

as Ext
i
(X,Y ). If C is a complex of right R-modules and D is a complex of left

R-modules, by [19], Lemma 2.4 and Theorem 2.6, we can compute left derived func-

tors of -⊗- using the CE flat resolution of either C or D. We denote these derived

functors as Tori(C,D).

2. CE projective, injective and flat complexes

In this section we give a detailed treatment of the CE F complex and extend the

basic properties of the class F to the class CE(F). The main purpose is to give some

equivalent characterizations of CE projective, injective and flat complexes which are

similar to projective, injective and flat modules, respectively.

For any class X of R-modules, we say X is projectively resolving if P(R) ⊆ X ,

and for every short exact sequence 0 → X ′ → X → X ′′ → 0 with X ′′ ∈ X the

conditions X ′ ∈ X and X ∈ X are equivalent. We say X is injectively resolving if

I(R) ⊆ X and if X ′ ∈ X then the conditions X ′′ ∈ X and X ∈ X are equivalent.
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Lemma 2.1. Let F be a class of R-modules. For an R-complex A, the following

assertions hold:

(1) If F is projectively resolving, then the following conditions are equivalent:

(i) A ∈ CE(F).

(ii) B(A), H(A) ∈ C(F).

(iii) A, A/B(A) ∈ C(F).

(2) If F is injectively resolving, then the following conditions are equivalent:

(i) A ∈ CE(F).

(ii) B(A), H(A) ∈ C(F).

(iii) A, Z(A) ∈ C(F).

P r o o f. (1): (i) ⇒ (ii) is obvious.

(ii) ⇒ (iii). For each i ∈ Z, consider the exact sequences of R-modules

0 → Hi(A) → Ai/Bi(A) → Bi−1(A) → 0,(1.1)

0 → Bi(A) → Ai → Ai/Bi(A) → 0.(1.2)

Since F is projectively resolving, A/B(A) ∈ C(F) by (1.1), A ∈ C(F) by (1.2).

(iii) ⇒ (i). By (1.2) and (1.1) we have B(A) ∈ C(F), H(A) ∈ C(F). By the same

argument we get that Z(A) ∈ C(F) since 0 → Bi(A) → Zi(A) → Hi(A) → 0 is

exact for all i ∈ Z. Thus A ∈ CE(F) by Definition 1.1.

Dually, we can prove (2). �

Proposition 2.2. Let F be a class of R-modules and let 0 → A → B → C → 0

be a short CE exact sequence in C(R-Mod). Then the following results hold:

(1) If F is projectively resolving and C ∈ CE(F), then A ∈ CE(F) if and only if

B ∈ CE(F).

(2) If F is injectively resolving and A ∈ CE(F), then B ∈ CE(F) if and only if

C ∈ CE(F).

P r o o f. We prove part (1); the proof of part (2) is dual.

By the hypothesis, for each i ∈ Z we have the exact sequences

0 → Ai → Bi → Ci → 0,(1.3)

0 → Ai/Bi(A) → Bi/Bi(B) → Ci/Bi(C) → 0.(1.4)

By Lemma 2.1, we have Ci, Ci/Bi(C) ∈ F . Since F is projectively resolving, Ai ∈ F

if and only if Bi ∈ F by (1.3), Ai/Bi(A) ∈ F if and only if Bi/Bi(B) ∈ F by (1.4).

Therefore, A ∈ CE(F) if and only if B ∈ CE(F) by Lemma 2.1 again. �
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Proposition 2.3. Let F be a class of R-modules that is closed under direct limits.

If F is closed under kernels of epimorphisms or cokernels of monomorphisms, then

CE(F) is closed under direct limits.

P r o o f. Suppose {Ci, (fji) : i ∈ I} is a direct system of CE F complexes. For

each n ∈ Z, we have

Zn(lim−→Ci) ∼= lim−→Zn(C
i), Hn(lim−→Ci) ∼= lim−→Hn(C

i).

Since F is closed under direct limits, we have

lim−→Ci
n, Zn(lim−→Ci), Hn(lim−→Ci) ∈ F .

If F is closed under kernels of epimorphisms, then we have

Bn(lim−→Ci) ∈ F

due to the exact sequence

0 → Bn(lim−→Ci) → Zn(lim−→Ci) → Hn(lim−→Ci) → 0.

