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The sup = max problem for the extent and

the Lindelöf degree of generalized metric spaces, II

Yasushi Hirata

Abstract. In [The sup = max problem for the extent of generalized metric spaces,
Comment. Math. Univ. Carolin. (The special issue devoted to Čech) 54 (2013),
no. 2, 245–257], the author and Yajima discussed the sup = max problem for the
extent and the Lindelöf degree of generalized metric spaces: (strict) p-spaces,
(strong) Σ-spaces and semi-stratifiable spaces. In this paper, the sup = max
problem for the Lindelöf degree of spaces having Gδ-diagonals and for the extent
of spaces having point-countable bases is considered.
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1. Introduction

This is a continuation of the paper [6]. The spread s(X) and the extent e(X)
of a space X are defined as below:

s(X) = sup{|D| : D is a discrete subset in X} + ω,

e(X) = sup{|D| : D is a closed discrete subset in X} + ω.

The sup = max problem for the spread and the extent of a space X are the
following problems, respectively.

• For κ = s(X), does X have a discrete subset of size κ?
• For κ = e(X), does X have a closed discrete subset of size κ?

If the answer of each problem above is positive, we say that the sup = max
condition holds. Obviously, the sup = max condition holds in case κ is a successor
cardinal.

The sup = max problem of the spread was discussed in 60’s-70’s.

Theorem 1.1 (Hajnal-Juhaśz). Let κ be a singular cardinal.

(1) If X is a Hausdorff space with |X | ≥ κ and κ is a strong limit cardinal,

then X has a discrete subset of size κ [4].
(2) If X is a regular space with s(X) = κ and cf(κ) = ω, then X has a

discrete subset of size κ [5].
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Theorem 1.2 (Roitman [10]). Assume that ℵω1
≤ 2ω and a first-countable Luzin

space exists. Then there is a zero-dimensional Tychonoff space X with s(X) =
|X | = ℵω1

and with no discrete subset of size ℵω1
.

The Lindelöf degree L(X) of a space X is defined as below.

L(X) = min{κ : every open cover of X has a subcover of cardinality ≤ κ} + ω.

Then L(X) = sup{L(U) : U is an open cover of X} holds, where L(U) is defined
by

L(U) = min{|V| : V ⊂ U with
⋃

V =
⋃

U} + ω

for each collection U of subsets in X . The sup = max problem for the Lindelöf
degree of a space X is the following problem.

• For κ = L(X), does X have an open cover U with L(U) = κ?

Recently in [6], the author and Yajima discussed the sup = max problem for
the extent and the Lindelöf degree of some generalized metric spaces: (strict)
p-spaces, (strong) Σ-spaces and semi-stratifiable spaces.

Theorem 1.3 ([6]). Let κ be a cardinal with cf(κ) > ω.

(1) If X is a p-space with L(X) = κ, then X has an open cover U with

L(U) = κ.

(2) If X is a Σ-space with e(X) = κ, then X has a closed discrete subset of

size κ.

(3) If X is a semi-stratifiable space with e(X) = κ and one of the following

conditions holds, then X has a closed discrete subset of size κ.

(3-1) X is metalindelöf.

(3-2) X is collectionwise Hausdorff.

(3-3) X is normal and {2τ : τ is a cardinal < κ} has no maximum.

The assumption cf(κ) > ω in the theorem above is essential since there is
a simple example of metrizable space refuting the sup = max condition in case
cf(κ) = ω.

Example 1.4 ([6, Example 2.1]). Let κ be a limit cardinal, and Xκ the subspace
of κ + 1 defined by

Xκ = {α + 1 : α ∈ κ} ∪ {κ}.

Then Xκ is a space having only one non-isolated point κ, and e(Xκ) = L(Xκ) =
|Xκ| = κ holds, but there is no closed discrete subset of size κ in Xκ. Moreover,
if cf(κ) = ω, then the space Xκ is metrizable.

It is trivial that e(X) ≤ L(X) ≤ |X | holds for every space X . Of course,
e(X) < L(X) easily happens in general, and the sup = max problem for the extent
and for the Lindelöf degree are different in many cases even if e(X) = L(X). On
the other hand, there is no such difference for submetalindelöf spaces having the
extent of uncountable cofinality. And it is well-known that strict p-spaces, strong
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Σ-spaces, and semi-stratifiable spaces have some covering properties stronger than
the submetalindelöf property.

Lemma 1.5. Let X be a submetalindelöf space. Then

(1) e(X) = L(X) holds [1].
(2) In case e(X) = L(X) = κ and cf(κ) > ω, X has a closed discrete subset

of size κ iff X has an open cover U with L(U) = κ [6, Theorem 4.5].

In this paper, we discuss the sup = max problem for the Lindelöf degree of
spaces having Gδ-diagonals and for the extent of spaces having point-countable
bases.

Preliminaries. All spaces are assumed to be T1-topological spaces. The word
‘countable’ means countably infinite or finite. The cofinality of a cardinal κ is de-
noted by cf(κ). Regular cardinals are assumed to be infinite. Successor cardinals
and limit cardinals are assumed to be uncountable.

We recall here definitions of some terms appearing in this paper. A space X
is metalindelöf if every open cover of X has a point-countable open refinement.
A space X is submetalindelöf if for every open cover U of X , there is a sequence
{Vn}n∈ω of open refinements, satisfying that for each x ∈ X one can choose
nx ∈ ω such that Vnx

is point-countable at x. Obviously, metalindelöf spaces are
submetalindelöf. A Hausdorff space X is semi-stratifiable [2] if there is a function
g : ω × X → Top(X), where Top(X) denotes the topology of X , satisfying:

(i)
⋂

n∈ω g(n, x) = {x} for each x ∈ X ,
(ii) y ∈

⋂
n∈ω g(n, xn) implies that {xn} converges to y.

