
Mathematica Bohemica

Ram Krishna Pandey
Maximal upper asymptotic density of sets of integers with missing differences from a
given set

Mathematica Bohemica, Vol. 140 (2015), No. 1, 53–69

Persistent URL: http://dml.cz/dmlcz/144179

Terms of use:
© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144179
http://dml.cz


140 (2015) MATHEMATICA BOHEMICA No. 1, 53–69

MAXIMAL UPPER ASYMPTOTIC DENSITY OF SETS OF
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Abstract. LetM be a given nonempty set of positive integers and S any set of nonnegative
integers. Let δ(S) denote the upper asymptotic density of S. We consider the problem of
finding

µ(M) := sup
S

δ(S),

where the supremum is taken over all sets S satisfying that for each a, b ∈ S, a− b /∈ M. In
this paper we discuss the values and bounds of µ(M) where M = {a, b, a+ nb} for all even
integers and for all sufficiently large odd integers n with a < b and gcd(a, b) = 1.
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1. Introduction

For any set S of nonnegative integers, we denote by S(n) the number of elements

x ∈ S such that x 6 n. As usual, we define the upper and lower asymptotic

densities of S (denoted by δ(S) and δ(S), respectively) by δ(S) = lim sup
n→∞

S(n)/n

and δ(S) = lim inf
n→∞

S(n)/n. If δ(S) = δ(S), we denote the common value by δ(S),

and say that S has density δ(S). Now suppose that M is a given nonempty set

of positive integers. Motzkin [7] asks to determine the maximal upper asymptotic

density defined by

µ(M) := sup
S

δ(S),

where the supremum is taken over all sets S satisfying that for each a, b ∈ S, a− b /∈

M. Such sets S are called M -sets in the literature.

Initial work on this problem is due to Cantor and Gordon [1], in which they show

the existence of µ(M) for each M and also determine µ(M) when M has one or two
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elements. They prove that if |M | = 1, then µ(M) = 1/2 and if M = {a, b} with

gcd(a, b) = 1, then µ(M) = ⌊ 1
2 (a+ b)⌋/(a+ b). By a result of Cantor and Gordon

it is sufficient to consider the problem only for those sets M whose elements are

relatively prime. Furthermore, they give the following lower bound for µ(M).

Lemma 1.1. Let M = {m1,m2,m3, . . .} and let k, m be positive integers such

that gcd(k,m) = 1. Then

µ(M) > sup
(k,m)=1

1

m
min
i

|kmi|m,

where |x|m denotes the absolute value of the absolutely least remainder of x mod m.

The following remark by Haralambis [4] gives three equivalent definitions of the

right hand side expression of the inequality in Lemma 1.1. Throughout this paper

we use the third definition, i.e., d3(M).

R em a r k 1.1. Let M = {m1,m2, . . . ,mn}, and

d1(M) = sup
x∈(0,1)

min
i

‖xmi‖,

d2(M) = sup
(k,m)=1

1

m
min
i

|kmi|m,

d3(M) = max
m=mj+ml

16k6m/2

1

m
min |kmi|m,

where for x ∈ R, ‖x‖ denotes the distance of x from the nearest integer and mj , ml

represent distinct elements of M . Then d1(M) = d2(M) = d3(M), and we denote

this common value by d(M).

Thus we have µ(M) > d(M). At this stage we mention the very first conjecture

on this problem by Haralambis [4].

Conjecture. If |M | = 3, then µ(M) = d(M).

The above conjecture holds true if |M | 6 2 and is false if |M | = 4. The proofs and

counter examples may be found in [4].

The following lemma in [4] gives an upper bound for µ(M).

Lemma 1.2. Let M be a given set of positive integers, α a real number in the

interval [0, 1], and suppose that for any M -set S with 0 ∈ S there exists a positive

integer k (possibly dependent on S) such that S(k) 6 (k + 1)α. Then µ(M) 6 α.
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Haralambis [4] gives some general estimates and expressions for µ(M) for most

members of the families {1, a, b} and {1, 2, a, b}. Gupta and Tripathi [3] give the

value of µ(M) whenM is finite and the elements ofM are in arithmetic progression.

