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Hypergeometric orthogonal systems of polynomials.
By Dr. L. Truksa.

From the relation (16), by means of the values aiy, a1, 9,1,

the functional equation of the polynomials Ji(n, m, x) results:
2n+m+ A+ (n+1+41)
I mIiT D mr2ity @+
n+4+m)—24A—1)—2A(A+1), .

S (x‘f SnrmiehmImEoiry ™ “’) @)+ (17)
(st+tm+n+A)(m+4)As— o Sa_1(2) =
2n +m+ 24) (n + m + 24 + 1) A=

+

It is evident that the same fundamental recurrence relation holds
good also for the function IT;(n, m, ).

The following analogous recurrence equation is valid also for the
system of polynomials (a(n, m, z):

2m+m+ A+ (n+ A+1) S1(e) +
(m+mE 22+ 1) (n+ m+ 24+ 2) V!

[,_e=l, _(tme—20—D)—2i0+])
\+\""" 5 @ 2(n+m+2A)(n+m+2A+2) )3’("’
L G ldmE e DDA D) Lo

2n+m -+ 20 (n+m-+ 21+ 1)
As an example of the expansion of a polynomial in a series

a,Jo(®) + a,35(2) + . ..+ aJ(@)

we.shall‘carry through the calculation of the coefficients a; if the polynomial

k
N §—1
Fy (——w+x) Y3 @) (18)
=0 .
is in ﬁ estlon ‘
ultxplymg both s1des of this equation with the product Ji(z) Dyl(x)
and carrying out the summation according to the variable x over the inter-
val + 1 (s — 1) o we obtain:
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Z Fi ( —1 w4 x) UNEFRAEI)
a; . (19)
XWmmx
%:-l;?,g the relation (6) we can _express the sum in the numerator also in the
e wnféla) Fusmeoir1 (nm+s+io)

Frpmir (n+m-+sw)
xz@i(a:—l—iw)z]‘Fk(s«;———«l—w—{— x) = (—)F 4;
Z {______ +n+1 —I~
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With regard to the relation (15), which we apply to the first and third factor
after the summation sign, this expression becomes considerably simpler
s—1 fmbip z g —1
(—) 4 (+ﬂ2 : i
[ 'l

X
...-..._.+m._.__-
2 w

k—1

el | 9 —1 x s—1 |-
3 "‘k+l*r*a~)~ D) —1— —
k+n —k+n+1 —m 4141 ,
== {—) 4, ( ) §—1 .o He—1 x | (=),
—1 e «—2-—~-—k'—|-z+;; —_— =

2 w
From this expression it is evident that the lower summation limit can be

increased by k — 7w, and the upper limit can be reduced by ‘w. Putting

the required sum assumes the form

—k—1
(—")U-k+i—-lA‘-(k+n) Z (——k+n+l)( —mtit+1 ):
k—il 4= Y s—k—1—y
:(_)a+v-—k—1A(L+n)(—n+m+k+z+2
k—1i

8—k—1 )
== (___) A (k + n) Fn+m+l-+;+1 mw)
b —

) rtmtE+itl




= (—)i (m-41, ’b) (k + n) nt+m+kti+1 (B —}-mw)
2 i Frimir (n+ m+ sw)

Substituting the value (14’) for the denominator of the expression (19),
we obtain for the coefficient a; the expression:

_ k4+n (n+ 1,34) 20

@ =(—)’ (L—z)(l Dmtmt+itl™
{ Fn4—m+k+t+1(n+m+3+‘w)
Fn+m+21.+1 m+m+stio)

If 4 = k, the respective ai(l, £) must be equal to the reciprocal value of
the factor of the power z¥ in the polynomial Jx(z) whereby the correctness
of the calculation can be controlled.

The coefficient a, simultaneously represents the value of binomial
moments Br'l) of the characteristic function ®y(n, m, x):

s§—1 x ; 2
a —_— §— —_—
wk%:Bk:Z 2 k @ (Do(n,m,x)(uzz (Z D, (n,m,z) 0=
= -
n—'r-m—}-s)
(8——k—-1

A

3. The polynomials Ji(n, m, x) satisfy the hypergeometric difference
equation of the second order. Also the function IT)(n, m, x) satisfies an
analogous hypergeometric difference equation.

We shall first deduce the recurrence relation between I7;(x), AH ()
and 4 IT; ().

Startmg from the definition (5) of the function

= TF»l+m+2a+1 (n4m -+ A+ sw) 4> Dy(x)
we obtain for 4 IT; (1(x) the value
ATy 1(z) =

1,241 ntmt A1 4e
- (Jij__zﬂ—i—u Fpimiaats(ntm+a+ 1+8w)A HUAD, 4y()).

Between the difference ratio A(l)l(x) and the function @;_,(x) a simple
relation holds good:
CADy(x) = Dy_a(x) [—xn+ m + 24+

1) Cp. e. g. J. F. Steffensen, Factorial moments and discontinuous
frequency-functions, Skandinavisk Aktuarietidskrift 1923.

8*
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ﬂ‘%(n—~m)w-’1i'l”é_1*‘__2_’1w+zm+lm](n+m+ 21+ 1) x

x(ndm20):(ntmtita)(a—Ntn+Hm+1) (20

which we can deduce by simply forming the difference ratio

A{F,,H( - w+nw+x) mu(swlw—{-‘%ﬂw*x)}::

—3 ——
= Fn-H( w+ nw+ z)Fm+a*1(f—§—~w+m+lw~—x)—§—

8 —

n+l-—-

4 Fpya <3 5 o+ now+ x)-ﬁ'm+z(8;lw+;n*:iw———x\)=

w+nw+x)Fm+z-«1(i——;—§w—}—m—}—lw-—m)x

8.;1w+mu+x :Iw+m+}.w——x
x{-—— n-+ A + m -+ A }-_:
1 s—1 8$—~3 JES—
xm; Fn«{»l——-l (—-é-—* (U+ nw—{-x)FmH._l (-—2-—w+m+2w—»x)
{wx ntmd- 244+ %(n-—m)w——Ww-&l(m%‘i)w}.

Using this relation for calculating 4 I7,,(z), we obtain

(m+1,1+1)

A = G G T T D+ A5 D)
ntm+gatl (0 m+ 8 4 Aow) A [Dy(x) . (—axn -+ m+ 24+ 2+
‘ 24+ 2
+~§~(n-—-m)w~—-n+m_; At A (et At Dol =
(m+41,4)

Frimizisr (Wt m—+ s+ daw)x

T T (kA1)

Y=o A InFmF 20T 2+ S (n—mo—

‘__n+m+ 24+ 2
3

w0+ (A1) (m 4 A+ 1) o) 4441 @y(z)—
— (4 m 4 24 4 2) (4 + 1) 42 Dy(x)].
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The required recurrence relation results immediately from this equation:

2An 4+ A+ DA () =[—2zn+m+ 24+ 2+

%n-—-mw-——ﬁr—;ﬂw———(l+ 1) (n 4+ A+ 2) o] AlT{z) —
— G+ 1) (n+ m+ 22+ 2) (). (21)

This relation with the functional equation (7) is sufficient to deduce
the respective difference equations of the function IT;(x). If we simpli-
fy the notation of the coefficients, we can write the equation (17) in
the form:

2(n + A+ 1) I14y(x) + @(a) i) + B I 4(x) = O, @
then the equation (21)

2 (n+ A+ 1) Allzy(x) + pie,d) A=) +
4+ (A4 1) (n 4 m 4 22+ 2) y(z) = 0. (11)

and for A less a unit

2(n + A) AT (%) + p(z, A — 1) AIT; _y(x) + A (n 4+ m +22) IT; _;(2)=0.
“ © (TIT)

Let us calculate the value of the difference ratio AIl;,1(x) from the

equation (I) and put it into the equation (II). We ogtain
, (n+m+ A4
(v m - 204 2) S PSS T o -
+ [p(z, A) — @z + )] AL — BAIL; 1 = 0.