Let λ be an infinite cardinal. A tree T is called a λ-Suslin tree if |T | = λ and T
has neither a chain nor an antichain of size λ. A topological space is said to have
the λ-c.c. if there is not a pairwise disjoint family of size λ by non-empty open
sets. A λ-Suslin line is a LOTS (= linearly ordered topological space) having
the λ-c.c. and with no dense subset of size less than λ. An ω1-Suslin tree (line)
is simply called a Suslin tree (line). It is well-known that a Suslin tree exists iff
a Suslin line exists, (see [9]). In a similar way, it is seen that for each regular
uncountable cardinal λ, a λ-Suslin tree exists iff a λ-Suslin line exists.

A subset F of X is said to be nowhere dense if IntX(ClX(F )) = ∅, i.e. F is
nowhere dense in X iff F ⊂ ClX(U) \ U for some open set U of X . A Luzin

space is a regular space having uncountably many points but no isolated point,
and every nowhere dense subset of which is countable. It is well-known that every
Luzin space is a hereditarily Lindelöf and zero-dimensional Tychonoff space, and
that every Suslin line has a first-countable Luzin subspace (see [8]).

2. Spaces having Gδ-diagonals

A space X has a Gδ-diagonal if there is a sequence {Gn}n∈ω of open covers of
X such that

⋂
n∈ω St(x,Gn) = {x} for each x ∈ X . It is well-known that a space

X has a Gδ-diagonal if and only if the diagonal ∆ = {(x, x) : x ∈ X} of X is
a Gδ-set in the square X2 (cf. [3, 2.1 Definition]).
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In this section, we prove the theorems below.

Theorem 2.1. Let κ be a limit cardinal with cf(κ) > ω.

(1) Assume that τω < κ for each τ < κ. If a space X has a Gδ-diagonal with

L(X) = κ, then there is an open cover U of X with L(U) = κ.

(2) Assume that κ ≤ τω for some τ < cf(κ). Then there is a Hausdorff space

X having a Gδ-diagonal with L(X) = κ such that L(U) < κ for every

open cover U of X .

(3) Assume that κ ≤ τω for some τ < cf(κ), and a cf(κ)-Suslin line exists.

Then there is a zero-dimensional Tychonoff space X having a Gδ-diagonal

with L(X) = κ such that L(U) < κ for every open cover U of X .

Theorem 2.2. Assume that ℵω1
≤ 2ω and a first-countable Luzin space exists.

Then there is a zero-dimensional Tychonoff space X having a Gδ-diagonal with

L(X) = ℵω1
such that L(U) < ℵω1

for every open cover U of X .

Theorem 2.1(1) for strong limit cardinals κ was pointed out by Yajima [11]
before [6] was published and we started to write this article.

It is trivial and well-known that each semi-stratifiable space has a Gδ-diagonal.
It is also well-known that semi-stratifiable spaces are subparacompact (cf. [3, 5.11
Theorem]), in particular, submetalindelöf. By Theorem 2.1(1) and Lemma 1.5,
we obtain the corollary below.

Corollary 2.3. Let X be a semi-stratifiable space with e(X) = κ, where cf(κ) >
ω. Assume that τω < κ for each τ < κ. Then X has a closed discrete subset of

size κ.

Theorem 2.2 implies Theorem 2.1(3) for κ = ℵω1
since each Suslin line has a

first countable Luzin subspace. It is well-known that if ZFC is consistent, then
ZFC+GCH is consistent, and it is also consistent with ZFC that ℵω1

≤ 2ω and a
Suslin line exists, (see [9]). So we obtain the corollary below.

Corollary 2.4. The sup = max condition for the Lindelöf degree L(X) = κ,

where cf(κ) > ω, of spaces having Gδ-diagonals is consistent with and independent

from ZFC.

First we prove Theorem 2.1(1). In fact, the assumption L(X) = κ can be
replaced by |X | ≥ κ as below.

Proposition 2.5. Let κ be a cardinal with cf(κ) > ω such that τω < κ for each

τ < κ. And let X be a space with |X | ≥ κ which has a Gδ-diagonal. Then there

is an open cover U of X with L(U) ≥ κ.

Proof: Assume that L(U) < κ for any open cover U of X . Let {Gn}n∈ω be a
sequence of open covers of X which witnesses X having a Gδ-diagonal. Take an
n ∈ ω. Since Gn is an open cover of X , letting τn = L(Gn), we have τn < κ. So
there is a subcover Hn of Gn with |Hn| = τn. Let τ = supn∈ω τn. Then τ < κ
by cf(κ) > ω. For each x ∈ X and n ∈ ω, since Hn covers X , we can take
an Hx,n ∈ Hn with x ∈ Hx,n. Consider the correspondence x 7−→ {Hx,n}n∈ω.
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Since
⋂

n∈ω Hx,n ⊂
⋂

n∈ω St(x,Gn) = {x} for each x ∈ X , the correspondence
is one-to-one. Since each {Hx,n}n∈ω is a sequence of members of

⋃
n∈ω Hn and

|
⋃

n∈ω Hn| = τ , the cardinality of all such sequences is not greater than τω . Hence
we have |X | ≤ τω < κ ≤ |X |. This is a contradiction. �

To prove Theorem 2.1(2), (3) and Theorem 2.2, the lemma below is useful.

Lemma 2.6. Let κ be a cardinal with cf(κ) > ω such that κ ≤ τω for some

cardinal τ < cf(κ). Then for each space X∗ with |X∗| ≤ κ, there is a Hausdorff

space X having a Gδ-diagonal and satisfying the following conditions:

(1) X = X∗ as a set,

(2) each open set in X∗ is open in X ,

(3) if L(U∗) < κ for each family U∗ of open sets in X∗, then L(U) < κ for

each family U of open sets in X ,

(4) if X∗ is a zero-dimensional Tychonoff space, then so is X .

