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Abstract. An explicit representation for ideal CR submanifolds of a complex hyperbolic
space has been derived in T. Sasahara (2002). We simplify and reformulate the representa-
tion in terms of certain Kähler submanifolds. In addition, we investigate the almost contact
metric structure of ideal CR submanifolds in a complex hyperbolic space. Moreover, we
obtain a codimension reduction theorem for ideal CR submanifolds in a complex projective
space.
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1. Introduction

In [9], the author derived a representation formula for ideal CR submanifolds

with rank one totally real distribution in a complex hyperbolic space CHm, under

the condition that the shape operator with respect to the distinguished vector field

has constant principal curvatures. The formula is described in terms of CR sub-

manifolds whose second fundamental forms take certain special forms in a complex

pseudo-Euclidean space. However, it is complicated. We simplify and reformulate

the formula in terms of Kähler submanifolds. By virtue of the simplified represen-

tation formula, the geometric meaning of the formula derived in [9] is clarified, and

moreover a rich family of ideal CR submanifolds in CHm can be obtained.

On the other hand, a CR submanifold with rank one totally real distribution

in a Kähler manifold M has an almost contact metric structure which is naturally

induced from the almost complex structure of M . We prove that each ideal CR

submanifold of CHm investigated in [9] admits a Sasakian structure.
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We also obtain a codimension reduction theorem for ideal CR submanifolds in

a complex projective space CPm. As a corollary, we show that every 3-dimensional

ideal proper CR submanifold in CPm must be contained in CP 2. This is contrary

to the case of CHm where there exist a great many linearly full 3-dimensional ideal

proper CR submanifolds whose codimensions are greater than one.

2. Preliminaries

2.1. δ-invariants. Let M be an n-dimensional Riemannian manifold. Denote

by K(π) the sectional curvature of M associated with a plane section π ⊂ TpM ,

p ∈ M . For any orthonormal basis {e1, . . . , en} of the tangent space TpM , the scalar

curvature τ at p is defined by

τ(p) =
∑

i<j

K(ei ∧ ej).

Let L be a subset of TpM of dimension r > 2 and {e1, . . . , en} an orthonormal basis
of L. We define the scalar curvature τ(L) of the r-plane section L by

τ(L) =
∑

α<β

K(eα ∧ eβ), 1 6 α, β 6 r.

For an integer k > 0, denote by S (n, k) the finite set which consists of unordered

k-tuples (n1, . . . , nk) of integers > 2 satisfying n1 < n and n1+ . . .+nk 6 n. Denote

by S (n) the set of k-tuples with k > 0 for a fixed n.

For each k-tuple (n1, . . . , nk) ∈ S (n), B.Y.Chen introduced the notion of the

δ-invariants δ(n1, . . . , nk), as follows:

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + . . .+ τ(Lk)},

where L1, . . . , Lk runs over all k mutually orthogonal subspaces of TpM such that

dimLj = nj , j = 1, . . . , k.

Let Ric denote the maximum Ricci curvature function on M defined by

Ric(p) = max{S(X,X) ; X ∈ T 1
pM},

where S is the Ricci tensor and T 1
pM is the unit tangent vector space of M at p.

Then we have δ(n− 1)(p) = Ric(p).

We put δk(λ) = δ(λ, . . . , λ) (λ appears k times).

80



2.2. Kählerian δ-invariants. Let M be a (real) 2n-dimensional Kähler mani-

fold. For a k-tuple (2n1, . . . , 2nk) ∈ S (2n), Chen also introduced the Kählerian

δ-invariants δc(2n1, . . . , 2nk) by

δc(2n1, . . . , 2nk)(p) = τ(p) − inf{τ(Lc
1) + . . .+ τ(Lc

k)},

where Lc
1, . . . , L

c
k run over all k mutually orthogonal complex subspaces of TpM such

that dimLj = 2nj , j = 1, . . . , k.

We put δck(λ) = δc(λ, . . . , λ) (λ appears k times).

2.3. General inequalities for submanifolds in complex space forms.

Denote by M̃m(4ε) a complex space form of constant holomorphic sectional cur-

vature 4ε and complex dimension m. Every complete simply connected complex

space form M̃m(4ε) is holomorphically isometric to the complex projective space

CPm(4ε), complex Euclidean space C
m or complex hyperbolic space CHm(4ε)

according as ε > 0, ε = 0 or ε < 0, respectively.