Let us form now the difference ratio of this last expression:

. m+m+i—1)2
+ [z + o, A) — @z + 20)] 2L, — AT, 1 =0
and the difference ratio of the value (III):
(A+ 1) (n+ m~+ 22) ATy + p(@ + w, A — 1) AT +
+ 2(n 4 A) AT = 0.
In this way we have gained three equations (I’), (IT’), (IIT’) which-
having been multiplied by convenient factors and added up together —
result in the required difference equation. We multiply
the equation (I') by the value (A4 1) (n+ m + 24)

] ”» (III) »y » i} 1/}(% + w, A - 1)
1 t2) (III') ¥ ” ” ﬁ

(IIT)
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and then we add all the three equations and obtain:
MU (z) {[p(x + o, A — ¢z + 20)] p(z + 0, A—1) + 2f(n 4 A)} +
+ AUa(w) {A 4 1) (n + m + 22) [p(x, ) — @l + w)] +

n4+m+iA—1)4 '
+ 9z +w, A—1) AT (e 22 D)+
Mntm++A(n+m+21+42)
n4+m-4 441
After substitution of the original values for ¢, v, 8, i. e.
wn+m+2}.+2 _ s(n — m)
'f"”‘“’*"“"’(x*%’*ml[“” S Fmred)
i (n4m-+20)2m+24—3)—2A(m+ 1)
2(n+ m+ 24) @
Yo+ w, A—1)= 2(n+ m 4 21) — L s(n —m) w +
+4frt+mot+intitIo

_ntm+21+2 8(n —m)
@ A—gleto)= T ‘[‘ Tt mt 2R

(nt+m+20)2m+2A—1)—21(m+ 4) }

+ Iz} (A + 1) (n + m + 24) =0

o+

W+

T 2(n + m + 21)

this equation assumes the simple form

(x+ 8:{; 3w) (8 + 2m-3w——x)d2ﬂl(x) +

2

+zn+m—2)—Lsn—mo4+An+m+ i+ Do+ (22)
+ 3+ m)w + (m—2) o] All(z) + (A4 1) (n + m 4 1) [I;{x)=0.

To deduce the analogous difference equation valid for the polyno-
mials Ja(x), it is sufficient to substitute the values IT,, AIT;, A’IL by
the values

II)(x) = Ju(x) Do) Frims1(n+ m -+ sw)
Al (@) = Fayms1 (v -+ m 4 s 0) [A3u() Pz + o) +
+ §ula) o @l + 0) — B2
LIT) = Frimyy (n + m - s ) {42 Ja(z) Pylz + 20) +

1
+ 2 A%u(a) 5 [Ol + 20) ~ Bz + )] + $il#) oz [Oul +
+ 20) — 28z + @) + Blz)]



119

in the equation (22), and to use the evident relations

(x+8+2;+3w)(8;3w~m)¢0(x+w)=

= (m—i— ‘E—_gj—w) ({Z%&w—— x) Dy(x + 2w)

(x+s+22n+lw)(s—;l w—-—x)(Do(x)z

=(x—}—&_;lw)(sn—l;_zmw——x)@o(m—i-w).

With regard to these relations it is possible to divide the equation by

the factor @y(x + w) whereby we obtain the difference equation of the
polynomials Ja(x) in the form

(w+8+2:+3°")(8~3w—x)mslcx)—[x<n+m+2>——

2
—dsn—mo—Am+mt it Do+ intmo— 3
— (m—2) 0] 4 () + Mn + m 4 A+ 1) Qufz) = 0.

It is evidently a linear homogeneous difference equation of the 2-nd
order with rational coefficients.

For the special form of polynomials §;(x) of the formula (8'), we
have a quite analogous difference equation

(24 n- 1w)(§*—-_2“m—_z)A23',1(z) —[#(n + m + 2) —
—n4+D)(e—No—An+m-+ i+ Do+ (v -+ m 4 2] AJu(z) 4
+ A+ m-++ A+ 1) Su(z)=0. (23")

The equation (23) and (23’) respectively represents a remarkable
form of the hypergeometric difference equation of the 2-nd order, which
enables us to transform this equation into the Gauss differential equation
by a simple limiting process.

The principal solutions of the difference equation (23) can be ex-
pressed as a function of w and of the quantity s. We can transform them
into the solutions of the respective differential equation in the limiting
case @ - 0, 8 -> co {sm = const.) .Such relations between difference and
differential equations mediated by w are hitherto very little known.!?)

12) 1 refer in this respect to to the paper of A. Walther: ,,Zum Grenz-
tubergange von Differenzengleichungen in Differenzialgleichungen (Math.
Annalen, 95/1925), whence I quote following: ,,Weitere Untersuchungen iiber
das Problem, die Lésungen von Differenzengleichungen als Funktionen der
eingehenden Spannen zu studieren und insbesondere den Grenzfall hinzu-
schwingender Spannen der Betrachtung zu unterziehen, liegen bisher
nicht vor.”
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A detailed study of the above-mentioned transformation is contained
in the monography of J. Kaucky: O prechodu differenén{ rov-
nice hypergeometrické v differencidlni rovnici Gaussova (On the
transformation of the hypergeometric difference equation into the
Gauss differential equation), published in the series ,,Spisy pi{rodové-
decké fakulty univ. Mas. v Brné*“ &. 80, r. 1927 (Publications of the
Faculty of Natural Sciences at the Masaryk University at Brno, No. 80.
year 1927),

4. Polynomials §:(x) can be expressed also in form of the determinant

1 .Mo ‘AII Ma ..-Mj_l
s M, M, M, ..M,
xz M2 A[,‘ ‘ﬂIi ‘-.ﬂ1,1+1 (n—{-m—{-}.-—l-—l A) .,
B@y=d 1 Tt 1,7)

-V My My Mayy... Moo
2 My My Migg.. Moy (24)

where M; denotes the 7-th moment of the characteristic function

[

M; = 2 xt Dy(n, m, x)

-a

and d; the co-factor of #*. This expression follows immediately from the
one-valued determination of polynomials §;(x) by the orthogonal quality
contained in the equation (12).

An analogous expression holds good also for the functions IT;(x).