If F is closed under cokernels of monomorphisms, then the same result holds by the

exact sequence

0 → Zn+1(lim−→Ci) → lim−→Ci
n+1 → Bn(lim−→Ci) → 0.

Thus CE(F) is closed under direct limits by Definition 1.1. �

Proposition 2.4. Let F be a class of R-modules. Then the following statements

hold:

(1) If F is closed under arbitrary direct summands, then CE(F) is closed under

arbitrary direct summands.

(2) If F is closed under arbitrary direct sums (direct products), then CE(F) is

closed under arbitrary direct sums (direct products).

P r o o f. (1) Assume that Y is a direct summand of X ∈ CE(F). We wish to

show that Y ∈ CE(F). WriteX = Y ⊕U for some complex U . For any i ∈ Z, we have

Xi = (Y ⊕U)i = Yi⊕Ui, Zi(X) = Zi(Y ⊕U) = Zi(Y )⊕Zi(U), Bi(X) = Bi(Y ⊕U) =

Bi(Y )⊕Bi(U). Hence Hi(X) = Hi(Y ⊕U) ∼= Hi(Y )⊕Hi(U). Since X ∈ CE(F), we

have Xi, Zi(X), Bi(X), Hi(X) ∈ F . If F is closed under arbitrary direct summands,

then Yi, Zi(Y ), Bi(Y ), Hi(Y ) ∈ F , so Y ∈ CE(F) by Definition 1.1.
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(2) Suppose {Ci}i∈I is a family of CEF complexes in C(R-Mod). We will show

that
⊕
i∈I

Ci is CEF complex. For any n ∈ Z, we have
(⊕
i∈I

Ci
)

n
=

⊕
i∈I

(Ci)n,

Zn

(⊕
i∈I

Ci
)
=

⊕
i∈I

Zn(C
i), Bn

(⊕
i∈I

Ci
)
=

⊕
i∈I

Bn(C
i). Hence Hn

(⊕
i∈I

Ci
)
∼=

⊕
i∈I

Hn(C
i).

By the hypothesis, F is closed under arbitrary direct sums, so
(⊕
i∈I

Ci
)

n
, Zn

(⊕
i∈I

Ci
)
,

Bn

(⊕
i∈I

Ci
)
, Hn

(⊕
i∈I

Ci
)
∈ F . Thus

⊕
i∈I

Ci is CEF complex by Definition 1.1. For

the case of closing under direct products, one can proceed similarly. �

According to [13], a short exact sequence 0 → A → B → C → 0 in C(R-Mod) is

called pure if the sequence 0 → F ⊗A → F ⊗B is exact for any complex F of right

R-modules. A subcomplex S ⊂ C is pure if 0 → S → C → S/C → 0 is a pure exact

sequence.

Proposition 2.5. Let F be a class of R-modules which is injectively resolving. If

F is closed under pure submodules, then CE(F) is closed under pure subcomplexes

and pure quotient complexes.

P r o o f. Suppose 0 → A → B → C → 0 is pure exact in C(R-Mod) with

B ∈ CE(F). It was proved that 0 → Zi(A) → Zi(B) → Zi(C) → 0 and 0 →

Ai → Bi → Ci → 0 are pure exact for all i ∈ Z by [17], Lemma 2.6 and 3.7, which

implies that 0 → A → B → C → 0 is CE exact by Remark 1.3. Since B ∈ CE(F),

one gets Zi(B), Bi ∈ F , and so Zi(A), Ai ∈ F , which implies that A ∈ CE(F)

by Lemma 2.1 (2). Since F is injectively resolving, we get that C ∈ CE(F) by

Proposition 2.2. �

By [11], Remark 1, the class of injective R-modules is closed under pure submod-

ules. Here we have the following result.

Corollary 2.6. CE(I(R)) is closed under pure subcomplexes and pure quotient

complexes.

Next, we give some new characterizations of CE projective, injective and flat

complexes.

Proposition 2.7. For an R-complex P , the following conditions are equivalent:

(1) P ∈ CE(P(R)).

(2) P , P/B(P ) ∈ C(P(R)).

(3) B(P ), H(P ) ∈ C(P(R)).