Let M be an n-dimensional submanifold in M̃m(4ε) and let J be the complex

structure of M̃m(4ε). For any vector X tangent to M , we put JX = PX + FX ,

where PX and FX are the tangential and normal components of JX , respectively.

For a subspace L ⊂ TpM of dimension r, we put

Ψ(L) =
∑

16i<j6r

〈Pui, uj〉2 ,

where {u1, . . . , ur} is an orthonormal basis of L.
For each (n1, . . . , nk) ∈ S (n), let c(n1, . . . , nk) and b(n1, . . . , n) be the constants

given by

c(n1, . . . , nk) =

n2
(

n+ k − 1−
k
∑

j=1

nj

)

2
(

n+ k −
k
∑

j=1

nj

)

,

b(n1, . . . , nk) =
1

2

(

n(n− 1)−
k
∑

j=1

nj(nj − 1)

)

.

Denote by H the mean curvature vector field of M in M̃m(4ε). Then we have

the following general inequalities involving the δ-invariants and the squared mean

curvature |H |2 (cf. [3]):
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Proposition 2.1. Given an n-dimensional submanifold M in a complex space

form M̃m(4ε), we have

(2.1) τ −
k

∑

i=1

τ(Li) 6 c(n1, . . . , nk)|H |2 + b(n1, . . . , nk) +
3

2
|P |2ε− 3ε

k
∑

i=1

Ψ(Li)

for any k-tuple (n1, . . . , nk) ∈ S (n). The equality case of inequality (2.1) holds at

a point p ∈ M if and only if there exists an orthonormal basis {e1, . . . , e2m} at p
such that

(a) Lj = Span{en1+...+nj−1+1, . . . , en1+...+nj
}

(b) the shape operators of M in M̃m(4ε) at p take the forms

Aer =











Ar
1 . . . 0
...
. . .

... 0

0 . . . Ar
k

0 µrI











, r = n+ 1, . . . , 2m,

where I is the identity matrix and each Ar
j is a symmetric nj × nj submatrix such

that

trace(Ar
1) = . . . = trace(Ar

k) = µr.

By using Proposition 2.1, we have the following general inequalities for Kähler

submanifolds in complex space forms (cf. [4]).

Proposition 2.2. Let M be a 2n-dimensional Kähler submanifold in a complex

space form M̃m(4ε). Then we have

(2.2) δc(2n1, . . . , 2nk) 6 2

(

n(n+ 1)−
k

∑

j=1

nj(nj + 1)

)

ε.

The equality case of inequality (2.2) holds at a point p ∈ M if and only if there exists

an orthonormal basis {e1, . . . , e2m} at p such that e1, . . . , e2n are tangent to M and

e2l = Je2l−1 (1 6 l 6 k) and, moreover, the shape operators of M in M̃m(4ε) at p

take the forms

Aer =











Ar
1 . . . 0
...
. . .

... 0

0 . . . Ar
k

0 0











, r = 2n+ 1, . . . , 2m,

where each Ar
j is a symmetric (2nj)× (2nj) submatrix satisfying trace(A

r
j) = 0.
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A 2n-dimensional Kähler submanifold is said to be δc(2n1, . . . , 2nk)-ideal if it sat-

isfies the equality case of (2.2) identically for some k-tuple (2n1, . . . , 2nk) ∈ S (2n).

For more information about δ-invariants and ideal submanifolds, see [4].

2.4. General inequalities for CR submanifolds in non-flat complex space

forms. Let M be a pseudo-Riemannian submanifold of a pseudo-Kähler manifold

M̃ and let J be the complex structure of M̃ . A submanifold M is called a CR

submanifold if there exists a differentiable holomorphic distribution H (i.e. JH =

H ) on M such that its orthogonal complement H ⊥ is totally real, i.e., JH ⊥ ⊂
T⊥M , where T⊥M denotes the normal bundle of M . A unit normal vector field

N ∈ JH ⊥ is called the distinguished normal vector field if dimH ⊥ = 1. A CR

submanifold is said to be proper if rankH > 0 and rankH ⊥ > 0. Denote by ν the

orthogonal complement of JH ⊥ in T⊥M .

By using Proposition 2.1, we have the following general inequalities for CR sub-

manifolds in non-flat complex space forms.