Another expression of polynomials §a(z) in form of a determinant
can be deduced also from the functional equation (17). If we denote

(n+m)(s—1—24)—24(1+1)

9z 4) = [“x+ Sn T m T 2R (Mt AT D)

Lt m 22 Dt nt 204+ 2)
St m A+ D F At D)

Gtntmt At Dido—Antm 2442
T im I mrm i AL Do AT 1)

the equation (17) assumes the form

Frnal@) = @l 1) Ju(2) — B(A) a—y(). (7

The above-mentioned expression of the polynomial Jx(%) is given
then by the determinant:

(n ~m)w]x

BA) =
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o i—1) 0 ... 0
BA—1)  gxi—2) 1 ..
0 BA—2) oz, A—3)..
Jne)=| 0 ﬂ(l"(;’:;) :
: : : 1
0 0 0 0| am)

From this definition of the polynomials Ji(z) follows immediately
the characteristic quality of the zeros of the polynomials Ji(z), which
occur also in other orthogonal systems of polynomlals all zeros of
polynomials Ja(x) are real, for the determinant (24) is a special form of
secular equation!®) which possesses the quality mentioned above.

5. The functional equation (17°) enables us further to express the
polynomials Jz (2) as denominators of successive approximative values
of a continued fraction

n+m-4 2
Aty M| R (25)
l¢(,0)  Jo D Je2

6. Approximation and interpolation of numerically given
functions by aid of the polynomials Sa(n, m, 2).

By aid of orthogonal systems of polynomials it is possible to obtain
a certain modification of the known approximative expression of a
function in the form of a power series

1) = to 4 ayz + gz + . . .+ (26)

from the given n > k values of the function in the equidistant intervals,
by using either the method of least squares or the method of moments.
The calculation of coefficients a; is, as a rule, very difficult and must be
repeated for all 7, if we subsequently increase the number of members
of the series (26). If we, on the other hand, express f(z) by the series

f(z) = agPylz) + a, Py(2) + . . . + axPi(2) (26")

the calculation of coefficients a; becomes essentially simpler and besides
these coefficients remain unchanged, if we subsequently increase the
series by further members of a higher degree. These advantages assisted
in the wide application of the series (26') in numerical approximative
and interpolation calculus. As an example, we shall fuote the application
of ordinary and summation Legendre polynomials, of polynomials of
Hermite, of Charlier-Jordan, ete. In mathematical statistics, the series
(26') occurs as a rule in the form

13) Cp. e. g. Baltzer, Determinanten, 1881.

-
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k
fz) = D) ¥ @i Pi(2) 7
i=0
where @(z) denotes the characteristic function.
The coefficients a; can be determined either by application of the
method of least squares from the condition ,

EU(z —D(2) a;‘Bi(z)P ® = min

=0
k

or /U a;Pi(2)]? dz = min,

i=0

or more frequently by application of the method of moments from the
condition

'

k
gmz) — ¢(z)i§aiﬂsi(z)] Zi = 0

] k
or [(fe) — ®(z) YaiPi(2)) #i dz = 0.
a i=0
In the first case, the coefficient a; is given by the expression

Ef(z) PBilz) Dz) w ' ’/(z)P,(7) D(z) dz
R — or @; ==
YR ) o

f Pz) D(z) dz,
in the second case by the expression

YCLGE e ped

or a; = — e
zs& () D) o f P2(z) D(z)dz

If, in particular, the application of Jacobi’s generalized polynomials
to the expression of the function f(z), s values of which are given in the
points 0, @, 2w, . . .8 — lw, by the series

Hz) = o(Z) i S (2), (28)
=0
is in question, there results the value
1w —lo
Emm P OREND
R = =7 ' (29)

PREOLXOP
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from the orthogonality of the polynomials 3a(z) by using the method of
moments for the coefficient a;.

While applying the formula (28) we can put w =1, s equal
to the number of given values. Besides it is necessary to decide upon
the choice of parameters =»,m of the characteristic function @y(n,
m, z). The calculation of these parameters can be carried through e. g.
provided that the first and second moment of the function f(z) is equal
to the first and second moment of the function @y(n, m, z):14)

Dz f(z) = Z2 Dylz); 222 [(z) = L2 Dyz)

If we determine » and m in this manner, then the coefficients a,, a, in
the expansion {28) are evidently equal to zero, so that we have

1(2) = Dy(2) [ag + a3 Ja(2) + ag Jo(2) + - . . + a1 Jn(2)]
The coefficient ay = Zf(2),

and the other coefficients can be expressed in the form of a linear function
of binomial moments B;(4) of the given function f(z)

By(i) = f(j)/(zy
z=0

This expression is especially advantageous for practical calculation, as
we can very easily obtain the moments B, by repeated summation of the
function f(z). That is the following relations hold gaod:

= ii(z); B,(1) = 2 By(2) 321 (1) 1)
and generally z=s—1 z=g—1 =0
Byh) = ZBH(z) - V( ),«(z

z=8—1
which follows from the application of the formula on partial summation.
Schematically the procedurs of summation is illustrated in the following
tablels)
< #(2) By(2) B,(2) By(2)
s—1 y(s—1) y(s—1)=By(s—1) By(s—1)=B,(s—1) By(s—1)=B,(s~1)
s—2 yls—2) yle—D)+yls—2) Bys—1)+Bys—2) Bils—1)+Bils—2)

2y By2) 1<2) By2)
1 (1) By1) By(1)
0 y(0) By(0)

1) The detailed calculation is contained in the second part of this
paper.

15) See Cetverikov: ,,The Technics of calculation of statistical para-
bolic series‘‘, Problems of conjuncture, Moscow 1926.
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If s is large enough, the sums B;(2) increase with increasing A very rapidly
and encumber the calculation. For this reason Frederik Esscher!$) and
independently K. Jordan'?) proposed the application of mean binomial

moments B;, which we obtain from the moments B, dividing by the value

(:5)

of the same order as the moment B,. The coefficient a; ist then determi-
ned by the expression

a, = E Ay E,(T),
r=0

where the factor ja, is expressed, with regard to (8') and (14") by the
relation

_ (=ye2ntmA-204-1)(n+-1,3)(n+-m+ A+ 1,7) n+m+ Aln+m-s!
wA(ntm+1)! (nd-mts -+ AYm+ LAY n+1,7)r - 11 1—r!

and therefore

Ay

snt+m+-Al2%ndmtsl(ndm+214+D(n+1,4)
wintmt+-1Ulntmtbs4+ Al m+1,4)
A+ L7 =
(himt? j“' __L! By(r).
e (n+1,r)A—rlr4 1!
In the third part of this paper, we shall refer, in a more detailed manner,
to an easier way of calculation of coefficients a; by means of numerical
tables suggested by Esscher and Jordan, if we apply the especially
simple case of Jacobi’s generalized polynomials, namely the generalized
Legendre polynomials (n = m = 0).
The degree of approximation in application of the formula (28),

if we keep the numbers till the polynomial J;(z) inclusively, can be
estimated from the square of standard deviation

o = Y1) — 0¥ & FieIl = @0)

1 2o 2 2
==Y o =LY 6 —© Y o0 320 —. .. — LY 80 326)-

Successively we can calculate the value 0%, from the value g

oy ==

A
xﬂ--—"

%) In the paper: ,,On graduation according to the method of least
' squares by means of certain polynomials‘‘ in anniversary publication of the
insurance company Skandia.