Liu and Zhu [5] compute the values of µ(M) for M = {a, 2a, . . . , (m− 1)a, b}, M =

{a, b, a+b}, and give bounds of µ(M) forM = {a, b, b−a, b+a} using graph theoretic

techniques. They further compute µ(M) forM = [1, a]∪[b,m+1], where a < b in [6].

The present author in joint works with Tripathi ([8], [9], [10]) discusses the problem

for the family M = {a, b, c} with a < b, where c = nb or na or n(a + b), and for

those families M which are related to finite arithmetic progressions. In the present

paper we discuss the problem of finding µ(M) for M = {a, b, a + nb} for all even

integers n and for all sufficiently large odd integers n with a < b and gcd(a, b) = 1.

In Sections 2, 3 and 4, we give bounds or the exact values of µ(M).

2. Numbers a and b are of opposite parity and

n > b − a+ 2 is an odd integer

In this section we study the family M = {a, b, a+ nb}, where a < b, gcd(a, b) =

1 and n is a sufficiently large odd integer. Mainly, d(M) is calculated, which is

a lower bound of µ(M) and as we are working in the case where |M | = 3, d(M) is

conjecturally equal to µ(M).

Lemma 2.1. For each r, s > 0, set

Ar = b− a+ {2r(a+ b) + 2t : 1 6 t 6 a},

Bs = b− a+ {2(s+ 1)a+ 2sb+ 2t : 1 6 t 6 b}.

The collection {A0, A1, . . . , B0, B1, . . .} partitions 2N− 1 \ {1, 3, . . . , b− a}.

P r o o f. Clearly, |Ar | = a and |Bs| = b for each r, s > 0. Also, we have the

recurrences Ar+1 = Ar + 2(a + b) and Bs+1 = Bs + 2(a + b). Notice that {A0, B0}

partitions the set [b− a+ 2, b− a+ 2(a+ b)] ∩ (2N− 1 \ {1, 3, . . . , b− a}). Thus we

have the lemma. �

Theorem 2.1. Let M = {a, b, a+ nb}, where a < b, gcd(a, b) = 1, a and b are of

opposite parity and n > b− a+2 is an odd integer. For each r, s > 0, let Ar and Bs

be as given in Lemma 2.1. Then

d(M) =















m− ((2r + 1)b+ 1)

2m
if n ∈ Ar, where m = a+ (n+ 1)b;

m− ((2s+ 1)b+ 2t)

2m
if n ∈ Bs, where m = 2a+ nb.
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P r o o f. Case I (n ∈ Ar). To calculate d(M) we use d3(M). According to the

definition of d3(M), the possible values of m may be a+(n+1)b, 2a+nb, and a+ b.

⊲ (1) (m = a + (n + 1)b). Since gcd(b,m) = 1, we can choose an integer x such

that

bx ≡
m− ((2r + 1)b+ 1)

2
(mod m).

We have

ax ≡ −(n+ 1)bx ≡ − (n+ 1)
m− ((2r + 1)b+ 1)

2

≡
(n+ 1)((2r + 1)b+ 1)

2
(mod m).

Since (n+1)((2r+1)b+1) = (2r+1)(n+1)b+n+1 = (2r+1)m+(2r+1)b+1−2(a−t),

therefore,

ax ≡
m+ (2r + 1)b+ 1− 2(a− t)

2
≡ −

m− ((2r + 1)b+ 1) + 2(a− t)

2
(mod m).

We also have that (a+ nb)x ≡ −bx (mod m). Thus

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− ((2r + 1)b+ 1)

2
.

We now show that for all y such that 1 6 y 6 m/2 and y 6= x,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− ((2r + 1)b+ 1)

2
.