Proof: Put X = X∗ as a set. By |X | = |X∗| ≤ κ ≤ τω , there is a one-to-one
function f from X into ωτ . For each n ∈ ω and s ∈ nτ , let G(s) = {x ∈ X :
f(x) ↾ n = s}. Take a base B∗ of X∗. Let us define a topology on X having a
base

B = {B∗ ∩ G(s) : B∗ ∈ B∗, n ∈ ω, s ∈ nτ}.

Obviously, (1) and (2) hold. Let Gn = {G(s) : s ∈ nτ} for each n ∈ ω. Then each
Gn is a pairwise disjoint open cover of X , so it is also a clopen cover. Since f is
one-to-one, it is easily seen that

⋂
n∈ω St(x,Gn) = {x} for each x ∈ X . Hence X

is a Hausdorff space having a Gδ-diagonal. If X∗ is a zero-dimensional Tychonoff
space, then we may chose B∗ as a family of clopen sets of X∗, and it makes B a
family of clopen sets of X , so X is also a zero-dimensional Tychonoff space, hence
(4) holds.

Assume that L(U∗) < κ for any family U∗ of open sets in X∗. Let U be any
family of open sets in X . For each n ∈ ω and s ∈ nτ , let U∗(s) be the family
of all open sets U∗ in X∗ such that U∗ ∩ G(s) is contained by some member
of U . By L(U∗(s)) < κ, there is a subfamily V∗(s) of U∗(s) with |V∗(s)| < κ
such that

⋃
V∗(s) =

⋃
U∗(s). For each V ∗ ∈ V∗(s), take a U(V ∗, s) ∈ U with

V ∗ ∩ G(s) ⊂ U(V ∗, s). We let

V = {U(V ∗, s) : n ∈ ω, s ∈ nτ, V ∗ ∈ V∗(s)}.

By ω, τ < cf(κ), note that |V| < κ.
Let x ∈

⋃
U . Take a U ∈ U with x ∈ U . There are a B∗ ∈ B∗, an n ∈ ω,

and an s ∈ nτ with x ∈ B∗ ∩ G(s) ⊂ U . Then we have B∗ ∈ U∗(s). Since
x ∈ B∗ ∈ U∗(s) and

⋃
V∗(s) =

⋃
U∗(s), there is a V ∗ ∈ V∗(s) with x ∈ V ∗. Then

we have x ∈ V ∗ ∩ G(s) ⊂ U(V ∗, s) ∈ V . Hence
⋃
V =

⋃
U is true. Since |V| < κ,

we conclude L(U) < κ. (3) is satisfied. �

The following easy fact is used to see Theorem 2.1(2).
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Lemma 2.7 (folklore). Let κ be a limit cardinal. Then there is a space X∗ with

e(X∗) = |X∗| = κ (which is T1 but not Hausdorff ) such that L(U∗) < κ for each

family U∗ of open sets of X∗.

Proof: Define a topology on X∗ = κ by letting that U∗ ⊂ X∗ is open iff U∗ = ∅
or (γ, κ) ⊂ U∗ for some γ < κ. Then X∗ is a required one. �

Now we are ready to prove Theorem 2.1(2). It suffices to show the proposition
below.

Proposition 2.8. Let κ be a limit cardinal with cf(κ) > ω. Assume that κ ≤ τω

for some τ < cf(κ). Then there is a Hausdorff space X having a Gδ-diagonal with

e(X) = L(X) = |X | = κ such that L(U) < κ for every family U of open sets

of X .

Proof: Let X∗ be the space obtained by Lemma 2.7. And let X be the space
which is obtained by applying Lemma 2.6 for X∗. For each cardinal λ < κ, there
is a closed discrete subset D in X∗ with |D| = λ since e(X∗) = κ. And such D is
also closed discrete in X since each open set in X∗ is also open in X . Therefore
κ ≤ e(X) ≤ L(X) ≤ |X | ≤ κ holds. �

The space X in the proof of the proposition above is not regular. To find a
regular example X , we need another space X∗. Fortunately, Roitman’s example
of Theorem 1.2 is a required one for κ = ℵω1

.

Corollary 2.9. Assume that ℵω1
≤ 2ω and a first-countable Luzin space exists.

Then there is a zero-dimensional Tychonoff space X∗ with e(X∗) = |X∗| = ℵω1

such that L(U∗) < ℵω1
for each family U∗ of open sets of X∗.

Proof: Let X be the Roitman’s example of Theorem 1.2 constructed in [10].
Reading the proof, we see that X satisfies the following conditions.

(1) For a Luzin space Y with |Y | = ω1, X =
⋃

y∈Y Xy is a pairwise disjoint
union by closed discrete subsets.

(2) {|Xy| : y ∈ Y } is an unbounded subset of ℵω1
.

(3) For each x ∈ X and for each neighborhood U of x in X , there is an open
set V in Y with y(x) ∈ ClY (V ), where y(x) ∈ Y with x ∈ Xy(x), such
that

⋃
y∈V Xy ⊂ U .

We show that X∗ = X witnesses the Corollary. By (1) and (2), we have e(X) =
|X | = ℵω1

. Let U be a family of open sets in X . It suffices to show that L(U) <
ℵω1

. Let V be the family of all open sets V in Y such that
⋃

y∈V Xy ⊂ U(V ) for

some U(V ) ∈ U . Take and fix such U(V ) for each V ∈ V . Put V̂ =
⋃
V and

F = ClY (V̂ ) \ V̂ . Since F is a nowhere dense subset of a Luzin space Y , we have
|F | ≤ ω < ω1 = cf(ℵω1

), hence |
⋃

y∈F Xy| < ℵω1
holds. It is known that every

Luzin space is hereditarily Lindelöf [8]. Therefore, there is a countable subfamily

V0 of V with
⋃
V0 = V̂ .

