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Abstract. We study recurrence and non-recurrence sets for dynamical systems on compact
spaces, in particular for products of rotations on the unit circle T. A set of integers is called
r-Bohr if it is recurrent for all products of r rotations on T, and Bohr if it is recurrent for all
products of rotations on T. It is a result due to Katznelson that for each r > 1 there exist sets
of integers which are r-Bohr but not (r+1)-Bohr. We present new examples of r-Bohr sets
which are not Bohr, thanks to a construction which is both flexible and completely explicit.
Our results are related to an old combinatorial problem of Veech concerning syndetic sets
and the Bohr topology on Z, and its reformulation in terms of recurrence sets which is due
to Glasner and Weiss.
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1. Introduction

The general topic of this paper is the study of recurrence and non-recurrence sets

for dynamical systems. In the topological setting, recurrence sets are defined as

follows: a dynamical system is a triple (X, d, f), where (X, d) is a compact metric

space for the distance d and f is a continuous map of (X, d) into itself. If (nk)k>0 is

a strictly increasing sequence, we say that {nk} is a recurrence set (or a Birkhoff set)

if for any dynamical system (X, d, f) and any ε > 0 there exists a point x ∈ X and

a k > 0 such that d(fnk(x), x) < ε, where fn = f ◦ . . . ◦ f (n times) denotes the nth

iterate of f . In the measure-theoretic setting, recurrence sets, which are often called

The first author was partially supported by ANR-Projet Blanc DYNOP.
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Poincaré sets in this context, are defined in this way: {nk} is a recurrence set if for

any probability space (X,B, m) and any measure-preserving transformation T of X ,

there exists for any set A ∈ B with m(A) > 0 a k > 0 such that m(T nkA ∩ A) > 0.

It is not difficult to see that any Poincaré set is a Birkhoff set: indeed, if {nk}

is not a Birkhoff set, let (X, d, f) be a dynamical system such that for some ε > 0,

d(fnk(x), x) > ε for any k > 0 and any x ∈ X . Without loss of generality, (X, d, f)

can be supposed to be a minimal system, and hence there exists a probability measure

m on X whose support is X and which is invariant by f . There exists then a non-

empty open set U in X such that fnk(U) ∩ U = ∅ for any k > 0. As m(U) > 0, it

follows that {nk} is not a Poincaré set. The converse assertion is not true: there are

Birkhoff sets which are not Poincaré sets [14], see also [20].

Recurrence is a central topic in the study of dynamical systems, and we refer the

reader to one of the classical books [19] or [16] for the basic facts, and to the works

[7], [6], [9] or [10] for a deeper study of various recurrence properties, as well as their

applications to number theory and combinatorics.

In the rest of the paper, we say that {nk} is a recurrence set for the dynamical

system (X, d, f) if for all ε > 0 there exists k > 0 and x ∈ X such that d(fnk(x), x) <

ε, and that it is a recurrence set in the ergodic sense for (X, m, T ) if for any A ∈ B

with m(A) > 0 there exists a k > 0 such that m(T nkA ∩ A) > 0.

Standard examples of recurrence sets (besides the obvious example of the set {k})

are the set of squares {k2}, or more generally the sets of the form {p(k)} where

p is a polynomial taking integer values on integers with p(0) = 0, difference sets

D − D where D is any infinite set in N, thick sets (i.e. sets containing arbitrarily

long intervals), the sets P − 1 and P + 1, where P denotes the set of primes, or

more generally the so called van der Corput (vdC) sets. See, for instance [17, p. 109]

or [4] for more information on vdC sets. Some generalized polynomials also yield

recurrence sets, see [3].

The starting point of this paper is an old problem in combinatorial number theory

which is to know whether any difference set S − S, where S is a subset of Z with

bounded gaps, must contain a Bohr neighborhood of zero. It is known by a result of

Veech [18] that this is true up to a set of density zero, but it is not known whether

this set can be dispensed with. It is shown by Glasner in [8] and Boshernitzan and

Glasner in [5] (see also the papers [10] by Glasner and Weiss and [20] by Weiss) that

this problem is equivalent to the following question concerning recurrence sets:

Question 1.1 ([8], [10], [5], [20]). If {nk} is a recurrence set for all finite products

of circle rotations, is it a recurrence set?

In the whole paper, we will call a finite product of rotations a transformation of

the form Rλ1 × . . . × Rλr
on Tr for some integer r > 1, where for each λ ∈ T, Rλ
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denotes the multiplication by λ. So for each r-tuple (µ1, . . . , µr) ∈ Tr,

Rλ1 × . . . × Rλr
(µ1, . . . , µr) = (λ1µ1, . . . , λrµr).

Question 1.1 was studied in several papers, for instance in [8], [20], [5], [15] and

[13] (where an equivalent formulation in terms of Cayley numbers of graphs is given).

Sets which are recurrent for all finite products of circle rotations are called Bohr sets.