Proposition 2.3. LetM be an n-dimensional CR submanifold with dimH = 2h

in CHm(−4). Then we have

(2.3) δ(n1, . . . , nk) 6 c(n1, . . . , nk)|H |2 − b(n1, . . . , nk)− 3h+
3

2

k
∑

j=1

nj .

Equality sign in (2.3) holds at a point p ∈ M for some (n1, . . . , nk) ∈ S (n) if and

only if there exists an orthonormal basis {e1, . . . , e2m} at p such that
(a) Lj := Span{en1+...+nj−1+1, . . . , en1+...+nj

} satisfy Ψ(Lj) = nj/2 for 1 6 j 6 k,

(b) the shape operators of M in CHm(−4) at p take the forms

(2.4) Aer =











Ar
1 . . . 0
...
. . .

... 0

0 . . . Ar
k

0 µrI











, r = n+ 1, . . . , 2m,

where I is the identity matrix and each Ar
j is a symmetric nj × nj submatrix such

that

(2.5) trace(Ar
1) = . . . = trace(Ar

k) = µr.

Proposition 2.4. LetM be an n-dimensional CR submanifold in CPm(4). Then

we have

(2.6) δ(n1, . . . , nk) 6 c(n1, . . . , nk)|H |2 + b(n1, . . . , nk) + 3h.
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Equality sign in (2.6) holds at a point p ∈ M for some (n1, . . . , nk) ∈ S (n) if and

only if there exists an orthonormal basis {e1, . . . , e2m} at p such that
(a) Lj := Span{en1+...+nj−1+1, . . . , en1+...+nj

} satisfy Ψ(Lj) = 0 for 1 6 i 6 k,

(b) the shape operators of M in CPm(4) at p satisfy (2.4) and (2.5).

An n-dimensional CR submanifold in CHm(−4) or CPm(4) is said to be δ(n1, . . . ,

nk)-ideal if it satisfies the equality case of (2.3) or (2.6) identically for some k-tuple

(n1, . . . , nk) ∈ S (n), respectively.

A submanifold is said to be linearly full in M̃m(4ε) if it does not lie in any totally

geodesic Kähler hypersurfaces of M̃m(4ε).

3. Ideal CR submanifolds in a complex hyperbolic space

3.1. Explicit representation. Let Cm+1
1 be the complex number (m+1)-space

endowed with the complex coordinates (z0, . . . , zm), the pseudo-Euclidean metric

given by g̃ = − dz0 dw0+
m
∑

i=1

dzi dwi and the standard complex structure J0. For ε <

0, we put H2m+1
1 (ε) = {z ∈ C

m+1
1 ; 〈z, z〉 = 1/ε}, where 〈 , 〉 denotes the inner prod-

uct on C
m+1
1 induced from g̃. On H2m+1

1 (ε) we consider the following tensor fields:

ϕ = s ◦ J0, ξ =
√
−εJ0z, η(X) =

√
−εg(J0z,X), where s : TzC

m+1
1 → TzH

2m+1
1 (ε)

denotes the orthogonal projection and g is the induced metric from C
m+1
1 . Then the

quadruplet (ϕ, ξ, η, g) defines an almost contact structure on H2m+1
1 (ε). The Hopf

fibration is given by

Π{m,ε} : H2m+1
1 (ε) → CHm(4ε) : z 7→ z · C∗.

Let z : M → H2m+1
1 (ε) ⊂ C

m+1
1 be an isometric immersion such that iz is tangent

to M . ThenM is a CR submanifold with H ⊥ = Span{iz} in Cm+1
1 if and only if M

is an invariant submanifold in H2m+1
1 (ε), i.e., ϕ(TM) ⊂ TM . For a vector field X

tangent to CHm(4ε), we denote the horizontal lift of X by X∗. Since (JX)∗ = ϕX∗

holds, we have the following:

Lemma 3.1. Let N be a submanifold in CHm(4ε). Then Π−1
{m,ε}(N) is a CR

submanifold in Cm+1
1 with H ⊥ = Span{iz} if and only if N is a Kähler submanifold

in CHm(4ε), where z is the position vector of Π−1
{m,ε}(N) in C

m+1
1 .