For each x ∈
⋃
U , take and fix a Ux ∈ U with x ∈ Ux. By (3), we can take

an open set Vx in Y with y(x) ∈ ClY (Vx), where y(x) ∈ Y with x ∈ Xy(x), such
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that
⋃

y∈Vx
Xy ⊂ Ux. Then Ux witnesses that Vx ∈ V . By Vx ⊂ V̂ , we have

y(x) ∈ ClY (Vx) ⊂ ClY (V̂ ). In case y(x) /∈ V̂ , by y(x) ∈ F , we have x ∈ Xy(x) ⊂⋃
y∈F Xy. In case y(x) ∈ V̂ , there is a V0 ∈ V0 with y(x) ∈ V0, so we have

x ∈ Xy(x) ⊂
⋃

y∈V0
Xy ⊂ U(V0). Hence, a subfamily U0 of U with

⋃
U0 =

⋃
U is

obtained by putting U0 = {U(V0) : V0 ∈ V0} ∪ {Ux : x ∈ (
⋃

y∈F Xy) ∩
⋃
U}. And

we have L(U) ≤ |U0| ≤ |V0| + |
⋃

y∈F Xy| < ℵω1
. �

Now we are ready to prove Theorem 2.2. It suffices to show the proposition
below.

Proposition 2.10. Assume that ℵω1
≤ 2ω and a first countable Luzin space

exists. Then there is a zero-dimensional Tychonoff space X having a Gδ-diagonal

with e(X) = L(X) = |X | = ℵω1
such that L(U) < ℵω1

for each family U of open

sets of X .

Proof: Let X∗ be the space obtained by Corollary 2.9. And let X be the space
which is obtained by applying Lemma 2.6 for X∗, κ = ℵω1

and τ = 2. For each
cardinal λ < ℵω1

, there is a closed discrete subset D in X∗ with |D| = λ since
e(X∗) = ℵω1

. And such D is also closed discrete in X since each open set in X∗

is also open in X . Therefore ℵω1
≤ e(X) ≤ L(X) ≤ |X | ≤ ℵω1

holds. �

Modifying the proofs of Theorem 1.2 and Corollary 2.9, we obtain the theorem
below. We give a sketch of the proof in Section 4 for readers convenience.

Theorem 2.11 (Modifying Roitman’s Theorem [10]). Let κ be a limit cardinal.

Assume that κ ≤ sup{2θ : θ is a cardinal < cf(κ)} and a cf(κ)-Suslin line exists.

Then there is a zero-dimensional Tychonoff space X∗ with e(X∗) = |X∗| = κ
such that L(U∗) < κ for every family U∗ of open sets of X∗.

Now we are ready to prove Theorem 2.1(3). It suffices to show the proposition
below.

Proposition 2.12. Let κ be a limit cardinal with cf(κ) > ω. Assume that κ ≤ τω

for some τ < cf(κ), and a cf(κ)-Suslin line exists. Then there is a zero-dimensional

Tychonoff space X having a Gδ-diagonal with e(X) = L(X) = |X | = κ such that

L(U) < κ for every family U of open sets of X .

Proof: We may assume that τ ≥ ω. By κ ≤ τω ≤ 2τ ≤ sup{2θ : θ is a cardinal
< cf(κ)}, we can apply Theorem 2.11 and obtain a space X∗. And let X be the
space which is obtained by applying Lemma 2.6 for X∗. For each cardinal λ < κ,
there is a closed discrete subset D in X∗ with |D| = λ since e(X∗) = κ. And
such D is also closed discrete in X since each open set in X∗ is also open in X .
Therefore κ ≤ e(X) ≤ L(X) ≤ |X | ≤ κ holds. �

In our proof of Theorem 2.1(2) and (3), we use the assumption that τ < cf(κ).
It is natural to consider the case that cf(κ) ≤ τ < κ, but the author does not
reach any result about it.
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Problem 1. Let κ be a limit cardinal with cf(κ) > ω such that τω < κ for every
τ < cf(κ), and there is some cardinal τ0 with cf(κ) ≤ τ0 < κ ≤ τ0

ω. Is there a
space X with L(X) = κ such that L(U) < κ for every open cover U of X?

3. Spaces having point-countable bases

In this section, we discuss the sup = max problem for the extent of spaces hav-
ing point-countable bases. There is no difference from the sup = max problem for
the Lindelöf degree since such spaces are (sub)metalindelöf. It is well-known that
each metrizable space has a σ-locally finite base, and it is trivial that such base is
point-countable. So having a point-countable base is one of the generalized metric
properties. If κ is a limit cardinal with cf(κ) = ω, then as seen in Example 1.4,
the sup = max condition for the extent does not always hold even for metrizable
spaces X with e(X) = κ. So we are interested in the case of cf(κ) > ω.

Problem 2 ([6, Problem 1]). Assume that a space X has a point-countable base
with e(X) = κ, where cf(κ) > ω. Is there a closed discrete subset of size κ in X?

Answering the problem partially, we prove in this section the theorem below.
(In fact, the condition e(X) = κ can be replaced by |X | ≥ κ.)

Theorem 3.1. Let X be a space having a point-countable base with e(X) = κ.

Assume that

(i) τω < κ for each cardinal τ < κ,

(ii) τω < cf(κ) for each cardinal τ < cf(κ).

Then X has a closed discrete subset of size κ.

In the theorem above, the condition cf(κ) > ω automatically holds. Actually, it
follows from 2 < ω ≤ cf(κ) that ω < 2ω < cf(κ) holds by applying the assumption
(ii) for τ = 2. To prove the theorem, we use the well-known lemma below.

Lemma 3.2 (The ∆-system lemma. See [9, Chapter II, Theorem 1.6]). Let κ be

an infinite cardinal, and A a family of sets such that |A| = θ > κ and |A| < κ for

each A ∈ A. If θ is regular and |α<κ| < θ for each α < θ, then A has a subfamily

B with |B| = θ which forms a ∆-system. I.e., there is a set R such that A∩B = R
holds for every distinct members A, B of B.