If r is a positive integer, a set which is recurrent for all products of r rotations on

Tr is called r-Bohr. In view of Question 1.1, it comes as a natural problem to ask

whether an r-Bohr set is necessarily a Bohr set. It was shown by Katznelson in [13]

that it is not the case. More precisely, the following result was proved in [13]:

Theorem 1.2 ([13]). Let r > 1. For each (r +1)-tuple (λ1, . . . , λr+1) of elements

of T, λj = e2iπθj , θj ∈ [0, 1) with (θ1, . . . , θr+1) Q-independent, and for each δ ∈

(0, 1), the set

Dδ
λ1,...,λr+1

=
{
n > 0; min

j=1,...,r+1
|λn

j + 1| < δ
}

is an r-Bohr set which is not (r + 1)-Bohr.

The sets Dδ
λ1,...,λr+1

are “large” sets in the sense that they have positive density. It

is possible to obtain from Theorem 1.2 many Bohr sets: given a sequence (δr)r>1 of

numbers in (0, 1) and families ((λ1,r, . . . , λr+1,r))r>1, the set D =
⋃

r>1

Dδr

λ1,r ,...,λr+1,r

is obviously a Bohr set. However, it is clear that the set D is a Poincaré set: for

each r > 1, the (r + 1)-tuple (λ1,r, λ
2
2,r . . . , λr+1

r+1,r) is Q-independent in the sense of

Theorem 1.2, and thus the set Dδr

λ1,r ,...,λr+1,r
contains, for some q > 1, the integers

q, 2q, . . . , (r +1)q. This implies that for any measure-preserving transformation T of

a probability space (X,B, m), any set A ∈ B which is such that m(T nA∩A) = 0 for

each n ∈ Dδr

λ1,r ,...,λr+1,r
is such that m(A) < 1/r. The existence of such sequences

(q, 2q, . . . , (r+1)q) comes from the particular structure of the sets Dδr

λ1,r ,...,λr+1,r
, and

it is natural to wonder whether it is possible to construct other kinds of r-Bohr sets

which are not Bohr, which would have a different arithmetical structure and come

closer to a potential counterexample to Question 1.1. It is the aim of this paper to

provide an alternative construction of r-Bohr sets which are not Bohr, which has the

advantage over the construction of [13] to be both flexible and explicit. Our main

result can be stated as follows:

Theorem 1.3. For each r > 1 there exist sets {n
(r)
k } of integers of density zero

which are r-Bohr but not (2r−1 + 1)-Bohr, and which have the following structure:

{n
(r)
k } = {n

(r)
k,0} ∪

⋃

A⊆{1,...,r−1}

{n
(r)
k,A},
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where

{n
(r)
k,0} =

⋃

N>1

B
(r)
N,0 and {n

(r)
k,A} =

⋃

N>1

B
(r)
N,A, A ⊆ {1, . . . , r − 1}

and

B
(r)
N,0 = {HNq + 1; 1 6 q 6 Q

(r)
N },

B
(r)
N,∅ = {HN∆

(r)
N,∅},

B
(r)
N,A = {HN∆

(r)
N,A(LN j + 1); 1 6 j 6 Θ

(r)
N },

where (LN )n>1 is a rapidly growing sequence of integers, (∆
(r)
N,A)N>1, (Θ

(r)
N )N>1 and

(Q
(r)
N )N>1 are sequences of integers depending on (LN )N>1, and (HN )N>1 is a very

rapidly increasing sequence of integers independent of all the other parameters.

The arithmetic structure of the sets {n
(r)
k } is very explicit, and one can construct

many examples of Bohr sets from them. But contrary to the sets from [13], for

most choices of parameters in the construction it is not clear whether these sets are

recurrent sets or not. So our construction does not solve Question 1.1, but highlights

how delicate this question is.

The paper is organized as follows: Section 2 is devoted to the proof of Theorem 1.3

in the case where r = 1 (here it is completely elementary). The proof of Theorem 1.3

for general r is the object of Sections 3 and 4. Lastly, we construct in Section 5

some Bohr sets obtained from Theorem 1.3, and present some final comments and

remarks.

2. Proof of Theorem 1.3 for r = 1

Let us begin by recalling what we want to prove: we are looking for a set {nk}

of the form given in Theorem 1.3 which is recurrent for all circle rotations, i.e. such

that

for any λ ∈ T, any ε > 0, there exists a k such that |λnk − 1| < ε,

but which is not recurrent for all products of two circle rotations, i.e. for which there

exist µ0, µ1 ∈ T and δ > 0 such that

for any k > 0, max(|µnk

0 − 1|, |µnk

1 − 1|) > δ.

We will use the following notation

M1 = inf
{θ}6=0

|e2iπθ − 1|

{θ}
and M2 = sup

{θ}6=0

|e2iπθ − 1|

{θ}
.
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We will denote by ⌊θ⌋ the integer part of the real number θ, and by {θ} its distance

to Z. We will also need the following simple fact:

Lemma 2.1. There exist two universal constants C, C′ > 1 such that for any

γ > 0 and ε > 0, for any µ ∈ T, the following holds:

if γ < |µ−1| < ε, then for any ν ∈ T there exists an integer p with 1 6 p 6 ⌊C′/γ⌋

such that |µp − ν| 6 Cε.