(4) P =
(⊕
i∈Z

ΣiBi(P )
)
⊕
(⊕
i∈Z

ΣiHi(P )
)
with Bi(P ), Hi(P ) ∈ P(R).
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(5) Ext
1
(P,−) = 0, that is every short CE exact sequence 0 → A → B → P → 0 is

split.

(6) Hom(P,−) is exact for any short CE exact sequence in C(R-Mod).

(7) Hom(P,−) is exact for any short CE exact sequence in C(R-Mod).

P r o o f. (1) ⇔ (2) ⇔ (3) by Lemma 2.1 (1).

(3) ⇒ (4). For each i ∈ Z, we have the exact sequences of R-modules 0 →

Bi(P ) → Zi(P ) → Hi(P ) → 0 and 0 → Zi(P ) → Pi → Bi−1(P ) → 0. Since B(P ),

H(P ) ∈ C(P(R)), each sequence splits, which allows us to write Pi = Bi(P ) ⊕

Hi(P ) ⊕ Bi−1(P ). Therefore, P = . . . → Pi+1 → Pi → Pi−1 → . . . = . . . →

Bi+1(P )⊕Hi+1(P )⊕Bi(P ) → Bi(P )⊕Hi(P )⊕Bi−1(P ) → Bi−1(P )⊕Hi−1(P )⊕

Bi−2(P ) → . . . =
(⊕
i∈Z

ΣiBi(P )
)
⊕
(⊕
i∈Z

ΣiHi(P )
)
.

(4) ⇒ (5). Let C be an R-complex. By [7], Lemmas 9.1 and 9.2 and (4),

Ext
1
(ΣiBi(P ), C) ∼= Ext1(Bi(P ), Ci+1) = 0 and Ext

1
(ΣiHi(P ), C) ∼= Ext1(Hi(P ),

Zi(C)) = 0, thus Ext
1
(P,C) = 0. Consider a CE exact sequence 0 → A → B →

P → 0; since Ext
1
(P,A) = 0, it is split.

(5) ⇒ (6) is trivial.

(6) ⇒ (1). Let C be an R-complex. By [7], Theorem 5.6, there exists a CE exact

sequence 0 → C → I → N → 0 with I ∈ CE(I(R)). Then 0 → Hom(P,C) →

Hom(P, I) → Hom(P,N) → Ext
1
(P,C) → Ext

1
(P, I) = 0 is exact by [7], Theo-

rem 9.4. On the other hand, the exactness of 0 → Hom(P,C) → Hom(P, I) →

Hom(P,N) → 0 yields Ext
1
(P,C) = 0 by Five Lemma. Therefore P ∈ CE(P(R))

by [7], Theorem 9.4.

(6) ⇒ (7). Assume that (6) holds, then P ∈ CE(P(R)) by the above. For each

n ∈ Z, ΣnP ∈ CE(P(R)). Hence Hom(P,−) is exact for any short CE exact sequence

of R-complexes.

(7) ⇒ (6) is trivial. �

Dual argument to the above gives the following results concerning the CE injective

complexes.

Proposition 2.8. For an R-complex I, the following conditions are equivalent:

(1) I ∈ CE(I(R)).

(2) I, Z(I) ∈ C(I(R)).

(3) B(I), H(I) ∈ C(I(R)).

(4) I =
(⊕
i∈Z

ΣiBi(I)
)
⊕
(⊕
i∈Z

ΣiHi(I)
)
with Bi(I), Hi(I) ∈ I(R).

(5) Ext
1
(−, I) = 0, that is every short CE exact sequence 0 → I → B → C → 0 is

split.
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(6) Hom(−, I) is exact for any short CE exact sequence of R-complexes.

(7) Hom(−, I) is exact for any short CE exact sequence of R-complexes.

Proposition 2.9. For an R-complex F , the following conditions are equivalent:

(1) F ∈ CE(F(R)).

(2) F , F/B(F ) ∈ C(F(R)).

(3) B(F ), H(F ) ∈ C(F(R)).

(4) Tori(−, F ) = 0 for all i > 1.

(5) −
⊗

F is exact for any short CE exact sequence of right R-complexes.

(6) Every short CE exact sequence 0 → A → B → F → 0 is pure.

(7) There exists a pure exact sequence 0 → A → P → F → 0 such that P is CE

projective (CE flat).