17) Mitteilungen der ungar. Landeskommission 1930, Studie Nro 1.
Berechnung der Trendlinie auf Grund der Methode der kleinsten Quadrate.
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using the evident relation
oty = 0 — —-BJZ(DO(z) 311»12 ().

We can simplify the calculation of ¢;? considerably by applying
the normalized form of polynomials &;(2) in the approximative expression
of (28), for hence

Y0 i) = 1,

and hence

1
02 = -E—Z JP —a?—al?—... —a

7. Let us now transform the expression (28), which then acquires
a special importance im some limiting cases of the polynomials ((z)
We shall follow the procedure of Darboux explained in his treatise
,»Mémoirs sur Papproximation des fonctions de trés grand nombres
et sur une classe étendue de développements en série®.18)

From the recurrence equations

Sa41(2) = @lz, 1) Ja(z) — B(A) Jua(?)
-\Sl+1(y) = ‘F ?/, 31- ﬁ(a) 81—1(:‘/)

we obtain — multiplying the first of them by — $a(y) and the second
by Ja(z) and adding them up — the relation

Salz) Ja(y) _ J141(2) 3n(y) — Ja(z) Faa(y) _
I, Lie— (At m+4 24+ D(n+m+ 24+ 2)
Y T mF A+ Dt A+ 1)
. Si(2) Ja—a(y) “‘81~1@_31(y)
I(e— )(n+m+2l——-l)(n+m+2l)
T T S m - A (n - A)

from which follows the important relation

Jofz) Jo(®) +«S1(Z) 01(.7/)+ +3 A(2) 32(?/)

)

I, (31)
_ O 3 — 3@ Janly) 2t m+ A+ e+ A+ D
Iiz—y) ‘nt+m4 244+ 1) (n+m+4244-2)

Expression (28) can be written, with respect to this relation and to
the formula (29), in the following form

18) Journal de Math. pures et app., 1878.
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. $ 3 Dy (2)
&)= o) Y, Z/(y)i} (o=-"2 Zf() 28

o () Jnly) -—-81(2) 3+1(3/) o2t m+ 3 + 1)(% +4i+1
z—y (n+m+ 22+ 1)(n+ m+ 24+ 2)

If the number of the known values of the function f(z) is s, and if we
keep the polynomials till the degree A = s — 1 in the series, we get an
exact reproduction of the function f(z) by the series (28) in the given s
points. In this case the series (28) represents an interpolation formula.
If A<<s—1, it is a formula of approximation. This case is the most
frequent in practice.

The case, in which the number of values s summed up increases
beyond all limits and also 2 - oo, is especially interesting. The series (28)
becomes then infinite and reproduces the given function f(z) in an
infinite number of points. The summation interval can be either fi-
nite or infinite. We shall refer to the respective limiting process in other
passages of this paper. We shall find that it is possible in this manner
to deduce e. g. the known expression of an arbitrary function by means
of Legendre’s, Hermite’s, Charlier-Jordan’s and other polynomials.

8. Jacobi’s generalized polynomials of the second order.

As for the other orthogonal systems of polynomials, the numera-
tors of approximative values of the continued fraction (25) form polyno-
mials of a degree lower by one than the respective denominators. In the
following we shall call them Jacobi’s generalized polynomials of the

second kind: Q;(n, m, x) of the degree A — 1. They can also be deduced
from the function @;(n, m, x) defined by the expression

E‘A \OS'A(."/) ¢9Sg_)_. (32)

— —_1
Ql(n: m, x) 2 x—y

y=—a

Using the recurrence relation (17') we obtain for Qis1():

Grsaln, m, 2) = oo 2 [e(y, ) Faly) —B(A) Ja—1()]1 Doly)

r—y
As y=—a
o1 A Xy _ el@ ) 3uy) + Sy (nt-m+24+1)(n+m+ 21+ 2)
r—y | z—y W e Fmt Ar D+ ar1)
there follows from the preceding equation a recurrence relation of the form
Qunilz) = gla, 4) Qilz) — B(2) Qa1(2) (33)

which is identical with the functional equation of the polynomials §a(x)

Let the first two values Qo(z) and @,(x) be determined directly
from the definition (32)
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B )= %—wszﬂ
—_ n+m—|~~ _ 2z(ntm+2)—(n—m)(s—1)e
= {w Z[Q(n_i_ N Do(y) — )
L P ]
dn+ 1))
rtmt2

= Q) — Su(x) Qulz) = — 34(2) Qul2).
inF 1)

Then we can deduce from the recurrence equation (33) by induction
that generally the following relation holds good

Qx(z) = Qa(x) — Julx) Qufe), (34)
where Qi(x) are the above mentioned Jacobi’s generalized polynomials
of the second kind of the degree 7 —1. Also these polynomials satisfy
evidently the functional equation (17'):

Qi11 (n, m, z) = ¢(x, }") Qi(n, m, x) "ﬁ(l) Qi—1(n, m, x)
From the initial members of the system of polynomials @;(x)

n—|~ m—{— 2
Ql(n: m, 21) (n + 1)
A mA ot mt
Culrs 1, 2) = Dy )

s EmE—3—
[ A TE T T L mm]

the others can be determined by means of the recurrence equation.

9. Application of the polynomials Ja(x) and @;(x) inthe nume-
rical summation.

We have to determine the sum o of the function f(z) of the form
{(x) = Dy() . p() (36)

in limits -- @ by means of A values of the function p(x) for the arguments
%y, Ty, . . ., %32 chosen so that the result be exact, if p(x) is a polynomial
of degree ¢ < 21— 1. Hence the required sum is to be expressed in

the form a A
o= Y1) = V@) ped + By, - @D
~—a k=1



128

where p(xe) are factors dependant of A; the rest R,; is equal to zero,
if p(x) is a polynomial of degree : < 24 — 1. By application of the ge-
neral Newton interpolation formula p(z) can be expressed in the form

plx) = p(a,) + (£ —2) [21, Z5] + ...

vt (@—2) s (—Tiy) [ Ty ] (e — 7)) . L (22— 23)

P‘" (

(£ is contained between the largest and least value of arguments ;).
Hence the sum ¢ in limits - « is given by the expression

o= E‘po(x) I’(_x) == I’(%)g Dy(z) + [y, 75 Edjo(x) Ax—2)+ ...+

+ o 2] NP2 (2 — ) (2 — )+ (BT)
: p“)(é)
Y@ w—a). .. @ —am 2
In order to fulfil the condition stated in the problem, must evidently
Z(x‘———xl) (x—x) ... (@ — 23) Dy{z) = 0
Zx(x—-—xﬁ (€ —2) ... (x——x;)d%(z) =0

.........................

sz (2 — 2y) (& — ) . . . (a—a3) Py(x) = 0.

The arguments x,, «,, . . .x; are determined by these relations. From the
orthogonal quality of the polynomials Ji(n, m, z) follows that these
arguments are identical with the arguments of the zeros of the polyno-
mial $a(n, m, z).