P r o o f of Lemma 2.1. Write µ as µ = e2iπθ, |θ| 6 1/2. Without loss of generality,

we can suppose that θ > 0. We have M1θ 6 |e2iπθ − 1| 6 M2θ, and thus γ/M2 <

θ < ε/M1. Let κ = ⌊M2/γ⌋. Since {θ} > 1/κ, the fractional parts of the κ numbers

θ, 2θ, . . . , κθ form a θ-net of (0, 1): for any α ∈ R there exists a p with 1 6 p 6 κ

such that {pθ − α} 6 θ < ε/M1. Hence

|e2iπpθ − e2iπα| 6 M2
ε

M1
,

and this proves Lemma 2.1 with C = M2/M1 and C′ = M2. �

Let us now prove the following lemma:

Lemma 2.2. For any ε > 0 there exist two positive integers Σ, Θ > 1 such that

for any µ, ν ∈ T, one of the following two assertions is true: either

(1) |µΣ − 1| < ε

or

(2) there exists a j ∈ {1, . . . , Θ} such that |µj − ν| < ε.

P r o o f of Lemma 2.2. The idea of the proof can be summarized as follows: define

an integer κ as κ = ⌊4πCC′/ε⌋. If µl is not too close to 1 for some l ∈ {1, . . . , κ},

then by Lemma 2.1 any element of T (in particular ν) can be ε-approximated by

a power of µ which is not too large, and (2) is true. If µl is too close to 1 for each

l ∈ {1, . . . , κ}, then (1) holds. Let us now be more precise, and consider the quantity

γ = min
l=1,...,κ

|µl − 1|. By the Dirichlet principle, we know that γ 6 M2/κ < ε/C since

M2 = C′. There are two cases to consider.

Case 1 : we have γ < 1
4 (ε/πC)(1/κ!).

This means that there exists an l ∈ {1, . . . , κ} such that |µl − 1| < 1
4 (ε/πC)(1/κ!).

Since 1 6 l 6 κ, l divides κ!, and so it makes sense to write

|(µl)κ!/l − 1| = |µκ! − 1| <
κ!

l

ε

4πC

1

κ!
6

ε

4πC
·

So (1) is true with Σ = κ!.
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Case 2 : we have γ > 1
4 (ε/πC)(1/κ!).

This implies that there exists an l ∈ {1, . . . , κ} such that

ε

4πC

1

κ!
6 |µl − 1| 6 γ <

ε

C
.

By Lemma 2.1, there exists an integer p ∈ {1, . . . , ⌊(4πCC′/ε)κ!⌋} such that

|µlp − ν| < ε.

Since 1 6 lp 6 κ⌊(4πCC′/ε)κ!⌋ we get, setting Θ = κ⌊(4πCC′/ε)κ!⌋, a j ∈ {1, . . . , Θ}

such that

|µj − ν| < ε

and (2) is true. Lemma 2.2 is proved. �

Remark 2.3. Let us record here for further use the expressions of Σ and Θ which

we obtained in the proof of Lemma 2.2:

Σ =
(⌊4πCC′

ε

⌋)
! and Θ =

⌊4πCC′

ε

⌋⌊4πCC′

ε

(⌊4πCC′

ε

⌋)
!
⌋
.

Observe that Θ is much larger than Σ and that given any integer A > 1, one can

ensure by taking ε sufficiently small that A divides Σ.

As a corollary of Lemma 2.2, we obtain Lemma 2.4 below, which is the key ingre-

dient for the proof of Theorem 1.3 in the 1-dimensional case:

Lemma 2.4. For any ε > 0 there exist two positive integers Σ, Θ > 1 such that

for any λ ∈ T, any integers L > 1 and H > 1, and any S ∈ Z, one of the following

two assertions is true: either

(3) |λHΣL − 1| < ε

or

(4) there exists a j ∈ {1, . . . , Θ} such that |λHLj+S − 1| < ε.

We will apply Lemma 2.4 with two values of S only: S = 1 and S = H . In the first

case the set of integers appearing in (4) is simply a shifted arithmetic progression

of step HL, and in the second case the set we get a multiple of a shifted arithmetic

progression of step L.

We are now ready for the proof of Theorem 1.3 for r = 1.
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P r o o f of Theorem 1.3 for r = 1. We construct two sets {nk,0} and {nk,1} by

induction on N and by blocks, applying repeatedly Lemma 2.4. We start by taking

ε1 = 2−1 at the first step. Lemma 2.4 gives us a Θ1 and a Σ1, then we choose L1 = 1,

S1 = 1, a large even number H1, and we take for the first Θ1 elements of the set

{nk,0} the numbers

H1 + 1, 2H1 + 1, . . . , H1Θ1 + 1

which are all odd. For the first element of the set {nk,1} we take the number H1Σ1,

which is even. Then we take ε2 = 2−2, obtain Θ2 and Σ2, then take L2 = 1, S2 = 1

and H2 very large and even (much larger than H1Θ1 in particular). We continue the

set {nk,0} with the numbers

H2 + 1, 2H2 + 1, . . . , H2Θ2 + 1,

and for the second element of the set {nk,1} we take the number H2Σ2. We continue

in this fashion:

{nk,0} =
⋃

p>1

{Hp + 1, 2Hp + 1, . . . , HpΘp + 1}

and

{nk,1} = {HpΣp ; p > 1},

where Σp and Θp result from the application of Lemma 2.4 to εp = 2−p, where

Lp = 1, Sp = 1, and the sequence (Hp) consists of even numbers and increases very

rapidly. Observe that these two sets are disjoint, since all the elements in the first

set are odd while all elements in the second set are even, and that Σp is much smaller

than Θp by Remark 2.3, so that the set {nk} = {nk,0} ∪ {nk,1} looks like this:

{nk} =
⋃

p>1

{Hp + 1, 2Hp + 1, . . . , Hp(Σp − 1) + 1, HpΣp, HpΣp + 1, . . . , HpΘp + 1}.

Now by Lemma 2.4, it is clear that for all λ ∈ T and all p > 1 there exists a k such

that |λnk − 1| < 2−p, so {nk} is a recurrence set for any rotation of T.

It remains to find µ0, µ1 ∈ T such that {nk} is not recurrent for Rµ0 × Rµ1 , and

this is not difficult thanks to the particular structure of the set {nk}. We will need

the following lemma, which is implicit in [1]:
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Lemma 2.5. There exists a positive constant M such that if (mk)k>1 is any

sequence of integers such that mk+1/mk > 2 for all k > 1, there exist uncountably

many λ ∈ T such that for all k > 1,

|λmk − 1| 6 M
mk

mk+1
.

Moreover, the set of such λ’s is 6π/m1-dense in T. In particular if mk+1/mk → +∞,

there exists an element λ ∈ T with |λ + 1| 6 6π/m1 such that λmk tends to 1 at the

rate mk/mk+1.

For completeness’ sake we provide a short proof of Lemma 2.5.

P r o o f of Lemma 2.5. For any k > 1, let Ek be the set

Ek =
{

λ = e2iπθ ∈ T ; {mkθ} ∈
[
0, 2

mk

mk+1

]}
.

The set Ek is the union of a collection of disjoint closed sub-arcs of T of length

8π/mk+1. We write this collection as {I
(k)
j }. The distance between two consecutive

sub-arcs is equal to 2π/mk − 8π/mk+1. So any arc I of T of length greater than

4π/mk + 8π/mk+1 contains two arcs of the collection {I
(k)
j }. Now observe that

8π/mk+1 > 4π/mk+1 + 8π/mk+2, because mk+2 > 2mk+1. It follows that any

arc I
(k)
j contains two disjoint arcs of the collection {I

(k+1)
j′ }, and in this way we

construct a Cantor-type subset K of (0, 1) such that for all k and all θ ∈ K, {mkθ} 6

2mk/mk+1. So any λ = e2iπθ with θ ∈ K satisfies

|λmk − 1| 6 2M2
mk

mk+1
for any k > 1.

Since any sub-arc of the set E1 contains a λ = e2iπθ with θ ∈ K, the set of such λ’s

is (2π/m1 +8π/m2)-dense in T, so it is 6π/m1-dense in T. Lemma 2.5 is proved with

M = 2M2. �

Let us now go back to the proof of Theorem 1.3. The crucial observation is that

the sequence (Hp)p>1 may be chosen as rapidly growing as we want to. Let µ0 ∈ T,

given by Lemma 2.5, be such that |µ0 + 1| 6 6π/H1 and for all p > 1,

|µ
Hp

0 − 1| 6 M
Hp

Hp+1
·

Then for any j = 1, . . . , Θp we have

|µ
Hpj
0 − 1| 6 MΘp

Hp

Hp+1
.
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If H1 > 6π and Hp+1 is sufficiently large with respect to Θp and Hp, we can ensure

that |µ
Hpj
0 − 1| 6 2−p for all p > 1 and j = 1, . . . , Θp, i.e. that |µ

Hpj+1
0 − µ0| 6 2−p.

Now |µ
Hpj+1
0 − 1| > |µ0 − 1| − 2−p > 2 − 6π/H1 − 2−p > 1/2. Hence we get that

|µ
nk,0

0 − 1| > 1/2 for all k. The argument for the construction of µ1 is similar:

Lemma 2.5 gives us a µ1 such that |µ1 + 1| 6 6π/H1 and

|µ
HpΣp−1
1 − 1| < 2−p

for all p > 1, and so |µ
HpΣp

1 − µ1| < 2−p. Hence |µ
nk,1

1 − 1| > 1
2 for all k. Putting

things together we get that for all k,

max(|µnk

0 − 1|, |µnk

1 − 1|) >
1

2
,

which is exactly what we wanted to prove. An easy modification of the proof shows

that we can replace the bound 1/2 above by any δ ∈ (0, 2) as close to 2 as we want (it

suffices to take H1 extremely large and to replace the quantities 2−p in the estimates

above by a−p, where a is some suitably large integer): for any δ ∈ (0, 2) there exists

a set {nk} which is recurrent for all rotations, but for which there exist µ0, µ1 ∈ T

such that max(|µnk

0 − 1|, |µn1
1 − 1|) > δ for all k.