P r o o f. (1) ⇔ (2) ⇔ (3) by Lemma 2.1 (1).

(1) ⇒ (4) holds by [19], Remark 2.7.

(4) ⇒ (5) is obvious.

(5) ⇒ (1) follows from [19], Lemma 2.5.

(1) ⇔ (6) ⇔ (7) are immediate from [19], Proposition 2.11. �

Given a complex C we let C+ stand for the character complex Hom(C,Q/Z)

of C. By [10], Proposition 2.1 (3), we have C+ = . . . → Hom(C−1,Q/Z) →

Hom(C0,Q/Z) → Hom(C1,Q/Z) → . . . with ith component C+
i = Hom(C−i,Q/Z).

Lemma 2.10 ([19], Lemma 2.2). Let C be an R-complex. The following condi-

tions hold for any i ∈ Z:

(1) Zi(C
+) ∼= HomZ(C−i/B−i(C),Q/Z) ∼= (C−i/B−i(C))+.

(2) Bi(C
+) ∼= HomZ(B−i−1(C),Q/Z) ∼= (B−i−1(C))+.

(3) Hi(C
+) ∼= (H−i(C))+.

Lemma 2.11. Let 0 → A → B → C → 0 be a short exact sequence in C(R-Mod).

Then this sequence is CE exact if and only if 0 → C+ → B+ → A+ → 0 is CE

exact.

P r o o f. (⇒). We only need to prove the “only if ” part; one can prove the

“if ” part similarly. For each i ∈ Z, consider the exact sequences 0 → A−i →

B−i → C−i → 0 and 0 → A−i/B−i(A) → B−i/B−i(B) → C−i/B−i(C) → 0. Since

Hom(−,Q/Z) is an exact functor, 0 → (C−i)
+ → (B−i)

+ → (A−i)
+ → 0 and 0 →

(C−i/B−i(C))+ → (B−i/B−i(B))+ → (A−i/B−i(A))
+ → 0 are exact. This implies

0 → (C+)i → (B+)i → (A+)i → 0 and 0 → Zi(C
+) → Zi(B

+) → Zi(A
+) → 0 are

exact by Lemma 2.10. Thus the desired result follows from Remark 1.3. �
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3. Characterizations of some rings

In this section we characterize some classical rings in terms of CE projective,

injective and flat complexes.

Definition 3.1. A complex X is said to have CE injective dimension less than

or equal to n, denoted by CE - id(X) 6 n, if there is a CE exact sequence 0 → X →

I0 → I1 → . . . → In−1 → In → 0 with each Ii ∈ CE(I(R)). If n is the least,

then we set CE - id(X) = n and if there is no such n, we set CE - id(X) = ∞. CE

projective dimension and CE flat dimension can be defined dually.

Using the definition and the proof of [20], Proposition 2.15, we have the following

result.

Remark 3.2. For any R-complex X , the following conditions hold:

(1) CE - id(X) = sup{id(Bi(X)), id(Hi(X)) : i ∈ Z}.

(2) CE -pd(X) = sup{pd(Bi(X)), pd(Hi(X)) : i ∈ Z}.

(3) CE - fd(X) = sup{fd(Bi(X)), fd(Hi(X)) : i ∈ Z}.

Let L be a class of objects in an abelian category C. Let M be an object of C.

Recall from [8] that a morphism f : L → M is an L-precover of M if L ∈ L and

Hom(L′, L) → Hom(L′,M) is exact for all L′ ∈ L. If, moreover, any g : L → L

such that fg = f is an automorphism of L then f : L → M is called an L-cover

of M . We say a class L of objective of C is a (pre)covering if every objective of C

has an L-(pre)covering. Dually, we have the concepts of an L-(pre)envelope and an

L-(pre)enveloping class.

Coherent rings have been characterized in various ways. One of the deepest results

is the one due to Chase [5] which claims that the ring R is right coherent if and only

if products of flat R-modules are again flat if and only if products of copies of R are

flat R-modules. Now we are in the position to give one of our main results.

Theorem 3.3. Let X be a right R-complex. The following conditions are equiv-

alent for a ring R:

(1) R is right coherent.

(2) X ∈ CE(I(R)) if and only if X+ ∈ CE(F(R)).

(3) CE - fd(X+) 6 CE - id(X).