Denote by h and h̃ the second fundamental forms of the immersions i : N →
CHm(4ε) and ĩ : Π−1

{m,ε}(N) → C
m+1
1 , respectively. Then we have the following

(cf. [5]):

(3.1) h̃(X∗, Y ∗) = (h(X,Y ))∗ − ε 〈X,Y 〉 z, h̃(X∗, iz) = (FX)∗, h̃(iz, iz) = −z,

for all vectors X and Y tangent to N .
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Let M be a linearly full (2n + 1)-dimensional δk(2n/k)-ideal CR submanifold in

CHm(−4) such that dimH
⊥ = 1, m > n+ 1 and n/k ∈ Z− {1}. Assume that the

shape operator with respect to the distinguished normal vector field has constant

principal curvatures. Then, up to rigid motions of CHm(−4), the immersion of M

into CHm(−4) is given by (see [9, Theorem 1])

Π{m,−1}

(

f(x1, y1, . . . , xn, yn)e
−(1−α2)is,

α√
1− α2

eit
)

,

where α =
√

k/(2n− k) and z1(x1, y1, . . . , xn, yn, s) := f(x1, y1, . . . , xn, yn)×
e−(1−α2)is is a CR submanifold in C

m
1 which satisfies

(3.2) 〈f, f〉 = α2 − 1

and the following condition: There exists an orthonormal frame {E1, . . . , E2n, E2n+1}
on z1 such that E2r = iE2r−1 for r ∈ {1, . . . , n}, E2n+1 = (1/

√
1− α2)∂/∂s and the

second fundamental form h̃ of z1 in C
m−1
1 satisfies

(3.3) h̃(E2r−1, E2r−1) =
√

1− α2iE2n+1 + ϕ̃r ξ̃r,

h̃(E2r, E2r) =
√

1− α2iE2n+1 − ϕ̃r ξ̃r,

h̃(E2r−1, E2r) = iϕ̃r ξ̃r,

h̃(E2n+1, E2n+1) = −
√

1− α2iE2n+1,

h̃(Xi, Xj) = h̃(Xi, E2n+1) = 0 (i 6= j),

where ϕ̃r = ϕ̃r(x1, y1 . . . , xn, yn, s) are functions, ξ̃r are normal vector fields perpen-

dicular to iE2n+1, and Xi ∈ Span{E(2n(i−1)/k)+1, . . . , E2ni/k} for i ∈ {1, . . . , k}.
By Proposition 2.2, Lemma 3.1, (3.1), (3.2) and (3.3), we see that Π{m−1,α2−1}◦z1

is a 2n-dimensional δck(2n/k)-ideal Kähler submanifold in CHm−1(4α2 − 4). There-

fore, we can simplify and reformulate (2) of Theorem 1 in [9] as (2) of the following

theorem.

Theorem 3.1. Let M be a linearly full (2n+ 1)-dimensional δ(n1, . . . , nk)-ideal

CR submanifold in CHm(−4) such that dimH ⊥ = 1, k > 1 and m > n + 1.

Assume that the shape operator with respect to the distinguished normal vector

field has constant principal curvatures. Then, up to rigid motions of CHm(−4), the

immersion of M into CHm(−4) is given by the composition Π{m,−1} ◦ z, where z is
one of the following:

(1) k = n, n1 = . . . = nn = 2, and

z =
(

− 1− 1

2
|Ψ|2 + iu,−1

2
|Ψ|2 + iu,Ψ

)

eit,

where Ψ is a 2n-dimensional δcn(2)-ideal Kähler submanifold in C
m−1.
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(2) n/k ∈ Z− {1}, n1 = . . . = nk = 2n/k, and

z =

(

Π−1

{m−1, 2k−2n
2n−k

}
(Ψ),

√

k

2n− k
eit

)

,

where Ψ is a 2n-dimensional δck(2n/k)-ideal Kähler submanifold in CHm−1(8k−8n
2n−k ).

If n > 1, k = 1 and n1 = 2n, then (3.3) is satisfied automatically. By noting that

δ(2n)(p) = Ric(p), we reobtain the representation formula in [8].