To determine the coefficients w(x;) we shall express p(z) by the
Lagrange interpolation formula

Sz(x) SA( )

Hence the sum

(38)

p(%2) + 72. (39)

A

pz)  Sule) "
7= N ity X 7y Do)+ P (37")

=1

1t is evident that
sy 312 Pl@)

- X — Xp
represents a special value of the function (32) for the argument x; of
the zero of the polynomial §i(z). This value is reduced with regard
to (34) in this case to the value of the Jacobi’s generalized polynomial
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of the second kind Q;(x;). The required coefficients y(a:) are therefore
expressed by means of the polynomials of second kind and of
derivates of the polynomials of the first kind in the form

2 Qz(wx)

Finally the expression for the rest can be also simplified:
\ PEN(E)
Ro= _2,, (& — ) (& — &) . ..« (2 — 202) B0 St @ @D
If we choose the values z;.1, Zi19, ... 721, which were till now quite

arbitrary e. g. so that we identify them with the arguments x), x,, . . . s,
then the rest assumes the form

2 (20
Roy = z (x— 2. .. (x— x;)? —2%2—}:(5—)— Dy(z) =

&) 2(n + 1, )

= ox,2 R 2! .

% E‘” () @l D(2); FEmEiFLY

If we apply the mean-value theorem to this sum supposing that

the 2 1-th derivate of the function p(#) is in the summation interval 4 «
continuous, we obtain

2)
Ry = p( C) A gy ZSf(x) Dy(x)

(¢ is certain value of the interval i a).
With regard to (14') the rest takes the form

Ry PO MmALA) (AL D) Fuimizier (ntmts+ A )
: eM2¢*n+m+ 21+ L) Fosmpn(n+m+sw)
' (41')

We have to observe that the problem solved in the preceding is in
a way a generalization of the known mechanical quadrature of Gauss,?)
which suggested to many authors the deduction of a whole set of integral
systems of orthogonal polynomials. A detailed survey of the literature
in question is contained in the ,,Encyklopédie der Math. Wissenschaften
II C 2.20)

10. As mentioned in the introduction Jacobi’s generalized po-
lynomials were for the first. time discussed by Tchebychef in his
article ,,Sur l'interpolation des valeurs équidistantes® 1875. This article
contains only the definition of these polynomials expressed in the

1%) See ,,Methodus nova integralium valores per approximationem
inveniendi*, Gesam. Werke 3, p. 163—196.

20) C. Runge — Fr. A. Willers: Numerische und graphische Quadratur
und Integration gewohnlicher und partieller Differenzialgleichungen.

9
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formula (6) and (6') respectively, the deduction of the orthogonal relation
and the value of the sum 2 @y(x) J,%(x). Tchebychef puts the summation
interval into the limits (0, s — 1), w = 1. Only indirectly — under the
title of hypergeometric series of the third degree — some qualities of
Jacobi’s generalized polynomials are discussed in the above mentioned
papers of Thomae and Nérlund, further in humerous studies about the
solution of the hypergeometric difference equation of the second order.

11. Integral system of orthogonal polynomials corresponding
to Jacobi’s generalized polynomials.

If the number of values of the argument x in the summation interval

8 L -
4= 4 5@ in question, increases beyond all limits and at the

same time o converges to zero so that the product s w remains constant
e. g. equal to 2, the definition of Jacobi’s generalized polynomials expres-
sed by the relation

a
>.l Dy(n, m, 2) Ja(2) () w =0 A=Zu
—-a
is reduced to an analogous definition of a special form of theze polyno-
mials expressed by the integral relation

1
/‘t_ﬁ‘,(n, m, x) Jy(x) J(x) de = 0, A=, (42)

where

Dy(n, m, x) = lim Dy(n, m, )
8> xn
w—>0

Jaln, m, x) = lim Ja(n, m, z).

8§
w->0

We shall first find the limiting value of the function @;(n, m, x),
if 8 o0, w0, sw=2. For this purpose we shall use the expression
of this function in the form

Din, m, ) =
(s+1+ +2 ) (8+1+ +A-—~)P(n+m+2z+2)r(s__m
<n+3+1)1’ (m+/1~x—1)1"(~—~~ i+ ) (iﬂ——-)r(n+m+s+a+1)

_IsTH et d+nlGsT—at+t+mtd)
F(%sl+x+‘-/t) Pdsl—z+3)
1(s—7) I'n+m+ 244 2) i
*Tefitndm+l) ot i+t Dlm=itr1)
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Using the well-known limiting relation

b[j(ax -+ al ~ (az -+ q)t@tag—a
Iz + B) (ax 4 Bzt e—8

for large #, there follows

oo (ax) 8, (43)

8 ntd [ g m+a
Di(n, m, z) oo (—é— 14 x) (_5_ 1 — ) g n—m—2d 5

Iin+m -+ 224 2)
ML AL DTIm+ iz 1)

and hence
lim @y(n, m, x) = Dy(n, m, z) = simmrms (1 + @ x
I'in+ m+ 224 2)
I+ 2A4+0)Tm+2141)
According to the inequality (2) in this case must of course
n>-—1and m>—1

(44)

x (1 — mym+2

In the same way we can deduce the relation

Fn+m+21+1(n+mtl+8w)zlinl I‘(n+m+8+}‘+1) «
Frini (0 +m + sw) I'(s—24) I'(nt+m+ 24+ 2)
y I'n4+m4-2)I(s) (2\* TI'(n4+m+2) 921 (45)
r(n+m+s+1)_(?) T Tm+m+2AF2)°
If A =0, it is evidently

lim @y(n, m, ) = Dy(n, m, x) =

lim

== I(n+m+2) (] — )™
S L) Im L T —2) (46)

and
lim Su(n, m, z) = Ji(n, m, 2) =
(1 + x)n-H. (1 ____x)m-!—l]_
(47)
These are the well-known polynomials of Jacobi which form the ortho-
gonal integral system corresponding to the characteristic function

By(n, m, z) = (1 4 &)* (1 — 2)™

_ Tt gy
=S TmrarpltTaTd—a dzt '

and to the integration interval 4 1.
Putting
sw=1, n=¢g—1, m=p—q, (48)
9*
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we obtain their more usual form from (4’) in the limit

A
Jalz) = 271 — 2P g;,, [2#+271 (1 —z)p—e#d]  (47')

1
2X(g, 4)
corresponding to the integration interval (0,1).

We do not intend to discuss in detail the properties of Jacobi’s
polynomials, since there exists a great deal of research work about
them. We confine ourselves to the deduction of some principal properties
by a limiting process from the formulas valid for Jacobi's gene-
ralized polynomials.

E. g. the following expression can be deduced from the expression
(8') for Jacobi’s polynomials in the limit:

—P & A  + A4+ 1, A—k
sina= G Br (1)
E=0 i

1 , 47"
=57 Fin+m4-A+41,—4,n+1, 2),

from which at the same time their relation to the hypergeometric Gauss
series is evident.
The sum (14’) changes into the following value in the limit:

1
= (LA m+1L)(n+m+ 14 1,4)
— 2 % o 3
1 = f@o(n,m,z)h (n, m, 2)dz n - L) (n - m £ 2. 27)
H
the functional equation (17’) into the recurrence relation

dnt+m+A4+ D+ 214 1) J
mEmI it Dt meiry @+
224 2A(n+m+ 1) 4 (n-+m) (1+ n)
T T 2 mt+20)(n+ m+ 24+ 2)
Alm 4+ A)
2n+m+20)(n+m+ 24+ 1)

As we have pointed out before the limiting process of the difference
equation (22’) into the Gauss differential equation

2(1=2) J)"@) + (n+ 1 —zn+m+ 2) Ji'(z) +
A4 m b A1) Jafz) = 0, (50)
is especially important, :
To check these results, we can use e. g, the above mentioned mono-
graphy of Abramescu:,,Résumé de principales propriétés des polynomes
orthogonaux'‘?!) and an older paper of J. Darboux which we have

1) Nouvelles Annales de Math., 1923.