(4) X ∈ CE(F(R)) if and only if X++ ∈ CE(F(R)).

(5) The class CE(F(R)) is preenveloping.

(6) Every direct product of CE flat complexes is CE flat.

P r o o f. (1) ⇒ (2) follows from [19], Corollary 2.3.
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(2) ⇒ (3). If CE - id(X) = ∞, then (3) holds clearly. If CE - id(X) = n < ∞, then

there exists a CE exact sequence

0 → X → I0 → I1 → . . . → In−1 → In → 0

with each Ii ∈ CE(I(R)), which gives rise to the CE exactness of

0 → (In)+ → (In−1)+ → . . . → (I1)+ → (I0)+ → X+ → 0

by Lemma 2.11, where (I0)+, . . . , (In)+ are CE flat complexes, and therefore

CE - fd(X+) 6 n.

(3) ⇒ (4). Suppose that X is a CE flat complex. Then X+ is CE injective

by [19], Corollary 2.3, hence CE - id(X+) = 0, so CE - fd(X++) 6 CE - id(X+) = 0

by (3). Thus X++ ∈ CE(F(R)). Conversely, if X++ ∈ CE(F(R)). According to

the pure exact sequence 0 → X → X++, we can get X is a CE flat complex by [19],

Lemma 2.9.

(4) ⇒ (1). Let M be a flat R-module. Then M is CE flat, and so M++ ∼= (M)++

is a CE flat complex by (4), which yields that M++ is a flat module and R is right

coherent by [6], Theorem 1.

(1) ⇔ (5) holds by [19], Theorem 2.10.

(1) ⇒ (6). Assume that {Fα}α∈Λ is a family of CE flat complexes. Theorem 3.2.24

in [9] yields that every product of flat modules is flat, hence
∏
α∈Λ

Fα is a CE flat

complex by Proposition 2.4.

(6) ⇒ (1). Let {Nα}α∈Λ be a family of flat R-modules. Then {Nα}α∈Λ is a family

of CE flat complexes. By (6), we have
∏
α∈Λ

Nα
∼=

∏
α∈Λ

Nα is CE flat. This implies

that
∏
α∈Λ

Nα is a flat module, hence R is right coherent by [9], Theorem 3.2.24. �

Next we give some characterizations of left Noetherian rings.

Theorem 3.4. Let X be an R-complex. The following conditions are equivalent

for a ring R:

(1) R is left Noetherian.

(2) CE - fd(X+) = CE - id(X).

(3) X ∈ CE(I(R)) if and only if X+ ∈ CE(F(R)).

(4) X ∈ CE(I(R)) if and only if X++ ∈ CE(I(R)).

(5) The class CE(I(R)) is precovering.

(6) The class CE(I(R)) is covering.

(7) Every direct sum of CE injective complexes is CE injective.
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P r o o f. (1) ⇒ (2). By [12], Theorem 2.2, we have id(Bi(X)) = fd((Bi(X))+) =

fd(B−i−1(X
+)), id(Hi(X)) = fd((Hi(X))+) = fd(H−i(X

+)) for all i ∈ Z. From

Remark 3.2 we know that CE - fd(X+) = CE - id(X).

(2) ⇒ (3) and (3) ⇒ (4) are trivial.

(4) ⇒ (1). By analogy with the proof of (4) ⇒ (1) in Theorem 3.3 by using [6],

Theorem 2.

(1) ⇒ (5). By [9], Theorem 5.4.1, every module has an injective precover, so there

exist injective precovers gi : Ei → Zi(X) of Zi(X) and fi : Ii → Xi of Xi for all

i ∈ Z. Thus there is a morphism of complexes

G = . . . // Ei+1 ⊕ Ii+2 ⊕ Ii+1

hi+1

��

δG
i+1

// Ei ⊕ Ii+1 ⊕ Ii

hi

��

δG
i

// Ei−1 ⊕ Ii ⊕ Ii−1

hi−1

��

δG
i−1

// . . .