Remark 2.6. We did not use the parameter L nor the parameter S of Lemma 2.4

in this construction, but they will be necessary later in the proof of Theorem 1.3.

Lemma 2.4 also gives us other examples of sequences which are recurrent for all

rotations, but not recurrent for some product of two rotations. For instance the

proof would work as well if we considered the sets

{nk,0} =
⋃

p>1

{Hp, 3Hp, . . . , Hp(2Θp + 1)} and {nk,1} = {2HpΣp; p > 1}

(Sp = Hp and Lp = 2) or

{nk,0} =
⋃

p>1

{Hp(Lpj + 1); 1 6 j 6 Θp} and {nk,1} = {HpΣpLp ; p > 1},

where (Lp) is a rapidly increasing sequence.

The proof of Theorem 1.3 in the general case uses induction on r > 2 and the

same kind of ideas, but becomes more involved as the dimension grows. In order to

make the underlying ideas of the induction clear, we will present the 2-dimensional

case first.
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3. The 2-dimensional case of Theorem 1.3

The first difficulty one encounters when trying to go from the 1-dimensional to the

2-dimensional case is that one needs a multi-dimensional analogue of the following

fact, which is the crux of the proof of Lemma 2.4: if θ ∈ (0, 1), then the numbers

e2iπθ, (e2iπθ)2, . . . , (e2iπθ)p,

where p = ⌊1/θ⌋, form a 2πθ-net of the unit circle, and an important point is the

dependence of p on θ. In the multi-dimensional case, we will use a weak form of the

following result of Kannan and Lovasz [12]:

Theorem 3.1. Let (α1, . . . , αr) be an r-tuple of real numbers, and ε > 0. Suppose

that Q is an integer such that for any r-tuple (a1, . . . , ar) of elements of Z, which

are not all zero, the following inequality holds

(5) Q

{ r∑

i=1

aiαi

}
+ ε

r∑

i=1

|ai| > c0r
2,

where c0 is some positive universal constant. Then for all (β1, . . . , βr) ∈ Rr there

exist (p1, . . . , pr) ∈ Zr and q ∈ Z with |q| 6 Q such that

|qαi − pi − βi| 6 ε for each i = 1, . . . , r.

Condition (5) quantifies “how independent” the reals (α1, . . . , αr) are, and the

size of the bound Q depends on ε and on this rate of independence. Recall that {x}

denotes the distance of the real number x to Z.

Theorem 3.1 has the following consequence (we disregard the particular expression

of the bound c0r
2, which is actually an important issue in [12]):

Corollary 3.2. For each r > 1 there exists a positive constant cr such that the

following statement holds for any (λ1, . . . , λr) ∈ Tr: if ε > 0 and Q > 1, with Q an

integer, are such that for any (a1, . . . , ar) ∈ Zr \ {(0, . . . , 0)}

(6) Q|λa1
1 λa2

2 . . . λar
r − 1| + ε

r∑

i=1

|ai| > cr,

then for any (µ1, . . . , µr) ∈ Tr there exists a q ∈ N with 1 6 q 6 Q such that

|λq
i − µi| < ε for each i = 1, . . . , r.

This is the multi-dimensional extension of Lemma 2.1 which will be needed in the

rest of the proof. Let us now go back to the 2-dimensional case.
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P r o o f of Theorem 1.3 for r = 2. As in the proof of the 1-dimensional case, we

will construct our set {nk} as a union of three sets: {nk} = {nk,0}∪ {nk,1}∪ {nk,2}.

These sets will be constructed by blocks, and they will depend on a parameter HN ,

as in the 1-dimensional case, but also on a parameter LN which will be chosen very

large at each step N : LN ≪ HN ≪ LN+1 ≪ HN+1, where the sign ≪ means that

the quantity on the right-hand side is much larger than the quantity on the left-hand

side.

The main step in the proof is to obtain an analogue of Lemma 2.4. In its state-

ment, we will use the superscript (2) to indicate that we are working with the 2-

dimensional approximation. This will simplify notation in the proof of the general

multi-dimensional approximation.

Lemma 3.3. Let ε(2) be a positive real number. There exist three integers Γ(2),

Σ(2) and Θ(2) such that if L > 1 is any integer, there exists an integer Q(2) > 1 such

that for any pair (λ1, λ2) ∈ T2 and any integer H > 1, there exists an integer n such

that

(7) |λn
1 − 1| < ε(2) and |λn

2 − 1| < ε(2)

and either

(8) n ∈ {Hq + 1; 1 6 q 6 Q(2)}

or

(9) n = HΣ(2)L

or

(10) n ∈ {HΓ(2)(Lj + 1); 1 6 j 6 Θ(2)}.

P r o o f of Lemma 3.3. Let E
(2)

ε(2) be the set of integers

E
(2)

ε(2) =
{
(a1, a2) ∈ Z

2 \ {(0, 0)} ; |a1| + |a2| <
c2

ε(2)

}
.