The set R in the lemma above is called the root of a ∆-system B. The corollary
below is easily obtained by applying the ∆-system lemma for κ = ω1.

Corollary 3.3. Let θ be a regular cardinal such that τω < θ for every cardinal

τ < θ. Let U be a family of subsets of a space X , and {Wj : j ∈ J} a collection

of countable subfamilies of U with |J | = θ. Then there is a subset J ′ of J with

|J ′| = θ such that {Wj : j ∈ J ′} forms a ∆-system, i.e., the root R exists and

Wj ∩ Wk = R holds for every distinct members j, k of J . In particular, the

following hold.

(1) ω1 ≤ 2ω < θ.
(2) R =

⋂
j∈J′ Wj , and so R is a countable subfamily of U .
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(3) {Wj \ R : j ∈ J ′} is pairwise disjoint.

If B is a base of a space X , then B is an open cover of X , and since a space X
is assumed to be a T1-space,

⋂
Bx = {x} holds for each x ∈ X , where Bx = {B ∈

B : x ∈ B}. So the proposition below suffices to derive Theorem 3.1.

Proposition 3.4. Let κ be an infinite cardinal such that

(i) τω < κ for each cardinal τ < κ,

(ii) τω < cf(κ) for each cardinal τ < cf(κ).

And let X be a space with |X | ≥ κ which has a point-countable open over U such

that sup{|
⋂
Ux| : x ∈ X} < κ, where Ux = {U ∈ U : x ∈ U}. Then X has a

closed discrete subset of size κ.

Proof: Let Θ be the set of all regular cardinals θ with sup{|
⋂
Ux| : x ∈ X} <

θ ≤ κ such that τω < θ for every cardinal τ < θ. And let θ ∈ Θ. Take a subset
Aθ of X with |Aθ| = θ. Then Ux is a countable subfamily of U for each x ∈ Aθ

since U is point-countable. By the ∆-system lemma, we obtain a subset Bθ of Aθ

with |Bθ| = θ such that {Ux : x ∈ Bθ} forms a ∆-system, and let Vθ be the root
of it. Then Vθ =

⋂
x∈Bθ

Ux is a countable subfamily of U . We show that U \ Vθ

is an open cover of X . To see this, let x ∈ X . Since |
⋂
Ux| < θ = |Bθ|, we can

take a y ∈ Bθ \
⋂
Ux and a U ∈ Ux ⊂ U with y /∈ U . By U /∈ Uy ⊃ Vθ, we have

U ∈ U \ Vθ and x ∈ U . Hence, U \ Vθ covers X .
In case κ is regular, by the assumptions, we have κ ∈ Θ, so a subset Bκ of X

with |Bκ| = κ and a subfamily Vκ of U had been taken. It suffices to show that
Bκ is closed discrete in X . Let x ∈ X . Since U \ Vκ is an open cover of X , there
is an open neighborhood U of x which belongs to U \ Vκ. Such U witnesses that
Bκ is closed discrete, that is |U ∩ Bκ| ≤ 1 holds. Otherwise, there are distinct
y, z ∈ U ∩ Bκ. Then we have U ∈ Uy ∩ Uz = Vκ, and it is contradiction.

In case κ is singular, Θ is an unbounded subset of κ. Actually, κ /∈ Θ since κ
is singular, and (µω)+ ∈ Θ holds for every cardinal µ > 1 with sup{|

⋂
Ux| : x ∈

X} ≤ µ < κ. Take a subset Θ0 of Θ \ cf(κ) which is unbounded in κ and of order
type cf(κ). For each µ ∈ Θ0, put

Dµ = {y ∈ Bµ : (Uy \ Vµ) ∩
⋃

{Uz : ν ∈ Θ0 ∩ µ, z ∈ Bν} = ∅}.

We show that |Dµ| = µ. Let U [< µ] =
⋃
{Uz : ν ∈ Θ0 ∩ µ, z ∈ Bν}. Then

|U [< µ]| < µ holds since µ is regular, |Θ0 ∩ µ| < cf(κ) ≤ µ, |Bν | = ν < µ
for each ν ∈ Θ0 ∩ µ, and |Uz| ≤ ω < 2ω < µ for each z ∈ Bν . We have
|Bµ \Dµ| ≤ |U [< µ]| < µ since {Uy \ Vµ : y ∈ Bµ} is pairwise disjoint and Uy \ Vµ

meets U [< µ] for each y ∈ Bµ \ Dµ. Hence |Dµ| = µ holds by |Bµ| = µ.
For each θ ∈ Θ0, a countable subfamily Vθ of U had been taken. And |Θ0| =

cf(κ) holds. By the assumption (ii), we can apply the ∆-system lemma, and
obtain a subset Θ1 of Θ0 with |Θ1| = cf(κ) such that {Vθ : θ ∈ Θ1} forms a
∆-system. Let V be the root. Then V =

⋂
θ∈Θ1

Vθ is a countable subfamily of U .

Let D =
⋃

θ∈Θ1
Dθ. Then |D| = κ since |Dθ| = θ for each θ ∈ Θ1, and Θ1 is an

unbounded subset in κ. So it suffices to show that D is closed discrete in X .
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Let x ∈ X . Take an open neighborhood U1 of x and a θ ∈ Θ1 such that: if
Ux ∩

⋃
λ∈Θ1

Vλ \ V is non-empty, then U1 ∈ Vθ \ V . Since U \ Vθ is an open cover
of X , we can take an open neighborhood U of x such that U ⊂ U0 ∩ U1 for some
U0 ∈ U \ Vθ. It suffices to show that |U ∩ D| ≤ 1 holds. Otherwise, there are
distinct y, z ∈ U ∩ D. Take µ, ν ∈ Θ1 with y ∈ Dµ and z ∈ Dν . We may assume
that ν ≤ µ. By x, y, z ∈ U ⊂ U0 and U0 ∈ U \ Vθ, we have U0 ∈ Ux ∩ Uy ∩ Uz and
U0 /∈ V . If ν = µ, then by y, z ∈ Dµ ⊂ Bµ, we have Uy ∩ Uz = Vµ. Otherwise,
ν < µ, then by ν ∈ Θ1 ∩ µ ⊂ Θ0 ∩ µ, z ∈ Dν ⊂ Bν , and y ∈ Dµ, we have
(Uy \ Vµ) ∩ Uz = ∅, and so Uy ∩ Uz ⊂ Vµ. Hence, U0 ∈ Uy ∩ Uz ⊂ Vµ holds in any
case. It follows that Ux ∩ Vµ \ V ⊂ Ux ∩