Let l := (2r + 1)b+ 1, and 1 6 y 6 m/2. Suppose for some integer i,

by ≡
m

2
−

l

2
+ i (mod m).

This gives

ay ≡
m

2
+

l

2
− (a− t)− (n+ 1)i (mod m).

If m/2 − l/2 + i modulo m is in [m/2 − l/2,m/2 + l/2], then 0 6 i 6 l. Since we

have that (a + nb)y ≡ −by (mod m), the inequality will be valid if we show that

m/2 + l/2 − (a − t) − (n + 1)i modulo m is in [−(m/2 − l/2),m/2 − l/2] for each

1 6 i 6 l. First, let i = l. In this case, the congruences become

by ≡
m

2
−

l

2
+ l ≡ −

(m

2
−

l

2

)

(mod m),

(a+ nb)y ≡ −by ≡
m

2
−

l

2
(mod m),
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and

ay ≡
m

2
+

l

2
− (a− t)− (n+ 1)l (mod m).

Since (n+ 1)l = (2r + 1)m+ l − 2(a− t),

ay ≡
m

2
−

l

2
+ (a− t) (mod m).

Therefore, we have the inequality in this case. Next, let 1 6 i 6 l − 1. Observe that

{1, 2, . . . , l − 1} ⊆
2r
⋃

p=0

Ip,

where Ip = [pb+((p− 1)a+ t+ l)/(n+ 1), (p+1)b+(pa+ t)/(n+ 1)]. Indeed, since

the largest integer in Ip is (p + 1)b, we only need to verify that (p + 1)b + 1 is in

Ip+1. Notice that (pa+ t+ l)/(n+ 1) 6 1 if and only if pa 6 n + 1 − t − l =

(2r− 1)a+ t 6 2ra, i.e., p 6 2r, which is true. Hence (pa+ t+ l)/(n+ 1) 6 1. This

implies (p + 1)b + (pa+ t+ l)/(n+ 1) 6 (p + 1)b + 1, and hence (p + 1)b + 1 is in

Ip+1 and it is the smallest integer of the interval.

As 1 6 i 6 l − 1, therefore, for some 0 6 p 6 2r, i ∈ Ip, i.e.,

pb+
(p− 1)a+ t+ l

n+ 1
6 i 6 (p+ 1)b+

pa+ t

n+ 1
,

therefore
pm+ l − (a− t)

n+ 1
6 i 6

(p+ 1)m− (a− t)

n+ 1
.

This gives

m

2
+

l

2
− (a− t)− (n+ 1)

(p+ 1)m− (a− t)

n+ 1
6

m

2
+

l

2
− (a− t)− (n+ 1)i

6
m

2
+

l

2
− (a− t)− (n+ 1)

pm+ l − (a− t)

n+ 1
,

so

−(p+ 1)m+
m

2
+

l

2
6

m

2
+

l

2
− (a− t)− (n+ 1)i 6 −pm+

m

2
−

l

2
,

thus

−pm−
(m

2
−

l

2

)

6
m

2
+

l

2
− (a− t)− (n+ 1)i 6 −pm+

m

2
−

l

2
.

Therefore, m/2 + l/2− (a− t)− (n+ 1)i modulo m is in [−(m/2− l/2),m/2− l/2]

for each 1 6 i 6 l − 1. Hence, we have the desired inequality. Thus we see that

max
16y6m/2

(min{|ay|m, |by|m, |(a+ nb)y|m}) =
m− ((2r + 1)b+ 1)

2
.
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⊲ (2) (m = 2a+ nb). Choose an integer x such that

bx ≡
m− ((2r + 1)b+ 2)

2
(mod m).