X = . . . // Xi+1

δX
i+1

// // Xi

δX
i

// Xi−1

δX
i−1

// . . .

where δGi : Ei ⊕ Ii+1 ⊕ Ii → Ei−1 ⊕ Ii ⊕ Ii−1 via δGi (x, y, z) = (0, z, 0), for all

(x, y, z) ∈ Ei⊕Ii+1⊕Ii, and hi : Gi → Xi via hi(x, y, z) = gi(x)+δXi+1fi+1(y)+fi(z),

for all (x, y, z) ∈ Ei ⊕ Ii+1 ⊕ Ii. It is easy to check that G is a CE injective complex.

We have to prove that h : G → X is a CE injective precover. Since every CE injective

complex can be written as
(⊕
i∈Z

ΣiDi

)
⊕
(⊕
i∈Z

ΣiEi

)
by Proposition 2.8, where Di, Ei

are injective modules, we only need to prove Hom(D,Gi+1) → Hom(D,Xi+1) → 0

and Hom(D,Zi(G)) → Hom(D,Zi(X)) → 0 are exact for any D ∈ I(R) and i ∈ Z

by [7], Proposition 2.1. Suppose that α ∈ Hom(D,Xi+1), then there exists β ∈

Hom(D, Ii+1) such that α = fi+1β since fi+1 : Ii+1 → Xi+1 is an injective precover

of Xi+1. Define β̃ = (0, 0, β) : D → Ei+1 ⊕ Ii+2 ⊕ Ii+1, then it is easy to see that

α = hi+1β̃. That is, the diagram

D
β̃

vv♥♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥

α

��

Ei+1 ⊕ Ii+2 ⊕ Ii+1

hi+1
// Xi+1

commutes. Hence Hom(D,Gi+1) → Hom(D,Xi+1) → 0 is exact. Define ϕi :

Zi(G) = Ei ⊕ Ii+1 → Zi(X) via ϕi(x, y) = gi(x) + δXi+1fi+1(y), for all (x, y) ∈

Ei ⊕ Ii+1. Suppose that γ ∈ Hom(D,Zi(X)), then there exists η ∈ Hom(D,Ei)

such that γ = giη since gi : Ei → Zi(X) is an injective precover of Zi(X). Define
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η̃ = (η, 0): D → Ei ⊕ Ii+1. It is easy to see that γ = ϕiη̃. That is, the diagram

D
η̃

yyrr
r
r
r
r
r
r
r
r
r

γ

��

Ei ⊕ Ii+1

ϕi
// Zi(X)

commutes. Hence Hom(D,Zi(G)) → Hom(D,Zi(X)) → 0 is exact.

(5) ⇒ (1). Suppose M is an R-module. Then there exists a CE injective pre-

cover f : I → M of M in C(R-Mod). Let E be an injective module. Then

Hom(Σ−1E, I) → Hom(Σ−1E,M) → 0 is exact. According to [7], Proposition 2.1,

we get Hom(E, I0) → Hom(E,M) → 0 is exact, which implies f0 : I0 → M is an

injective precover of M in R-Mod. Thus R is a left Noetherian ring by [9], Theo-

rem 5.4.1.

(5) ⇒ (6). If CE(I(R)) is precovering, then R is left Noetherian by the above

and so I(R) is closed under direct limits, see [9], Theorem 3.1.17. Thus CE(I(R))

is closed under direct limits by Proposition 2.3. Therefore (6) holds by [14], Propo-

sition 1.

(6) ⇒ (5) is obvious.

(1) ⇔ (7). The proof is similar to (1) ⇔ (6) in Theorem 3.3 due to [9], Theo-

rem 3.1.17.

Recall that a complex C is finitely generated if, in case C =
∑
λ∈Λ

Cλ with Cλ

subcomplexes of C, there exists a finite subset F ⊆ Λ such that C =
∑
λ∈F

Cλ. A com-

plexG is finitely presented ifG is finitely generated and there exists an exact sequence

0 → K → L → G → 0 with L a finitely generated free complex, K also finitely gen-

erated. In fact, a complex C is finitely generated or presented if and only if C is

bounded and each Ci is finitely generated or presented, respectively. �

Theorem 3.5. The following conditions are equivalent for a ring R:

(1) R is a von Neumann regular ring.

(2) Every R-complex is CE flat.

(3) Every finitely presented R-complex is CE projective.

(4) Every CE cotorsion R-complex is CE flat.

(5) Every nonzero R-complex contains a nonzero CE flat subcomplex.

(6) Every CE cotorsion R-complex is CE injective.