+ (2

Ji(z) +
+

Jiq(z) = 0. (49)
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quoted already: ,,Mémoire sur I'approximation des fonctions de trés.
grand nombres et sur une classe étendue de développements en série‘‘.2)
In the last quoted paper there is solved for the first time the problem
of expanding an arbitrary function in a series proceeding according to
Jacobi’s polynomials, which we obtain from the formula (28), if s - oo,
w->0, so=1.
In thxs limiting case, we have

f2) =By Y2 T (51)

0
The sum of the first & members of this series is given by the expression

g — 2n—4m -+ A4 1)(n+ A+ 1)Py(x) )
= <n+m+2z+1)(n+m+u+°)l

5 S (@) Ji{y) — Jl(-’*‘)JLﬂ(?/)
zr—y

(52)

In regard of the conditions on which this series converges and represents
the function f(x), I refer to the original paper of J. Darboux.

The practical application of the series (51) reduced to some initial
members to the approximative expression of frequency curves was pro-
posed by Professor V. Romanovsky in his treatise: ,,Generalization of
some types of the frequency curves of Professor K. Pearson.*2?)

Pearson’s frequency curve of type 1

e vb
{33

can be written also in the general form of the characteristic function @y(x)

—@o(x) = x{a + a)* (b — z)™. (53)
If we determine the constants x, a, b, n, m so that the first 5 moments
of this function are identical with the moments of the function y(x)
given numerically, then it is obvious from the condition

b
f 2 Py(x) dox = f ziy(x)de, i =0,1,2,3,4 (54)
a a
that the coefficients
ay; Oy, @3, @y
in the series
y(@) = By(x) [ag)y + @y + .. ] (55)

22y Journal de Math. p. et app. 1878.
23) Biometrika XVI (1924)



134 :

are equal to zero, Hence

y(x) = Pol2) [1 + agls + agg+ .. 1. (55

Professor Pearson has a sceptical opinion of the applicability of this
series for the approximative expression of frequency curves, especially
with regard to the high probable errors of the higher moments which
are contained in the coefficients ¢;.24)

The literature on Jacobi's polynomials is quoted in full in the
treatise: P. Appel A. Lambert: Généralisations diverses des fonctions
sphériques, Encyclopédie des Sciences mathém. A II. vol. V fasc. From
the older original work on this question we may single out the paper
of C. G. J. Jacobi: Untersuchungen tber die Differenzialgleichung der
hypergeom. Reihe, published in volume 56 of the Journal de Crelles.

PART II.

The relation of the characteristic function @, to the hypergeometric
frequency function. Connection with the Pearson frequency curves. The
course o{ the characteristic function. Numerical computation. The appro-
ximative Pearson expression. The approximation of empirical frequency
functions. Simple special cases of the function @;: a) n=m, b) n=m =—1{,
<) n = m = 0. Degeneration of the function @;: a) the generalized Laplace
frequency function, b) the generalized Poisson function, ¢) the Poisson fun-
ction. The limiting forms of the function @; in case of s > 00, w = 0.

Before we approach the deduction of several important special
cases of Jacobi’s generalized polynomials it will be advisable to discuss the
characteristic function Pyx) in some detail and to point to the special
importance of this function in mathematical statistics.

1.Therelationofthecharacteristicfunction @yz) tothehyper-
geometric frequency function.

The hypergeometric function
(&) 2)
x)\m—zx
k+h
)
belongs to a very general type of frequency curves, a special case of

which is among others especially the classical normal function of Laplace-
Gauss and the Poisson function.

Among the different modifications of the corresponding problem
of the theory of probability, the solution of which is given by this

f(z) =

) See a note added to the above mentioned treatise of Romanovsky.
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function, we shall refer in this section to the problem of Pélya,?%) and
in section 4 to Pearson’s modification.

In the first case we have the following urn scheme:

Let us put into a bag which, at the beginning, contains R white
balls, S black balls, 1 + 4 balls of the colour of the ball just drawn
after each drawing of a single ball. If we perform in this way %
drawings, what is the probability that we shall draw x white balls,
and (k — z) black balls respectively?

If we denote the initial probabilities of drawing the white ball and
the black ball by

= B and q = _:SL respectively, (R4 S= N)

N N
further the quotient 4/N by 6 which satisfies the inequalities
p q
0>—p T 0>

according to whether p <C ¢ or p > ¢, then the required probability is
given by the expression

)= (k\R(R+A)(R+2A) o (RA-2—1)S(S+A)+ .. .(S+ k——x——l/])*

xf NN+ A)(N+24)... (N+k—14)
%—}—x——l %—«{—k—l——x
k EF—u
- 1
vkl (56)
k

The close connection of the characteristic function @y(n, m,.z) with
the probability p(x) is apparent especially from the comparison of the
difference equation of the first order of the function p(x)

) (2
plz+1) (k— z)(p + x0) o (b — =) (6 T x)

@) (a1t E—1—=8) (x+ 1)(~»q«+k——1——x
8

with the analogous difference equation of the function @y(n, m, z) ==
=QPyn,m x4+ s —1w)
Dy(n, m, z + w) m+lo+z)(8—lo—2)
Dyn, m,z) (z+ w) (s —T—mw—2) (57)

25) F. Eggenberger-G. Pélya; Ueber die Statistik verketteter Vorgiinge,

Zeit. f. angew. Math. u. Mech., 1923; c. p. also F. Eggenberger, Die Wahr-

slfheilxéliché{eitsansteckung, Mitteilungen der Verein. schweiz. Versich.-Math.,
No 19, 1924.
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Putting in this equation
)

n + 1::«2»‘, m + lz——q—-, s—1l=1I w=1 _ (58)
the two difference equations will entirely coincide. Therefore the function
Dy(n, m, z) does not differ — except perhaps by a constant factor —
from the frequency function p(x). At the same time it is obvious, that
the parameters n,m, s can be con_sidered as characteristic constants,
which possess a special importance in the theory of frequency functions.

2. The connection with the Pearson frequency curves.

The characteristic function @y(n, m, x) is essentially a very general
form of the Pearson frequency functions, as follows from the difference
equation (57), which can be written in a form analogous to the Pearson
differential equation:

Dy(n, m, z + w) — Dy(n, m, z) B u{]@o(n: m, z) B
@ Dy(n, m, 2) = Bmoma
_ z(n+m)+wsi—vln——mw (57)

(z+ o) (z—s—1+ mw)
If we transfer the origin of the coordinates to the point z = b, this
difference equation is reduced to the differential equation

g_':: t+bdmtm+na _ dz + B
Yy Z+b(+b—a)  FAyztd’
in the limit s » o, @ -> 0, sw=const., provided the parameters n, m

are finite. Professor Pearson used this differential equation as his star-
ting-point in deducing the well-known 7 types of frequency curves.26)

3. The course of the characteristic function @yn, m, 2).
Resuming the thread of Eggenberger’s discussions about the proba-
bility p(x), we first form the value of the quotient
¢0(n1 m, Z) P (M) + Z) (8(0 ——'Z) — f(z)- (59)
Py(n, m, z — w) 2(s + mw—2)
This quotient can assume the value 1 only in the point
snw 80

AREERT 14+ 2
which is the root of the equation n
Hz)=1.