Corollary 3.1. Let M be a linearly full (2n + 1)-dimensional δ(2n)-ideal CR

submanifold in CHm(−4) such that dimH ⊥ = 1, n > 1 andm > n+1. Assume that

the shape operator with respect to the distinguished normal vector field has constant

principal curvatures. Then, up to rigid motions of CHm(−4), the immersion of M

into CHm(−4) is given by

Π{m,−1}

(

Π−1

{m−1, 2−2n
2n−1

}
(Ψ),

√

1

2n− 1
eit

)

,

where Ψ is a 2n-dimensional Kähler submanifold in CHm−1(8−8n
2n−1 ).

Let N be a 2n-dimensional Kähler hypersurface in a complex space form. Let V

and JV be normal vector fields of N . By virtue of AJV = JAV and JAV = −AV J ,

we can choose an orthonormal basis {e1, Je1, . . . , en, Jen} of TpN with respect to

which the shape operators AV and AJV take the following form:

(3.4) AV =















λ1 0

−λ1

. . .

λn

0 −λn















, AJV =















0 λ1 0

λ1 0
. . .

0 λn

0 λn 0















.

By Proposition 2.2 and (3.4), we see that every Kähler hypersurface in a complex

space form is δck(2n/k)-ideal for any natural number k such that n/k ∈ Z. Accord-

ingly, there exist many CR submanifolds which are described in Theorem 3.1.

3.2. Almost contact metric structure. A differentiable manifold M is called

an almost contact manifold if it admits a unit vector field ξ, a one-form η and

a (1, 1)-tensor field ϕ satisfying

η(ξ) = 1, ϕ2 = −I + η ⊗ ξ.

Every almost contact manifold admits a pseudo-Riemannian metric g satisfying

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).
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The quadruplet (ϕ, ξ, η, g) is called an almost contact metric structure. An almost

contact metric structure is said to be normal if the tensor field S defined by

S(X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ] + 2 dη(X,Y )ξ

vanishes identically. A normal almost contact structure is said to be Sasakian if it

satisfies

dη(X,Y ) =
1

2
(X(η(Y ))− Y (η(X))− η([X,Y ])) = g(X,ϕY ).

Let M be a CR submanifold with dimH ⊥ = 1 in a complex space form. We

define a one-form η by η(X) = g(U,X), where U is a unit tangent vector field lying

in H ⊥, and g is an induced metric on M . We put U = (1/
√
r)U , η =

√
rη and

g = rg for a positive constant r. Then the quadruplet (P,U, η, g) defines an almost

contact structure on M (cf. [6, p. 96]).

Each almost contact structure (P,U, η, g) of the CR submanifold described in

Theorem 3.1 is normal (cf. [9]). Moreover, we have the following:

Proposition 3.1. An almost contact structure (P,U, η, g) with r =
√

k/(2n− k)

on a CR submanifold in Theorem 3.1 becomes a Sasakian structure. In particular,

in the case of (1), the structure is Sasakian with respect to the induced metric.

P r o o f. A unit normal vector field JU of a CR submanifold in Theorem 3.1 is

parallel (see [9]). Hence, we have (see [6, (15.27)])

(3.5) ∇XU = PAJUX,

where ∇ is the Levi-Civita connection of M .
By Lemma 7 of [9], we know that there exists an orthonormal frame {e1, . . . , e2m}

such that e2r = Je2r−1 for r ∈ {1, . . . , n}, e2n+1 ∈ H ⊥ and the second fundamental

form takes the following form:

h(e2r−1, e2r−1) =

√

k

2n− k
Je2n+1 + ϕrξr,

h(e2r, e2r) =

√

k

2n− k
Je2n+1 − ϕrξr,

h(e2r−1, e2r) = ϕrJξr,

h(e2n+1, e2n+1) =
2n

√

k(2n− k)
Je2n+1,

h(ui, uj) = h(ui, e2n+1) = 0 (i 6= j),

where ϕr are functions, ξr ∈ ν and uj ∈ Span{en1+...+nj−1+1, . . . , en1+...+nj
}.

From this and (3.5), we get dη(X,Y ) = g(X,PY ) for all vector fieldsX , Y tangent

to the CR submanifold. �
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4. Ideal CR submanifolds in a complex projective space

Let M be an n-dimensional δ(n1, . . . , nk)-ideal CR submanifold in CPm(4). Let

Lj be subspaces of TpM defined in (a) of Proposition 2.4. Define the subspace Lk+1

by Lk+1 = Span{en1+...+nk+1, . . . , en}. Obviously, we have TpM = L1 ⊕ . . .⊕ Lk+1.