It is clear that if (a1, a2) does not belong to E
(2)

ε(2) , then for any (λ1, λ2) ∈ T2 and

any choice of Q(2), condition (6) in Corollary 3.2 is automatically satisfied for ε(2).

Set

Γ(2) =
((⌊ c2

ε(2)

⌋
+ 1

)
!
)2

.
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This number has the property that for any element (a1, a2) ∈ E
(2)

ε(2) , it is divisible

by a1, a2 and a1a2, provided these numbers are non-zero. Let ε(1) and δ(2) be

two very small positive numbers, which will be chosen during the proof, depending

on ε(2). Now fix (λ1, λ2) ∈ T2. As in the proof of Lemma 2.4, we have several cases

to consider, depending on whether |λHa1
1 λHa2

2 − 1| 6 δ(2) for some (a1, a2) ∈ E
(2)

ε(2)

or not.

Case 1 : there exists (a1, a2) ∈ E
(2)

ε(2) with a1a2 6= 0 such that |λHa1
1 λHa2

2 −1| 6 δ(2).

Equivalently, replacing a2 by −a2, we assume that there exists (a1, a2) ∈ E
(2)

ε(2)

with a1a2 6= 0 such that

|λHa1
1 − λHa2

2 | 6 δ(2).

Lemma 2.4 applied to ε(1) gives us two integers Σ(1) and Θ(1) such that for all λ ∈ T

and all H̃ > 1, either

|λH̃Σ(1)L − 1| < ε(1)

or

|λH̃(Lj+1) − 1| < ε(1) for some j ∈ {1, . . . , Θ(1)}.

In particular, since a1a2 6= 0 and a1a2|Γ(2), we can apply this to the integer H̃

defined by H̃ = HΓ(2)/a1a2 and to λ = λa1
1 : either

|λ
Ha1(Γ(2)/a1a2)Σ(1)L
1 − 1| < ε(1)

or

|λ
Ha1(Γ(2)/a1a2)(Lj+1)
1 − 1| < ε(1) for some j ∈ {1, . . . , Θ(1)}.

Case 1a: we have |λ
H(Γ(2)/a2)Σ

(1)L
1 − 1| < ε(1).

Then

|λHΓ(2)Σ(1)L
1 − 1| < ε(1)|a2| 6 ε(1)Γ(2).

Moreover, since |λHa1
1 − λHa2

2 | 6 δ(2), we have

|λ
Ha2(Γ(2)/a1a2)Σ(1)L
2 − 1| < ε(1) + δ(2)Γ(2)Σ(1)L

and hence

|λHΓ(2)Σ(1)L
2 − 1| < (ε(1) + δ(2)Γ(2)Σ(1)L)Γ(2).

Setting Σ(2) = Γ(2)Σ(1) we get that

|λHΣ(2)L
1 − 1| < ε(2) and |λHΣ(2)L

2 − 1| < ε(2),

provided ε(1) is chosen first, very small with respect to ε(2) (but independent of L),

and then δ(2) is chosen very small with respect to ε(2) and L. So (7) and (9) are

satisfied.
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Case 1b: there exists a j ∈ {1, . . . , Θ(1)} such that

|λ
H(Γ(2)/a2)(Lj+1)
1 − 1| < ε(1).

Then

(11) |λ
HΓ(2)(Lj+1)
1 − 1| < ε(1)Γ(2).

Using again the fact that |λHa1
1 − λHa2

2 | 6 δ(2), we obtain that

|λ
Ha1(Γ(2)/a1a2)(Lj+1)
1 − λ

Ha2(Γ(2)/a1a2)(Lj+1)
2 | < δ(2)Γ(2)(LΘ(1) + 1).

Hence

|λ
H(Γ(2)/a1)(Lj+1)
2 − 1| < ε(1) + δ(2)Γ(2)(LΘ(1) + 1),

and so

(12) |λHΓ(2)(Lj+1) − 1| < (ε(1) + δ(2)Γ(2)(LΘ(1) + 1))Γ(2).

Taking first ε(1) and then δ(2) very small, we get from (11) and (12) that

|λ
HΓ(2)(Lj+1)
1 − 1| < ε(2) and |λ

HΓ(2)(Lj+1)
2 − 1| < ε(2)

for some j ∈ {1, . . . , Θ(2)}, where Θ(2) = Θ(1). So (7) and (10) are satisfied. Notice

that Θ(2) does not depend on L.

Case 2 is very similar to Case 1: the assumptions are the same, except that we

consider now a1a2 = 0.

Case 2 : there exists (a1, a2) ∈ E
(2)

ε(2) with a1a2 = 0 such that |λHa1
1 λHa2

2 −1| 6 δ(2).

For instance suppose that a2 = 0 and a1 6= 0. Our assumption is then that

(13) |λHa1
1 − 1| 6 δ(2).

We apply the dichotomy of the 1-dimensional case to λ2, with ε(1) a very small

positive number and H̃ = HΓ(2)/a1.

Case 2a: we have |λ
H(Γ(2)/a1)Σ

(1)L
2 − 1| < ε(1).