Such an x exists. For, let d = gcd(b,m), and d 6= 1. Then d | 2a. If b is odd, then as

d | b, d > 3 hence d | a, which shows that gcd(a, b) 6= 1, which is false. Hence, d = 1

and hence the congruence in this case is true. Now, let b be even. Since d | 2a and

a is odd with gcd(a, b) = 1, we have d = 2. Notice that 2 | (m− ((2r + 1)b+ 2))/2,

and hence the congruence is again true. We have

2ax ≡ −nbx ≡ −n
m− ((2r + 1)b+ 2)

2
≡ −

m− (2r + 1)nb− 2n

2
(mod m),

which implies

2ax ≡ −
m− (2r + 1)m+ 2(2r + 1)a− 2n

2
≡ n− (2r + 1)a (mod m).

Now n − (2r + 1)a = b − a + 2r(a + b) + 2t − (2r + 1)a = (2r + 1)b − 2(a − t) =

(2r + 1)b+ 2− 2(a− t+ 1). This gives

2ax ≡ (2r+ 1)b+2− 2(a− t+ 1) ≡ −(m− ((2r+ 1)b+2)+ 2(a− t+1)) (mod m),

therefore,

ax ≡ −
m− ((2r + 1)b+ 2) + 2(a− t+ 1)

2
(mod m).

Since (a+ nb)x ≡ −ax (mod m), we have

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− ((2r + 1)b+ 2)

2
.

Also, as in (1), it can be shown that for all y such that 1 6 y 6 m/2 and y 6= x,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− ((2r + 1)b+ 2)

2
.

Thus we see that

max
16y6m/2

(min{|ay|m, |by|m, |(a+ nb)y|m}) =
m− ((2r + 1)b+ 2)

2
.

⊲ (3) (m = a+ b). Choose an integer x such that

ax ≡ −bx ≡
a+ b− 1

2
(mod m).
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We have

(a+ nb)x ≡ (n− 1)bx ≡
n− 1

2
(mod m).

Thus we see that if n = (2r + 1)(a + b) (which is obtained by taking t = a in Ar)

then

min{|ax|m, |bx|m, |(a+ nb)x|m} =
a+ b− 1

2
.

Moreover, it can be shown that if n = (2r + 1)(a+ b) then

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 1

2

for all y; 1 6 y 6 m/2. Thus we see that

max
16y6m/2

(min{|ay|m, |by|m, |(a+ nb)y|m}) =
a+ b− 1

2
.

On the other hand, if n 6= (2r + 1)(a+ b) then it is obvious that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 3

2

for each y. Thus we see that

max
16y6m/2

(min{|ay|m, |by|m, |(a+ nb)y|m}) =
a+ b− 3

2
.

To calculate d(M) we apply the definition d3(M). Let us denote m values in (1),

(2), and (3) by m1, m2, and m3, respectively, i.e., m1 = a+ (n+1)b, m2 = 2a+ nb,

and m3 = a+ b. Then

d(M) = max
(m1 − ((2r + 1)b+ 1)

2m1
,
m2 − ((2r + 1)b+ 2)

2m2
,
a+ b− ε

2m3

)

=
m1 − ((2r + 1)b+ 1)

2m1
.

Here ε = 1 if n = (2r + 1)(a+ b) and ε = 3 if n 6= (2r + 1)(a+ b).

Case II (n ∈ Bs). To calculate d(M) we use d3(M) and hence as in the previous

case we consider the following values of m.

⊲ (1) (m = a+ (n+ 1)b). Choose x such that

bx ≡
m− ((2s+ 1)b+ 1)

2
(mod m).
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We have

ax ≡ −(n+ 1)bx ≡ − (n+ 1)
m− ((2s+ 1)b+ 1)

2

≡
(n+ 1)((2s+ 1)b+ 1)

2
(mod m).

Since (n+1)((2s+1)b+1) = (2s+1)m−(2s+1)a+n+1 = (2s+1)m+(2s+1)b+1+2t,

ax ≡
m+ (2s+ 1)b+ 1 + 2t

2
≡ −

m− ((2s+ 1)b+ 1 + 2t)

2
(mod m).