If both extreme values f(w) and f(s — 1 w) are at the same time
either larger or smaller than 1, the point z, is situated outside of the

) The fundamental Problem of practical Statistics, Biom. XIII.
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interval (w, 8 — 1 w) and the function @y(n, m, 2) is monotonous in the
interval under consideration. This example is characterized by the
inequality

1 m
> —>8—1
s—1 n

If, on the other hand, the inequality
1

m
< —<<s—1
n

is satisfied, z, comes inside of the summation interval and the function
Dy(n, m, z) attains either maximum or minimum in this interval, accor-
ding to, whether L

flw)—1>0, fs—lw)—1<0
or

flw)—1<0, fe—lw)—1>0

F. Eggenberger expressed all these possibilities very clearly in

dependence on the parameter

0= !

n-4+m-+2
From the values of the differences

) Lm
ST T . §—1p—gq—263

s——1+1n_ 83—16—0d+gq

n n

flw)—1=

1— s ——
S 95 —s—1q
f6—lao)—1= "l Pt -,__ﬂl i
e m s—1¢q
N I el T

* (n+J
he deduced the following table expressing the course of the function
D,(n, m, z) in dependence on the parameter d:

the form of @y(n, m,z) in

d in the limits fer=1 i =1e)=11 g o summation interval

P q—0p bell-shaped, the maximum
i P + s—_2 + - inside of the interval
4—P ,9g—p | |
PFi—% 9 5 monotonous
 9—P . U-shaped, the minimum
i1t + inside of the interval.
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It is obvious from this table, that the more the values p, ¢, approach
one the other the more decreases the interval of the values J, for which
D,(2) is monotonous; if p =g = }, D,(z) cannot be monotonous for any
value ¢ in the interval under consideration.

4, The approximative Pearson expression.

In the paper ,,On a method of ascertaining limits to the actual
number of marked members in a population of a given size from a
sample‘‘®?) Professor K. Pearson discussed the approximative expression
of the special case of the characteristic function

w3 (=2)

which we obtain from the expression @,(z), if we put
t=g—nw, =g, M=p—p, s=N—y+1 o=1

The function y({z) follows from the solution of the following problem,
which is inverse to the problem of Pélya quoted above: Suppose a po-
pulation of N individuals, of whom an unknown number x are marked
by a special characteristic, and N — x not so. Now let us draw at
random a sample of y individuals and find that ¢ of them are marked
and ¢ =y —p not so. We have to compute the probability that in
the given population there are x marked individuals while p<<z<<N—v.

Professor Pearson attempted to replace the function y(x), the
values of which are given for the arguments =9, 0+ 1,.. . N —¢
— except the common factor — by the members of the hypergeometric
series

“"°(1+ T ¥~ 1.2 F=g®@—=e=1)

in succession, by the well-known Pearson frequency curve of type I.

oF1N— w+n@+4HN-vHN~V“”+“)

o \™ x\™

v =1+ o) (1) (©1)
For this purpose he computed the necessary moments of the function
y(x) about the arithmetical mean: pg, pg, 1y using the results deduced
by him for the moments of a hypergeometric series in the paper: ,,On
certain properties of the hypergeometrical series’* (1899).28) From these
moments then follow the fundamental constants of the frequency curve
of type 1

58 My
h=us P
27) Biom. XX A, 1928.
®8) Phil. Magaz., 1899.
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The agreement of such an approximative expression with the exact
values of the function y(x) is considered very good by Professor Pearson,
but the practical evaluation of the constants of the frequency curve of
type I, is considerably difficult.

By performance of a greater number of concrete examples in
collaboration with Miss Margaret Moul and Miss E. Worthington, Pro-
fessor Pearson ascertained that the corresponding frequency curve of
type I differs only slightly from the function

ob e (o‘b )"
= S ) | ——2 62
Yy 3/0( " ) > (62)
where the constants g, 0,y = ¢ + ¢ are, as obvious, known beforehand
and the value b = N — y + 2 denotes the length of the interval between
the extreme zero values of the function y(z). E. g. the Pearson curve of

type 1
05606 1 x 19 9076 ) x 79'5115
! ( + 189-5250) ( - 756_'9678)
corresponds to the values g = 20, ¢ == 80, N = 1000. The curve can be
replaced by the function

x \20 2 \80
Y (1 t Ts“b‘) (I*‘“-iéa)
which can be deduced in an incomparatively easier way.
This knowledge gained empirically enables us to use practically the
approximative expression of the function y(x) by the Pearson curve of
type I. From the general expression of the characteristic function

containing w, follows this relation as a limiting case, if s > oo, w0,
s—1w=1>02)

lim &y(n, m, 2) = et + 2) (%; + %)(J; —’”)m (63)

s> b+ 1) I'(m + 1) b
w->0

If we translate the origin of the coordinates to the argument of the
maximal value, which is situated in the point
Tmax = " p
max —— 2(n + m) ’

we obtain an expression identical with the approximative expression
of Pearson -

lim @o(n, m, z) = yo (ﬁ% + x)n( - :’ibm — x)f" (62')

It is obvious from the process, by which we arrived at this result,
that the difference between the approximative values of the function

29) Cp. Part I, sec. 11.
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y(z) given by the formulas (61) and {62) respectively and the exact
values, decreases with the increasing & and N respectively. Pearson
checked this fact on several examples.

In order to get a good approximation especially in the middle of
the interval b also for minor values of N, Professor Pearson proposed
two variants of this expression differing only in the determination of the
value b. In the first case we determine b form the supposition, that the
distance between the abscissa of the maximal value and the abscissa of
the arithmetic mean of the functions (60) i. e.

L N—y Lot DAN—y)_ (N—y)lc—0)
4 y+2 Yy +2)
and the analogous distance of the function (62)
blo—p)
vy +2)
are the same, whence
b=N-—y.

Thereby, as it is apparent, the original choice b = N — y + 2 changes
only very slightly.

In thesecond case we determine b from the supposition that the dispersion
of both functions is equal. From this condition follows for the value b

b=J(N+2)(N—y) = (N‘“‘Y)‘I/I‘FN‘*‘_’:’;'
This exemple, quoted last, offers an especially good approximative ex-
pression. In the first modification of the approximative expression (62)
the length of the interval between the extreme zero values is smaller
than the corresponding interval of the original function (60), while in
the second modification it is larger.
To illustrate the second variant of the approximative expression,
let us reproduce the corresponding formula

y(x) = y, (1899263 + x)*° (769:7052 — )80
applied to the concrete example quoted above, in which
. N = 1000, ¢ = 20, ¢ = 80

from the paper of Professor Pearson.