Since Σ(2) = Γ(2)Σ(1), we have |λHΣ(2)L
2 −1| < ε(1)Γ(2). Moreover, since a1 divides

Γ(2), (13) implies that |λHΓ(2)

1 − 1| 6 δ(2)Γ(2) and hence

|λHΓ(2)Σ(1)L
1 − 1| 6 δ(2)Γ(2)Σ(1)L.
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If ε(1) and δ(2) are sufficiently small,

|λHΣ(2)L
1 − 1| < ε(2) and |λHΣ(2)L

2 − 1| < ε(2)

and (7) and (9) are true. Again, Σ(2) and Θ(2) do not depend on L.

Case 2b: there exists a j ∈ {1, . . . , Θ(1)} such that |λ
H(Γ(2)/a1)(Lj+1)
2 − 1| < ε(1).

Then

|λ
HΓ(2)(Lj+1)
2 − 1| < ε(1)Γ(2).

Moreover, from (13) we have

|λ
Ha1(Γ(2)/a1)(Lj+1)
1 − 1| < δ(2)Γ(2)(LΘ(1) + 1)

and hence for ε(1) and δ(2) small enough

|λ
HΓ(2)(Lj+1)
1 − 1| < ε(2) and |λ

HΓ(2)(Lj+1)
2 − 1| < ε(2)

and (7) and (10) are true.

At the end of these two cases, we see that it suffices to choose ε(1) = 1
2ε(2)/Γ(2).

Then the quantity δ(2) is fixed small enough, depending on ε(2) and L but neither

on (λ1, λ2) nor on H , so all the inequalities above are true.

The last case, Case 3, is the simplest one, where Corollary 3.2 applies directly.

In this last case we determine Q(2), which is the last quantity in the statement of

Lemma 3.3 not yet fixed.

Case 3: for each (a1, a2) ∈ E
(2)

ε(2) , |λ
Ha1
1 λHa2

2 − 1| > δ(2).

Let Q(2) be an integer such that

Q(2) >
c2

δ(2)
.

By Corollary 3.2, there exists for all (µ1, µ2) ∈ T2 a q with 1 6 q 6 Q(2) such that

|λHq
1 − µ1| < ε(2) and |λHq

2 − µ2| < ε(2). Applying this with µ1 = λ1 and µ2 = λ2

gives

|λHq+1
1 − 1| < ε(2) and |λHq+1

2 − 1| < ε(2),

i.e. (7) and (8) are satisfied. �

Lemma 3.3 is proved. Let us summarize a bit more precisely for further use what

we just proved:
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Corollary 3.4. With the notation of Lemma 3.3, there exists a positive number

δ(2) depending on ε(2) and L such that for all (λ1, λ2) ∈ T2 we have:

⊲ if |λHa1
1 λHa2

2 −1| 6 δ(2) for some (a1, a2) ∈ E
(2)

ε(2) , then (7) holds for some integer

n ∈ B
(2)

ε(2),1
∪ B

(2)

ε(2),2
, where

B
(2)

ε(2),1
= {HΣ(2)L} := HC

(2)

ε(2),1

and

B
(2)

ε(2),2
= {HΓ(2)(Lj + 1); 1 6 j 6 Θ(2)} := HC

(2)

ε(2),2
;

⊲ if |λHa1
1 λHa2

2 −1| > δ(2) for each (a1, a2) ∈ E
(2)

ε(2) , then (7) holds for some integer

n ∈ B
(2)

ε(2),0
, where

B
(2)

ε(2),0
= {Hq + 1; 1 6 q 6 Q(2)}.

Remark 3.5. Observe that the sets

C
(2)

ε(2),1
= {Σ(2)L} and C

(2)

ε(2),2
= {Γ(2)(Lj + 1); 1 6 j 6 Θ(2)}

do not depend on H .

As a corollary of Lemma 3.3, we obtain:

Corollary 3.6. Let (ε
(2)
N ) be a sequence of positive numbers going to zero as N

goes to infinity. There exist three sequences of integers (Γ
(2)
N ), (Σ

(2)
N ) and (Θ

(2)
N ) such

that if (LN ) is any sequence of integers, there exists a sequence (Q
(2)
N ) of integers

such that for any sequence of integers (HN ), the union {n
(2)
k } of the three sets

{n
(2)
k,0} =

⋃

N>1

B
(2)
N,0, {n

(2)
k,1} =

⋃

N>1

B
(2)
N,1, {n

(2)
k,2} =

⋃

N>1

B
(2)
N,2

where

B
(2)
N,0 = B

(2)

ε
(2)
N

,0
= {HNq + 1; 1 6 q 6 Q

(2)
N },

B
(2)
N,1 = B

(2)

ε
(2)
N

,1
= {HNΣ

(2)
N LN},

B
(2)
N,2 = B

(2)

ε
(2)
N ,2

= {HNΓ
(2)
N (LN j + 1); 1 6 j 6 Θ

(2)
N }

is a 2-Bohr set.