We also have that (a+ nb)x ≡ −bx (mod m). Thus

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− ((2s+ 1)b+ 1 + 2t)

2
.

Moreover, it can also be shown as in the Case I that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− ((2s+ 1)b+ 1 + 2t)

2

for each y; 1 6 y 6 m/2. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
m− ((2s+ 1)b+ 1 + 2t)

2
.

⊲ (2) (m = 2a+ nb). Choose an integer x such that

bx ≡
m− ((2s+ 1)b+ 2)

2
(mod m).

Such an x exists. For, arguments are similar to (2) of Case I. We have

2ax ≡ −nbx ≡ −n
m− ((2s+ 1)b+ 2)

2
≡ −

m− (2s+ 1)nb− 2n

2
(mod m).

This implies

2ax ≡ −
m− (2s+ 1)m+ 2(2s+ 1)a− 2n

2
≡ n− (2s+ 1)a (mod m).

Since n− (2s+ 1)a = b− a+ 2(s+ 1)a+ 2sb+ 2t− (2s+ 1)a = (2s+ 1)b+ 2t,

2ax ≡ (2s+ 1)b+ 2t ≡ −(m− ((2s+ 1)b+ 2t)) (mod m).

Therefore,

ax ≡ −
m− ((2s+ 1)b+ 2t)

2
(mod m).
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Since (a+ nb)x ≡ −ax (mod m), we have

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− ((2s+ 1)b+ 2t)

2
.

Also, it can be shown that for all y such that 1 6 y 6 m/2 and y 6= x,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− ((2s+ 1)b+ 2t)

2
.

Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
m− ((2s+ 1)b+ 2t)

2
.

⊲ (3) (m = a+ b). Choose an integer x such that

ax ≡ −bx ≡
a+ b− 1

2
(mod m).

We have

(a+ nb)x ≡ (n− 1)bx ≡
n− 1

2
(mod m).

Thus we see that if n = (2s+1)(a+ b) + 2 (which is obtained by taking t = 1 in Bs)

then

min{|ax|m, |bx|m, |(a+ nb)x|m} =
a+ b− 1

2
.

Moreover, it can be shown that if n = (2s+ 1)(a+ b) + 2 then

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 1

2

for all y; 1 6 y 6 m/2. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
a+ b− 1

2
.

On the other hand, if n 6= (2s+ 1)(a+ b) + 2 then it is obvious that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 3

2

for each y. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
a+ b− 3

2
.
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To calculate d(M) we again apply the definition d3(M). Let us denote m values in

(1), (2), and (3) bym1, m2, andm3, respectively, i.e.,m1 = a+(n+1)b,m2 = 2a+nb,

and m3 = a+ b. Then

d(M) = max
(m1 − ((2s+ 1)b+ 1 + 2t)

2m1
,
m2 − ((2s+ 1)b+ 2t)

2m2
,
a+ b− ε

2m3

)

=
m2 − ((2s+ 1)b+ 2t)

2m2
.

Here ε = 1 if n = (2s + 1)(a + b) + 2 and ε = 3 if n 6= (2s + 1)(a + b) + 2. This

completes the proof of the theorem. �

Corollary 2.1. Let M = {a, b, a + nb}, where a < b, gcd(a, b) = 1, a and b

are of opposite parity and n ∈ {(2r + 1)(a + b), (2s+ 1)(a+ b) + 2}. Then µ(M) =
1
2 (a+ b− 1)/(a+ b).

P r o o f. If n ∈ {(2r + 1)(a + b), (2s + 1)(a + b) + 2} then it follows from the

theorem that µ(M) > d(M) = 1
2 (a+ b− 1)/(a+ b). On the other hand, we always

have µ(M) 6 µ({a, b}) = ⌊ 1
2 (a+ b)⌋/(a+ b). Thus we have the corollary. �

3. Numbers a and b are of opposite parity and n is an even integer

Theorem 3.1. Let M = {a, b, a+ nb}, where a < b, gcd(a, b) = 1, a and b are of

opposite parity and n is even. For each r, s > 0, set

A′

r = {2(ra+ rb + t) : 1 6 t 6 b}, and B′

s = {2(sa+ (s+ 1)b+ t) : 1 6 t 6 a}.