⋃
λ∈Θ1

Vλ \ V is non-empty since U0 is a
member of it. And so x ∈ U ⊂ U1 for some U1 ∈ Vθ \ V . By U1 ∈ Vθ ⊂ U and
y, z ∈ U ⊂ U1, we have U1 ∈ Uy ∩ Uz ⊂ Vµ. By U0 /∈ Vθ and U0 ∈ Vµ, we have
θ 6= µ. Therefore, U1 ∈ Vθ ∩ Vµ = V . This is contradiction. �

The author still does not know any example of a space having a point-countable
base which refutes the sup = max condition for the extent of uncountable cofi-
nality.

Problem 3. Can we remove the assumptions (i) and (ii) from Theorem 3.1?

In particular, we have

Problem 4. Is it consistent with ZFC that there is a space X having a point-
countable base with e(X) = ℵω1

and with no closed discrete subset of size ℵω1
?

The theorem in this section does not give an answer for the problem above
since the assumption of it requires that cf(ℵω1

) = ω1 ≤ 2ω < cf(κ).

If a space X has a point-countable base, then X is hereditarily meta-lindelöf
and first-countable. But only assuming that a space X is hereditarily metalindelöf,
it is not sufficient for deriving Theorem 3.1 by Example 1.4. And only assuming
that a space X is first-countable, it is also not sufficient for deriving Theorem 3.1
as the example below shows.

Example 3.5. Let κ be a limit cardinal with cf(κ) > ω, and set

X = {α + 1 : α ∈ κ} ∪ {θ ∈ κ : θ is a cardinal, cf(θ) = ω}.

Then X is first-countable, e(X) = |X | = κ, but there is no closed discrete subset
in X of size κ.

Proof: Obviously, e(X) ≤ |X | ≤ κ holds. For each infinite cardinal λ < κ, there
is no cardinal θ with λ < θ ≤ λ+λ, so {α+1 : λ ≤ α < λ+λ} is a closed discrete
subset in X of size λ, hence λ ≤ e(X) holds. We have e(X) = |X | = κ since κ is
a limit cardinal.

Let Z ⊂ X be unbounded in κ. Since κ is a limit cardinal again, we can
inductively take strictly increasing sequences {βn : n ∈ ω} by members of Z and
{λn : n ∈ ω} by cardinals less than κ such that βn ≤ λn < βn+1 for each n ∈ ω.
Put θ = sup{βn : n ∈ ω} = sup{λn : n ∈ ω}. Then θ ∈ κ by cf(κ) > ω, and θ is
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a limit cardinal with cf(θ) = ω, so we have θ ∈ X . On the other hand, θ is a limit
point of {βn : n ∈ ω} ⊂ Z, so Z is not a closed discrete subset in X . Therefore,
any closed discrete subset D in X is bounded in κ, so |D| < κ. Hence, X does
not have a closed discrete subset of size κ. �

The space X in the example above is not (sub)metalindelöf. On the other
hand, the space Xκ in Example 1.4 is not first-countable in case cf(κ) > ω. For
spaces having the both property, what happens?

Problem 5. Let κ be an infinite cardinal satisfying the conditions (i) and (ii)
in the assumption of Theorem 3.1. And let X be a hereditarily metalindelöf and
first-countable space with e(X) = κ. Does X have a closed discrete subset of
size κ?

4. A sketch of a proof of Theorem 2.11

A proof of Theorem 2.11 is obtained by modifying proofs of Theorem 1.2 and
Corollary 2.9. We give here a sketch of a proof for reader’s convenience.

First, check that the lemma below holds. Proofs are routine.

Lemma 4.1 (folklore). Let λ be a regular uncountable cardinal, and K a LOTS

having the λ-c.c. Then, the following hold.

(1) There is neither a strictly increasing sequence nor a strictly decreasing

sequence, of length λ, by members of K.

(2) The character of K at each point is less than λ.

(3) There is neither a strictly ascending sequence nor a strictly descending

sequence, of length λ, by convex subsets of K.

(4) If U is a family of open sets in K such that

for each subfamily U ′ of U with |U ′| < λ, there is a U ∈ U with⋃
U ′ ⊂ U ,

then there is a pairwise disjoint family J of non-empty open convex sub-

sets of K partially refining U and satisfying that:

for each non-empty open convex subset J ′ of K, if J ′ ⊂ U for

some U ∈ U , then J ′ ⊂ J for some J ∈ J .

(5) L(U) < λ for each family U of open sets in K.

(6) For each open set U in a subspace Z of K, there is a subset S of U with

|S| < λ such that ClZ(U) \ U ⊂ ClZ(S).

It is well-known that if a Suslin line exists, then a Suslin tree also exists, (see
[9]). Modifying the proof of this fact, we obtain the lemma below.

Lemma 4.2 (folklore). Let λ be a regular uncountable cardinal and K a λ-

Suslin line. Then for each subset E of K with |E| < λ, there is a λ-Suslin tree

T = (T, <T ) such that

• each member of T is an open convex set in K and disjoint from E,

• for each J0, J1 ∈ T , J0 <T J1 holds iff J0 ) J1,

• each members J0 and J1 of T are incompatible in T iff J0 ∩ J1 = ∅.
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In particular, for any ordinal α < λ, there are an open convex subset J of K
which is disjoint from E and a sequence, of length α, by members of J which is

either strictly increasing or strictly decreasing.