If the number of individuals N is small, e. g. if N=230, ¢=2, 0=10
the difference between the expression of the frequency functions of type I
by aid of the values f§, and f, ¢

17111 69367
y==131-0512(1 x) (1 z ) :

T 47188 ~ 191170
and the expression (62), in which b= J(N ¥ 2) (N—7)

! X 2/ x 8

becomes much more considerable.
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5. The approximationof the empirical frequency functions by
application of the characteristic function @y(n, m, 2).

We can express the relative frequencies y(z) of a certain statistical
event, the course of which we can deduce in general outline from the
hypothesis of the Pélya urn scheme, with sufficient accuracy by applica-
tion of the function @y(n, m, z) in the form

Y(2) = YoDy(n, m, z) (64)
The values yp, 7, m and p, § respectively corresponding to the given
statistical series can be determined by equating the moments of the zero,
first and second order of the functions on both sides of the equation
(64) (the method of moments). Since the sum of the relative fre quencies
for all values of the attribute z is equal to 1, the relation
s—1lw

Yp=1=1 :E@Q(n,.m,z)w (65)
0

follows for y,.

The further conditions expressing the equality of the moments of
the first and second order can be replaced by the identical conditions
of the equality of the fundamental constants of the frequency functions,
i. e. the mean value % and the dispersion ¢ of the given empirical function
and of the analogous values of the function @y(n, m, z)

8—1

h= Y z2Qyn,m 2w
Zo . (66)
a—1

0% ==y 22Pn, m,z) v —h3
gl

By application of the polynomials Ju(n, m, z) we can easily compute
first the mean value

§—1

h= 2 (— 2934(2) + kpwSz)) Po(n, m,2) o=k . p . v,
0

whence:

h
= 67
E.w (67>

In an analogous manner we deduce for the dispersion g:
8—1

o = Y (4P53e) — 4pkoR () HEPOASE) Doz —
i}

81

— k2p%e? ""247’2&2 (2) By (oo = kp . quo? 2T k)

1496
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and hence
5= k.p.gow?—a?
T o — k2 pgoot.

"The results coincide completely with the values computed e. g. by F. Eg-
genberger and G. Pélya without the use of the polynomials Ja(n, m, 2).
For the constants n, m we get the following values:
2 s 1 2
'n+l:==fb—~ i 8 lhwj:?f__w ,
©hs—1w—h—o?s—1
2 g 2
m4 1= (s——l — —h—) Fos—lhot+h (69)
®) he—lw—h—g2s-—1
1f we use the factorial moments of the given empirical function IMN; instead
of its mean value % and dispersion o

Szyw =My =h
22z — o) yo + 0222y — (ZzyPo = o = M, + o M, — M2,

we obtain the expression of the parametres p, § by these moments in
the form:

(68)

S 2 852
- T (70)
s—1lo My — s —20M,

Professor Steffensen discusses the computation of constants of a
hypergeometric frequency function by application of the moments of the
function about the mean in his paper ,,Factorial Moments and Disconti-
nuous Frequency Functions*.%?)

.

6. Simple special cases of the function ®;(n, m, z).

The function @;(x) can be expressed by the product of the characte-
ristic function @y(z) and the function

(S“l +m+ 1—~f—,z) (8_1 —AF 142 /1)
2 w 2 w
plnm A== T I LA L m I s T LA
(n4m+2,24) (71)
(s — 4, ).
Those cases, in which the characteristic function assumes a symetri-
cal form, belong to the most important special forms of the function @1
corresponding to certain specially chosen values of the parameters n, m.
This happens, if

b3

]

a) n=m.
30) Skand. Aktuarietidskriff, 1923.
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As we have said above, the characteristic function in the summation
interval 4 1{s — 1) w cannot be monotonous in this case — provided
n <> 0 — as it has either a convex or a concave form symmetrical to the
axis of coordinates. If n and m are finite quantities, the characteristic

function @yn, n, x) is a certain generalization of the Pearson frequency
function of type IIL.

By a further specialisation

by n=m=—1%

we obtain the characteristic function @ (—1,—1, z) to the limiting form of
which in case that w — 0, 8 > oo corresponds the well-known integral
system of Tchebychef’s orthogonal polynomials, important for expressing
arbitrary functions by the method of best approximation.

If

c) n=m=0,
1
the function @y(0, 0, x) is reduced to a constant equal o and the fun-
w
ction @;(n, m, x) to a function

(stl——zqu»* z)(‘w“lﬂ-f, )(2,22)

2 (0]

(1 )(8+]’ )(8’_)*12)

(’)A(On O; x) =

" 7. Degeneration of the function ®@yn, m, x).

a) The generalized Laplace frequency function.

If we transfer the origin of the coordinates using the substitution

~ §—1 n+1
To= Ty O v 4 n+m+"(_—1w’
we obtain
i 1
I’(n+1+ i N DS )
Dy(n, m, 2) = nimi 2
ol'(n+ 1) I'(m + 1)
n—{—l z (73)
xF(s—l n+m+2 1+m-}-1——w~)x
n 41 x
(m8—1+‘+‘;;)
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L+ m+ 2) I'(s)

O

f—- 7+ 1 - x T
n-+ 1 e x
( “—(s—l-—-wn_*_m_*_?‘s——l-{-m—f:l—-«—(;—,/'l)
Faln, m, T = mFLAm+1,0
n -1 . z
x(m§8~—l—-l+l+w ,Z)(n+m+2,2l)

(n+m+s+ l,;.)(S-—l,}.)
(To be continued.)

Anwendung einiger Sitze aus der Wahrscheinlich-
keitsrechnung auf die Berechnung der Primien
mehrerer Versicherungskombinationen.

Von Dr. phil. Stefan Vajda in Wien.

Einleitung.

Die Nettopriamie fiir eine gemischte Versicherung wird bekanntlich
80 berechnet, dass die Primienzahlungen einer bestimmten Anzahl von
Versicherten gerade ausreichen, um alle Auszahlungen der Gesellschaft
zu decken, wenn in. jedem Versicherungsjahre gerade die aus der Sterbe-
tafel entnommene wahrscheinlichste Anzahl von Todesfillen eintritt
und die Verzinsung den Annahmen entspricht.

Es ist nun naheliegend, nach der Primie zu fragen, die sich ergibt,
wenn wir nicht nur fiir jedes Jahr die wahrscheinlichste Anzahl von
Todesfiillen betrachten, sondern alle tiberhaupt méglichen Verteilungen
der Todesfille auf die einzelnen Jahre beriicksichtigen, wobei jede
Kombination mit ihrer Wahrscheinlichkeit in die Rechnung eingefiihrt
wird. Es zeigt sich fiir die gemischte Versicherung, dass sich auf beide
Arten dieselbe Pramie ergibt. (Den Beweis hiefiir wiederholen wir kurz
in unserem ersten Kapitel.)

Fassen wir die einzelnen Kombinationen mit ihren Wahrscheinlich-
keiten als Abweichungen von derjenigen Kombination auf, die wir bei
der ersten Art der Berechnung als einzige beriicksichtigen, so sehen wir
in der zweiten Art der Berechnung den Beginn einer risikotheoretischen
Betrachtungsweise.*)

*) Vgl. hiezu O, Gruder, Zur Theorie des Risikos. 9. intern. Kongress.
D 111 (1), besonders S. 228, 2. Absatz.
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