Then

d(M) =















m− 2(rb + t)

2m
if n ∈ A′

r, where m = 2a+ nb;

m− (2(s+ 1)b+ 1)

2m
if n ∈ B′

s, where m = a+ (n+ 1)b.

P r o o f. As in Lemma 2.1 it can be shown that the collection {A′

0, A
′

1, . . . , B
′

0,

B′

1, . . .} partitions the set 2N.

The method of proof of this theorem is similar to that of the previous theorem.

Therefore, we omit the similar calculations here.

Case I (n ∈ A′

r). To calculate d(M) we consider the following three values of m.

⊲ (1) (m = a+ (n+ 1)b). Since gcd(b,m) = 1, we can choose an x such that

bx ≡
m− (2rb + 1)

2
(mod m).
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We have

ax ≡ −(n+ 1)bx ≡ − (n+ 1)
m− (2rb + 1)

2

≡ −
m− (n+ 1)(2rb+ 1)

2
(mod m).

Since (n+ 1)(2rb + 1) = 2rm+ 2rb+ 1 + 2t,

ax ≡ −
m− (2rb + 1 + 2t)

2
(mod m).

We also have that (a+ nb)x ≡ −bx (mod m). Thus

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− (2rb + 1 + 2t)

2
.

Moreover, for all y such that 1 6 y 6 m/2 and y 6= x,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− (2rb+ 1 + 2t)

2
.

Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
m− (2rb + 1 + 2t)

2
.

⊲ (2) (m = 2a+ nb). Choose an integer x such that

bx ≡
m− 2(rb + 1)

2
(mod m).

We have

2ax ≡ −nbx ≡ −n
m− 2(rb+ 1)

2
≡ n(rb + 1) (mod m).

Since n(rb + 1) = rm+ 2rb + 2t,

2ax ≡ 2rb+ 2t ≡ −(m− 2(rb + t)) (mod m),

therefore,

ax ≡ −
m− 2(rb + t)

2
(mod m).

We also have (a+ nb)x ≡ −ax (mod m). Thus

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− 2(rb+ t)

2
.
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Also, it can be shown that for all y such that 1 6 y 6 m/2 and y 6= x,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− 2(rb + t)

2
.

Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
m− 2(rb + t)

2
.

⊲ (3) (m = a+ b). Choose an integer x such that

ax ≡ −bx ≡
a+ b− 1

2
(mod m).

We have

(a+ nb)x ≡ (n− 1)bx ≡
n+ a+ b− 1

2
(mod m).

Thus we see that if n = 2r(a+ b) + 2 (which is obtained by taking t = 1 in A′

r) then

min{|ax|m, |bx|m, |(a+ nb)x|m} =
a+ b− 1

2
.

Moreover, it can be shown that if n = 2r(a+ b) + 2 then

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 1

2

for all y; 1 6 y 6 m/2. Thus we see that

max
16y6m/2

(min{|ay|m, |by|m, |(a+ nb)y|m}) =
a+ b− 1

2
.

On the other hand, if n 6= 2r(a+ b) + 2 then it is obvious that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 3

2

for each y. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
a+ b− 3

2
.

To calculate d(M) we apply the definition d3(M). Let us denote m values in (1),

(2), and (3) by m1,m2, and m3, respectively. Then

d(M) = max
(m1 − (2rb+ 1 + 2t)

2m1
,
m2 − 2(rb + t)

2m2
,
a+ b− ε

2m3

)

=
m2 − 2(rb + t)

2m2
.