Let α be an ordinal having the linear order topology by the usual order. If J
is a convex subset of a compact LOTS K, and there is a sequence, of length α,
by members of J which is either strictly increasing or strictly decreasing, then we
can take such a sequence as a topological embedding. So we obtain the lemma
below.

Lemma 4.3 (folklore). Let λ be a regular uncountable cardinal, and K a compact

λ-Suslin line. Then there is a subspace Z =
⋃

α∈λ Zα of K such that Zα is

homeomorphic to α and Zα

⋂
ClZ(

⋃
β<α Zβ) = ∅ for each α < λ.

It is well-known that any LOTS K∗ is embedded into some compact LOTS K
as a dense subset. And it is easily seen that if K∗ is a λ-Suslin line, where λ is a
regular uncountable cardinal, then so is K.

Lemma 4.4 (folklore). Let λ be a regular uncountable cardinal. If a λ-Suslin

line exists, then there is a compact λ-Suslin line.

It is routine to check that the lemma below holds.

Lemma 4.5 (folklore). Let θ be an infinite cardinal, Z a GO-space (= subspace

of a LOTS), and ϕ : (θ + 1) → Z a topological embedding with z = ϕ(θ). Then

there is a pairwise disjoint sequence {Q(ζ) : ζ < θ} of non-empty open subsets of

Z such that for each neighborhood W of z in Z, {ζ < θ : Q(ζ) 6⊂ W} is bounded

in θ.

The space Z in Lemma 4.3 witnesses the lemma below.

Lemma 4.6 (folklore). Let λ be a regular uncountable cardinal and assume that

a λ-Suslin line exists. Then there is a regular space Z such that

(i’) L(U) < λ for each family U of open sets in Z,

(ii’) |F | < λ for each nowhere dense subset F in Z,

(iii’) the character of Z at each point is less than λ,

(iv’) for each E ⊂ Z with |E| < λ and for each infinite cardinal θ < λ, there

are a pairwise disjoint sequence {Q(ζ) : ζ < θ} of non-empty open sets

of Z, and a point z ∈ Z \ ClZ(E) such that for each neighborhood W
of z, {ζ < θ : Q(ζ) 6⊂ W} is bounded in θ.

Let θ be an infinite cardinal. A collection {Θα : α ∈ Ω} of subsets of θ is called
an independent family if for each disjoint finite subsets I and O of Ω, there are
unbounded many ζ ∈ θ such that ζ ∈ Θα for each α ∈ I, and ζ /∈ Θα′ for each
α′ ∈ O.

Lemma 4.7 (Hausdorff, see [7]). Let θ be an infinite cardinal. Then there is an

independent family {Θα : α < 2θ} of subsets of θ.
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Lemma 4.8. Let κ be an uncountable cardinal. And assume that κ ≤ sup{2θ :
θ is a cardinal < cf(κ)} and a cf(κ)-Suslin line exists. Then there are a space Y
with |Y | = cf(κ) and an unbounded subset {κy : y ∈ Y } of κ such that

(i) L(V) < κ for each family V of open sets in Y ,

(ii) |F | < cf(κ) for each nowhere dense subset F in Y ,

(iii) for each y ∈ Y , there is a collection {Wα : α ∈ κy} of filters on Y such

that for each α ∈ κy:

(iii-1) each neighborhood of y in Y belongs to Wα,

(iii-2) for each W ∈ Wα, there is a V ∈ Wα with V ⊂ W which is open in

Y such that ClY (V ) = V ∪ {y},
(iii-3) there is a Wα ∈ Wα such that Y \ Wα ∈ Wβ for every β ∈ κy

except α,

(iii-4) Y \ {y} ∈ Wα if κy > 1.

Proof: Let λ = cf(κ) and Z be the space in Lemma 4.6. Take an unbounded
subset {λξ : ξ < λ} of κ. By induction on ξ < λ, we take an ascending sequence
{Eξ : ξ < λ} of subsets of Z with |Eξ| < λ. Put E0 = ∅ as the first step.
Put Eξ =

⋃
ξ′<ξ Eξ′ in case ξ < λ is a limit ordinal. To take Eξ+1 for ξ < λ,

assume that a subset Eξ of Z with |Eξ| < λ is determined. Take a cardinal θξ

with ω ≤ θξ < λ and 2θξ ≥ λξ, a pairwise disjoint sequence {Qξ(ζ) : ζ < θξ}
of non-empty open subsets of Z, and a point zξ ∈ Z \ ClZ(Eξ) such that for
each neighborhood W of zξ in Z, {ζ < θξ : Qξ(ζ) 6⊂ W} is bounded in θξ.
Let Qξ =

⋃
ζ<θξ

Qξ(ζ). Then zξ /∈ Qξ. Actually, zξ /∈ Qξ(ζ
′) for any ζ′ < θξ

since {ζ < θξ : Qξ(ζ) 6⊂ Qξ(ζ
′)} = θξ \ {ζ′} is unbounded in θξ. Moreover,

we may assume that ClZ(Qξ) ∩ Eξ = ∅ since Z is regular and Z \ ClZ(Eξ) is
a neighborhood of zξ. For each ζ < θξ, take and fix a qξ(ζ) ∈ Qξ(ζ). Since
the character of Z at qξ is less than λ, we can take an open neighborhood base
Bξ(ζ) at qξ(ζ) with |Bξ(ζ)| < λ. We may assume that ClZ(V ) ⊂ Qξ(ζ) for every
V ∈ Bξ(ζ). Put Yξ = {zξ} ∪ {qξ(ζ) : ζ < θξ} and Dξ =

⋃
{ClZ(V ) \ V : ζ <

θξ, V ∈ Bξ(ζ)}∪((ClZ(Qξ)\Qξ)\{zξ}). Then Eξ, Yξ and Dξ are pairwise disjoint
subsets of Z, and |Eξ|, |Yξ|, |Dξ| < λ holds. Let Eξ+1 = Eξ∪Yξ∪Dξ, and continue
the induction.