We denote by Li the distribution generated by Li.

We have the following codimension reduction theorem.

Theorem 4.1. Let M be an n-dimensional δ(n1, . . . , nk)-ideal CR submanifold

with dimH
⊥ = 1 in CPm(4). If H

⊥ ⊂ Li for some i ∈ {1, . . . , k + 1}, then M is

contained in a totally geodesic complex submanifold CP (n+1)/2(4) in CPm(4).

P r o o f. Let M be an n-dimensional δ(n1, . . . , nk)-ideal CR submanifold with

dimH ⊥ = 1 in CPm(4). Let {e1, . . . , en} be an orthonormal frame of M satisfying

(a) and (b) in Proposition 2.4 at each point. Assume that H ⊥ ⊂ Li for some

i ∈ {1, . . . , k + 1}.
Case (i): H ⊥ ⊂ Li for some i ∈ {1, . . . , k}. In this case, we may assume that

H ⊥ ⊂ L1 and e1 ∈ H ⊥. Due to [1], [2] we have

(4.1) AV X = AJV JX

for vector fields X ∈ H and V ∈ ν. Since es ∈ H for s 6= 1 and Ψ(Lj) = 0 for

j = 1, . . . , k, it follows from (4.1) that

(4.2) 〈AV es, et〉 = 〈AJV Jes, et〉 = 0

for any s, t ∈ {2, . . . , n} and V ∈ ν. By Proposition 2.4 and (4.2), we get

(4.3) 〈AV e1, e1〉 = 0.

Since ∇̃J = 0 for the Levi-Civita connection ∇̃ of CPm(4) holds, by using the

formula of Gauss, we obtain that for r ∈ {2, . . . , n1}

0 = (∇̃e1J)(er) = (∇̃e1Jer)− J(∇̃e1er)

= ∇e1Jer + h(e1, Jer)− J(∇e1er)− Jh(e1, er)

= ∇e1Jer − J(∇e1er)− Jh(e1, er),

where h is the second fundamental form. This implies that h(e1, er) ∈ JH ⊥. Hence,

it follows from (4.2) and (4.3) that AV = 0 for any V ∈ ν.

88



On the other hand, by the formulas of Gauss and Weingarten, we have

−AJe1X +DX(Je1) = ∇̃X(Je1) = J(∇Xe1) + Jh(X, e1).

This yields that DX(Je1) ∈ JH
⊥ for any X ∈ TM . Since JH

⊥ is of rank one

and Je1 is of unit length, we obtain that D(Je1) = 0. Therefore, by applying

the codimension reduction theorem for real submanifolds of a complex projective

space [7], we conclude that M must be contained in CP (n+1)/2(4).

Case (ii): H ⊥ ⊂ Lk+1. In this case, we may assume that en ∈ H ⊥. Similarly

to the case of (i), by applying (4.1), Proposition 2.4 and the formulas of Gauss and

Weingarten, we have AV = 0 for any V ∈ ν and D(Jen) = 0, which implies that M

must be contained in CP (n+1)/2(4). �

Corollary 4.1. Let M be a 3-dimensional δ(2)-ideal proper CR submanifold in

CPm(4). Then M is contained in CP 2(4).

P r o o f. LetM be a 3-dimensional δ(2)-ideal proper CR submanifold in CPm(4).

Clearly, dimH ⊥ = 1. Let {e1, e2, e3} be an orthonormal frame of M satisfying

(a) and (b) in Proposition 2.4 at each point. For a vector field U ∈ H ⊥, we put

U = αe1 + βe2 + γe3 for some functions α, β and γ. It follows from 〈Je1, e2〉 = 0

that α2 + β2 6= 0 and γ 〈Je3, e1〉 = γ 〈Je3, e2〉 = 0, which implies γ = 0. Therefore,

by applying Theorem 4.1, we obtain the statement. �

Remark 4.1. A real hypersurface M in a complex space form is called a Hopf

hypersurface if JV is a principal curvature vector, where V is a unit normal vector

of M . All the δk(2)-ideal Hopf hypersurfaces in non-flat complex space forms have

been determined in [3].

Remark 4.2. In contrast to the case of CPm(4), there exist a great many linearly

full 3-dimensional δ(2)-ideal proper CR submanifolds in CHm(−4) with m > 2 (see

(1) of Theorem 3.1).
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