Here ε = 1 if n = 2r(a+ b) + 2 and ε = 3 if n 6= 2r(a+ b) + 2.
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Case II (n ∈ B′

s). To calculate d(M) we use d3(M).

⊲ (1) (m = a+ (n+ 1)b). Choose x such that

bx ≡
m− (2(s+ 1)b+ 1)

2
(mod m).

We have

ax ≡ −(n+ 1)bx ≡ − (n+ 1)
m− (2(s+ 1)b+ 1)

2

≡ −
m− (2(s+ 1)b+ 1)(n+ 1)

2
(mod m).

Since (n+1)(2(s+1)b+1) = 2(s+1)(m−a)+n+1 = 2(s+1)m+2(s+1)b+1−2(a−t),

ax ≡ −
m− (2(s+ 1)b+ 1) + 2(a− t)

2
(mod m).

We also have that (a+ nb)x ≡ −bx (mod m). Thus

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− (2(s+ 1)b+ 1)

2
.

Moreover, it can also be shown that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− (2(s+ 1)b+ 1)

2

for each y; 1 6 y 6 m/2. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
m− (2(s+ 1)b+ 1)

2
.

⊲ (2) (m = 2a+ nb). Choose an integer x such that

bx ≡
m− 2((s+ 1)b+ 1)

2
(mod m).

We have

2ax ≡ −nbx ≡ −n
m− 2((s+ 1)b+ 1)

2
≡ (s+ 1)nb+ n (mod m).

Since (s+1)nb+n = (s+1)(m−2a)+2sa+2(s+1)b+2t = (s+1)m+2(s+1)b−2(a−t),

2ax ≡ 2(s+ 1)b− 2(a− t) ≡ −(m− 2((s+ 1)b+ 1) + 2(a− t+ 1)) (mod m),
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therefore,

ax ≡ −
m− 2((s+ 1)b+ 1) + 2(a− t+ 1)

2
(mod m).

We also have (a+ nb)x ≡ −ax (mod m). Thus

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− 2((s+ 1)b+ 1)

2
.

Also, it can be shown that for all y such that 1 6 y 6 m/2 and y 6= x,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− 2((s+ 1)b+ 1)

2
.

Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
m− 2((s+ 1)b+ 1)

2
.

⊲ (3) (m = a+ b). Choose an integer x such that

ax ≡ −bx ≡
a+ b− 1

2
(mod m).

We have

(a+ nb)x ≡ (n− 1)bx ≡
n+ a+ b− 1

2
(mod m).

Thus we see that if n = 2(s + 1)(a + b) (which is obtained by taking t = a in B′

s)

then

min{|ax|m, |bx|m, |(a+ nb)x|m} =
a+ b− 1

2
.

Moreover, it can be shown that if n = 2(s+ 1)(a+ b) then

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 1

2

for all y; 1 6 y 6 m/2. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
a+ b− 1

2
.

On the other hand, if n 6= 2(s+ 1)(a+ b) then it is obvious that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
a+ b− 3

2
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for each y. Thus we see that

max
16y6m/2

min{|ay|m, |by|m, |(a+ nb)y|m} =
a+ b− 3

2
.

To calculate d(M) we apply the definition d3(M). Let us denote m values in (1),

(2), and (3) by m1,m2, and m3, respectively. Then

d(M) = max
(m1 − (2(s+ 1)b+ 1)

2m1
,
m2 − 2((s+ 1)b+ 1)

2m2
,
a+ b − ε

2m3

)

=
m1 − (2(s+ 1)b+ 1)

2m1
.

Here ε = 1 if n = 2(s + 1)(a + b) and ε = 3 if n 6= 2(s+ 1)(a + b). This completes

the proof. �

Corollary 3.1. Let M = {a, b, a + nb}, where a < b, gcd(a, b) = 1, a and b

are of opposite parity and n ∈ {k(a + b), k(a + b) + 2: k ∈ 2N}. Then µ(M) =
1
2 (a+ b− 1)/(a+ b).