After finishing induction, we obtain pairwise disjoint families {Yξ : ξ < λ} and
{Dξ : ξ < λ} of subsets of Z. Put Y =

⋃
ξ<λ Yξ and D =

⋃
ξ<λ Dξ. Then we

have |Y | = λ = cf(κ) and Y ∩D = ∅. We show that Y , as a topological subspace
of Z, satisfies the required conditions.

(i) and (ii) hold for Y by (i’) and (ii’) for Z since Y is a subspace of Z and
λ = cf(κ) ≤ κ.

(iii) Let y ∈ Y and take the ξ < λ with y ∈ Yξ. For each J ⊂ θξ, put
Qξ[J ] =

⋃
ζ∈J Qξ(ζ), then Qξ[J ] is an open set of Z.

In the case of y = zξ, put κy = λξ. Take an independent family {Θα : α < 2θξ}
of subsets of θξ. Since κy = λξ ≤ 2θξ , a subset Θα of θξ is defined for each α ∈ κy.
Let α ∈ κy. For each O ⊂ κy \ {α} with |O| < ω and for each γ < θξ, put

Θ̂α(O, γ) = {ζ ∈ Θα \ (
⋃

α′∈O Θα′) : ζ ≥ γ} and Vα(O, γ) = Y ∩ Qξ[Θ̂α(O, γ)].
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And let Vα = {Vα(O, γ) : O ⊂ κy \ {α}, |O| < ω, γ < θξ}. Obviously, Vα is a filter
base on Y . Let Wα be the filter on Y generated by Vα. It is routine to check that
{Wα : α ∈ κy} satisfies the conditions (iii-1)–(iii-4).

In the case of y 6= zξ, put κy = 1. Take the ζ < θξ with y = qξ(ζ). Put
V0 = {V ∩ Y : V ∈ Bξ(ζ)}. Obviously, V0 is a filter base on Y . Let W0 be the
filter on Y generated by V0. It is routine to check that {Wα : α ∈ κy} satisfies
the conditions (iii-1)–(iii-4).

It is trivial that {κy : y ∈ Y } is an unbounded subset of κ. �

Now we are ready to prove Theorem 2.11.

Proof: Let κ be a limit cardinal. Assume that κ ≤ sup{2θ : θ is a cardinal <
cf(κ)} and a cf(κ)-Suslin line exists. We would like to find a zero-dimensional
Tychonoff space X∗ with e(X∗) = |X∗| = κ such that L(U∗) < κ for every family
U∗ of open sets in X∗.

Take a space Y with |Y | = cf(κ) and an unbounded subset {κy : y ∈ Y }
of κ satisfying the conditions (i), (ii), (iii) in Lemma 4.8. Let y ∈ Y . Put
Xy = {y} × κy. Take a collection {Wα : α ∈ κy} of filters on Y satisfying
(iii-1)–(iii-4) for y, and let W∗

x = Wα for each x = 〈y, α〉 ∈ Xy with α ∈ κy.
Set X =

⋃
y∈Y Xy. For each U ⊂ X , put W [U ] = {y ∈ Y : Xy ⊂ U}. Define

a topology on X such that U ⊂ X is a neighborhood of x ∈ X iff x ∈ U and
W [U ] ∈ W∗

x hold. It is routine to check that we can define such topology on X .
Then X is a zero-dimensional Tychonoff space and satisfies that:

(1) X =
⋃

y∈Y Xy is a pairwise disjoint union by closed discrete subsets.

(2) {|Xy| : y ∈ Y } is an unbounded subset of κ.
(3) For each x ∈ X and for each neighborhood U of x in X , there is an open

set V in Y with y(x) ∈ ClY (V ), where y(x) ∈ Y with x ∈ Xy(x), such
that

⋃
y∈V Xy ⊂ U .

The rest part is similar to the proof of Corollary 2.9. We show that X∗ = X
witness the theorem. By (1) and (2), we have e(X) = |X | = κ. Let U be a family
of open sets in X . It suffices to show that L(U) < κ. Let V be the family of
all open sets V in Y such that

⋃
y∈V Xy ⊂ U(V ) for some U(V ) ∈ U . Take and

fix such U(V ) for each V ∈ V . Put V̂ =
⋃
V and F = ClY (V̂ ) \ V̂ . Since F is

a nowhere dense subset in Y , we have |F | < cf(κ) by the condition (ii), hence
|
⋃

y∈F Xy| < κ holds. By the condition (i), there is a subfamily V0 of V with

|V0| < κ and
⋃
V0 = V̂ .

For each x ∈
⋃
U , take and fix a Ux ∈ U with x ∈ Ux. By (3), we can take

an open set Vx in Y with y(x) ∈ ClY (Vx), where y(x) ∈ Y with x ∈ Xy(x), such

that
⋃

y∈Vx
Xy ⊂ Ux. Then Ux witnesses that Vx ∈ V . By Vx ⊂ V̂ , we have

y(x) ∈ ClY (Vx) ⊂ ClY (V̂ ). In case y(x) /∈ V̂ , by y(x) ∈ F , we have x ∈ Xy(x) ⊂⋃
y∈F Xy. In case y(x) ∈ V̂ , there is a V0 ∈ V0 with y(x) ∈ V0, so we have

x ∈ Xy(x) ⊂
⋃

y∈V0
Xy ⊂ U(V0). Hence, a subfamily U0 of U with

⋃
U0 =

⋃
U is
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obtained by putting U0 = {U(V0) : V0 ∈ V0} ∪ {Ux : x ∈ (
⋃

y∈F Xy) ∩
⋃
U}. And

we have L(U) ≤ |U0| ≤ |V0| + |
⋃

y∈F Xy| < κ. �
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