(7) Every CE pure injective R-complex is CE injective.

P r o o f. (2) ⇒ (4), (2) ⇒ (5), (6) ⇒ (7) are clear.

(1) ⇒ (2). Since every R-module is flat by (1), (2) holds by Definition 1.1.
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(2) ⇒ (3). Let X be a finitely presented complex. Then X is CE flat, so Xi is

finitely presented flat and Xi/Bi(X) is flat for each i ∈ Z by Lemma 2.1. Thus Xi is

finitely generated projective. Consider the exact sequence 0 → Bi(X) → Xi →

Xi/Bi(X) → 0, where Bi(X) is finitely generated. Then Xi/Bi(X) is finitely

presented and so Xi/Bi(X) is projective. Hence the desired result follows from

Lemma 2.1.

(3) ⇒ (1). Let M be a finitely presented R-module. Then M is CE projective,

which gives that M is a projective R-module. Thus, R is a von Neumann regular

ring, see [1], Exercise 20.14.

(4) ⇒ (1). Let D(R) denote the class of cotorsionR-modules. By [7], Theorem 9.4,

and [19], Theorem 3.8, we have that (CE(F(R)), CE(D(R))) is a complete and

hereditary cotorsion pair in C(R-Mod) relative to Ext
i
(−,−). For any R-moduleM ,

there exists a CE exact sequence 0 → M → C → F → 0, where C is a CE cotorsion

and F is CE flat. Thus M is CE flat by Proposition 2.2, which gives that M is flat

and (1) follows.

(5) ⇒ (1). Let M be a nonzero R-module. Then M contains a nonzero CE

flat subcomplex F , and so F0 6= 0 is a flat submodule of M . That is, M contains

a nonzero flat submodule. Hence, R is von Neumann regular.

(2) ⇒ (6). Let C be a CE cotorsion R-complex and G an R-complex. Then G

is CE flat and Ext
1
(G,C) = 0 by [7], Theorem 9.4. Thus C is CE injective by

Proposition 2.8.

(7) ⇒ (1). The proof is similar to (3) ⇒ (1) by using [18], Theorem 3.3.2. �

In [1], Theorem 31.9, it was proved that a ring R is QF if and only if every

projective R-module is injective if and only if every injective R-module is projective.

By Definition 1.1, we have the following lemma.

Lemma 3.6. The following conditions are equivalent for a ring R:

(1) R is a QF ring.

(2) Every CE projective R-complex is CE injective.

(3) Every CE injective R-complex is CE projective.

It is well known that R is a semisimple ring if and only if every R-module is

projective if and only if every R-module is injective (see [15], Theorem 4.13). Hence

we have:

Theorem 3.7. The following conditions are equivalent for a ring R:

(1) R is a semisimple ring.

(2) Every R-complex is CE projective.

(3) Every R-complex is CE injective.
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(4) Every CE Gorenstein injective R-complex is CE projective.

(5) Every CE Gorenstein projective R-complex is CE injective.

P r o o f. (1) ⇒ (2) and (1) ⇒ (3) hold by [15], Theorem 4.13, and Definition 1.1.

(2) ⇒ (4) and (3) ⇒ (5) are obvious.

(4) ⇒ (1). LetM be any R-module. Then R is a QF ring since every CE injective

R-complex is CE projective by (4) and Lemma 3.6. Then M is CE Gorenstein

injective by [3], Proposition 2.6, and the dual version of [20], Proposition 2.15. By (4)

again, M is CE projective, which gives that M is projective. Consequently, R is

semisimple by [15], Theorem 4.13.

(5) ⇒ (1). The proof is similar to (4) ⇒ (1). �

It is well known that a ring R is left hereditary if and only if every submodule

of a projective R-module is projective if and only if every quotient of an injective

R-module is injective (see [15], Theorem 4.23). We have the following result.

Theorem 3.8. The following conditions are equivalent for a ring R:

(1) R is left hereditary.

(2) For a CE exact sequence 0 → A → B → C → 0 with B a CE projective

R-complex, A is also CE projective.

(3) For a CE exact sequence 0 → A → B → C → 0 with B a CE injective R-

complex, C is also CE injective.

(4) For any R-complex C, CE - pd(C) 6 1.

(5) For any R-complex C, CE - id(C) 6 1.