P r o o f. If n ∈ {k(a+ b), k(a+ b)+ 2: k ∈ 2N} then it follows from the theorem

that µ(M) > d(M) = 1
2 (a+ b− 1)/(a+ b). On the other hand, we always have

µ(M) 6 µ({a, b}) = ⌊ 1
2 (a+ b)⌋/(a+ b). Thus we have the corollary. �

4. Both a and b are odd integers

Theorem 4.1. Let M = {a, b, a + nb}, where a < b, gcd(a, b) = 1, and a, b are

odd integers. Then

d(M) =















1

2
= µ(M) if n is even;

a+ nb

2{a+ (n+ 1)b}
if n >

(b− 2)(a+ b)

2b
and odd.

P r o o f. Suppose that n is even. Observe that all three elements of M are

odd. Therefore, any set S of nonnegative integers which contains elements of the

same parity is an M -set and hence δ(S) 6 1/2. On the other hand, if we take

S = {1, 3, 5, . . .} then δ(S) = 1/2. Hence µ(M) = 1/2. Now taking x = 1/2 in the

definition of d1(M) we get 1/2 6 d1(M) = d(M). But we always have d(M) 6

µ(M) = 1/2. Consequently, d(M) = 1/2. Next, suppose that n > 1
2 (b − 2)(a+ b)/b

and odd. To calculate d(M) we consider the following possible values of m.
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⊲ (1) (m = 2a + nb). Choose x such that x ≡ (m− 1)/2 (mod m). This gives

bx ≡ (m− b)/2 (mod m), and ax ≡ (m− a)/2 (mod m). Since (a + nb)x ≡ −ax

(mod m), therefore

min{|ax|m, |bx|m, |(a+ nb)x|m} =
m− b

2
.

Also it can be seen that

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− b

2

for each y; 1 6 y 6 m/2.

⊲ (2) (m = a + (n + 1)b). The proof is identical to the one in (1), and therefore

omitted. We have

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− b

2

for each y; 1 6 y 6 m/2.

⊲ (3) (m = a+ b). Observe that m is even. Now we claim that

min{|ax|m, |bx|m, |(a+ nb)x|m} 6=
m

2

for any x.

Suppose that for some x, ax ≡ −bx ≡ m/2 (mod m). This gives (a + nb)x ≡

m/2−nm/2 ≡ 0 (mod m). Hence the claim is true in this case. The other possibility

we can have is that for some x, (a + nb)x ≡ m/2 (mod m). The claim will be false

only if ax ≡ −bx ≡ m/2 (mod m). But this is not possible. Therefore, we have the

claim and hence,

min{|ay|m, |by|m, |(a+ nb)y|m} 6
m− 2

2
=

a+ b− 2

2

for each y; 1 6 y 6 m/2.

To calculate d(M) we apply the definition d3(M). Let us denote m values in (1),

(2), and (3) by m1,m2, and m3, respectively. Then

d(M) = max
(m1 − b

2m1
,
m2 − b

2m2
,
m3 − 2

2m3

)

=
m2 − b

2m2
=

a+ nb

2{a+ (n+ 1)b}
.

For, we always have 1
2 (m2 − b)/m2 > 1

2 (m1 − b)/m1, and
1
2 (m2 − b)/m2 >

1
2 (m3 − 2)/m3 if and only if 2m2 > b(a + b) if and only if n > 1

2 (b − 2)(a+ b)/b.

Thus we have the theorem. �
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5. Concluding remark

Using µ(M) forM = {a, b, a+nb} is a generalization of µ(M) forM = {a, b, a+b}

which was discussed earlier by Rabinowitz and Proulx [11], Gupta [2], and Liu and

Zhu [5]. We are unable to calculate the values or bounds of µ(M) for some finite

number of odd integers n.

A c k n ow l e d g em e n t. I am very much thankful to the anonymous referee for

his/her useful remarks for the improvement of the paper.
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