(6) For any R-complex C and G, Ext
i
(C,G) = 0 for all i > 2.

P r o o f. (1) ⇒ (2). For each i ∈ Z, consider the exact sequences 0 → Hi(A) →

Hi(B) → Hi(C) → 0 and 0 → Bi(A) → Bi(B) → Bi(C) → 0. Since Hi(B), Bi(B)

are projective, Hi(A), Bi(A) are also projective by [15], Theorem 4.23. Therefore A

is CE projective by Lemma 2.1.

(2) ⇒ (1). Let M be a projective R-module and N ⊆ M a submodule. Then

there is a short CE exact sequence 0 → N → M → M/N → 0. Since M is CE

projective, N is CE projective, which means that N is a projective R-module and R

is left hereditary.

(1) ⇔ (3). The proof is similar to (1) ⇔ (2).

(2) ⇒ (4). Let C be an R-complex. There exists a short CE exact sequence

0 → K → P → C → 0 where P is CE projective, and so K is also CE projective

by (2), which means that CE -pd(C) 6 1.

(4) ⇒ (6). For any R-complex C, there exists a short CE exact sequence 0 →

P1 → P0 → C → 0 where P0 and P1 are CE projective R-complexes. Let G be an
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R-complex. We can get Ext
j+1

(C,G) ∼= Ext
j
(P1, G) = 0 for all j > 1 by dimension

shift. Thus (6) holds.

(6) ⇒ (2). Consider the CE exact sequence 0 → A → B → C → 0 with B

a CE projective R-complex. Let G be an R-complex. We can get an exact sequence

Ext1(B,G) = 0 → Ext
1
(A,G) → Ext

2
(C,G) = 0, which means that Ext

1
(A,G) = 0.

Therefore A is CE projective by Proposition 2.7.

The proofs of (3) ⇔ (5) ⇔ (6) are similar to (2) ⇔ (4) ⇔ (6). �

A ring R is left perfect if and only if every R-module has a projective cover.

There are many characterizations of left perfect rings (see [1], Theorem 28.4, [2],

Theorem P, [9], Theorem 5.3.2).

Theorem 3.9. The following conditions are equivalent for a ring R:

(1) R is a left perfect ring.

(2) Every CE flat R-complex is CE projective.

(3) Every CE projective precover is a CE flat precover.

(4) The class CE(P(R)) is covering.

P r o o f. (1) ⇒ (2). It follows from the fact that every flat R-module is projective

over a left perfect ring.

(2) ⇒ (3) is trivial.

(3) ⇒ (2). Let F be a CE flat R-complex and P → F its CE projective precover.

Then P → F is also a CE flat precover by assumption. But CE projective precovers

are surjective by [7], Proposition 5.4. So the diagram

F

��⑦
⑦
⑦
⑦
⑦
⑦
⑦

P // F // 0

can be completed to a commutative diagram. Hence F is a summand of P , that F

is CE projective by Proposition 2.4.

(2) ⇒ (4). Every R-complex has a CE flat cover by [7], Proposition 7.3. So every

R-complex has a CE projective cover.

(4) ⇒ (1). Suppose M is an R-module. There exists a CE projective cover

f : P → M of M in C(R-Mod). First we show that P = P0. By analogy with

the proof of (5) ⇒ (1) in Theorem 3.4, we get that f0 : P0 → M is a projective

precover of M in R-Mod. It is easy to check that P0 → M is a CE projective

precover of M . We get that P is a summand of P0 by the complex version of [9],

Proposition 5.1.2, which implies that P = P0 since P0 is a summand of P . Next we
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prove that f0 : P0 → M is a projective cover. Let g : P0 → P0 be a homomorphism

such that f0g = f0. Then we have the commutative diagram

P
g

~~⑦⑦
⑦
⑦
⑦
⑦
⑦
⑦

f

��

P
f

// M

where g is a morphism of complexes:

P = . . . // 0

0

��

// P0

g

��

// 0

0

��

// . . .

P = . . . // 0 // P0
// 0 // . . .

Since the class CE(P(R)) is covering, we get that g = 1P , which gives that g = 1P0
.

Therefore, the class P (R) is covering in R-Mod. Thus R is a left perfect ring by [9],

Theorem 5.3.2. �
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