In order to finish the proof, it remains to show that if the two sequences (LN ) and

(HN ) are well-chosen, there exist µ0, µ1, µ2 ∈ T such that for all k

∣∣∣µ
n

(2)
k,0

0 − 1
∣∣∣ >

1

2
,

∣∣∣µ
n

(2)
k,1

1 − 1
∣∣∣ >

1

2
and

∣∣∣µ
n

(2)
k,2

2 − 1
∣∣∣ >

1

2
.
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The construction of µ0 is done exactly as in the proof of the 1-dimensional case,

using the fact that HN+1 can be chosen much larger than HNQ
(2)
N . The construction

of µ1 is also the same: whatever the choices of the integers LN , we can get µ1 ∈ T

with |µ
HN Σ

(2)
N

LN

1 − 1| > 1
2 for all N if the sequence (HN ) grows sufficiently fast.

In order to construct µ2, we apply Lemma 2.5 to the sequence (mN ) defined by

m2N = HNΓ
(2)
N − 1 and m2N+1 = HNΓ

(2)
N LN : if we start from H1 very large there

exists µ2 ∈ T very close to −1, such that for all N

∣∣∣µHN Γ
(2)
N

−1
2 − 1

∣∣∣ 6 M
HNΓ

(2)
N − 1

HNΓ
(2)
N LN

< M
1

LN
< 2−(N+1)

if LN is sufficiently large, and

∣∣∣µHN Γ
(2)
N

LN

2 − 1
∣∣∣ 6 M

HNΓ
(2)
N LN

HN+1
.

Then for all j with 1 6 j 6 Θ
(2)
N , we have

∣∣∣µHN Γ
(2)
N

LN j
2 − 1

∣∣∣ 6 M
HNΓ

(2)
N LNΘ

(2)
N

HN+1
< 2−(N+1)

if HN+1 is large enough. Hence |µ
HN Γ

(2)
N (LN j+1)

2 − µ2| 6 2−N and

∣∣∣µHNΓ
(2)
N (LN j+1)

2 − 1
∣∣∣ > |µ2 − 1| − 2−N >

1

2
.

So the set {n
(2)
k } is non-recurrent for the product of rotations Rµ0 ×Rµ1 ×Rµ2 , and

Theorem 1.3 is proved in the 2-dimensional case.

4. The general multi-dimensional case

Our aim now is to prove Theorem 1.3 in the general case by induction on r > 3.

We are first going to prove the following analogue of Lemma 3.3 above, which will

give explicitly the form of the sets {n
(r)
k }:
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Lemma 4.1. Let r > 3 be an integer. For any ε(r) > 0 and any integer L > 1,

there exist 2r−1 integers ∆
(r)
A > 1, where A ⊆ {1, . . . , r − 1}, and two integers

Θ(r), Q(r) such that the following holds: for any integer H > 1, for any r-tuple

(λ1, . . . , λr) ∈ Tr , there exists an n belonging to one of the sets

B
(r)

ε(r),A
= {H∆

(r)
A (Lj + 1); 1 6 j 6 Θ(r)}, where A 6= ∅,(14)

B
(r)

ε(r),∅
= {H∆

(r)
∅ }(15)

and

(16) B
(r)

ε(r),0
= {Hq + 1; 1 6 q 6 Q(r)}

such that

max
i=1,...,r

|λn
i − 1| < ε(r).

We shall write B
(r)

ε(r),A
as B

(r)

ε(r),A
= HC

(r)

ε(r),A
where the sets C

(r)

ε(r) ,A
do not depend

on H .

Remark 4.2. The quantities ∆
(r)
A and Θ(r) (and Q(r) of course) depend on ε(r)

and L (but not on H). This is a difference with the 2-dimensional case, where the

quantities Γ(2), Σ(2) and Θ(2) do not depend on L. Lemma 4.1 holds true for r = 2

as well, with ∆
(2)
∅ = Σ(2)L and ∆

(2)
{1} = Γ(2).

P r o o f of Lemma 4.1. Fix ε(r) > 0 and consider the set

E
(r)

ε(r) =

{
(a1, . . . , ar) ∈ Z

r \ {(0, . . . , 0)} ;

r∑

i=1

|ai| <
cr

ε(r)

}
,

where cr is the constant appearing in Corollary 3.2. Here is the statement which we

want to prove by induction on r > 3:

Lemma 4.3. For any ε(r) > 0 and any integer L > 1, there exist 2r−1 integers

∆
(r)
A , A ⊆ {1, . . . , r − 1}, an integer Θ(r) > 1 and a positive number δ(r) such that

the following holds: there exists an integer Q(r) > 1 such that for any integer H > 1

and any (λ1, . . . , λr) ∈ Tr, we have the following alternatives:

⊲ if there exists (a1, . . . , ar) ∈ E
(r)

ε(r) such that

|λHa1
1 λHa2

2 . . . λHar
r − 1| 6 δ(r),

then there exists n ∈
⋃

A⊆{1,...,r−1}

B
(r)

ε(r),A
such that

max
i=1,...,r

|λn
i − 1| < ε(r);
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⊲ if for all (a1, . . . , ar) ∈ E
(r)

ε(r) we have

|λHa1
1 λHa2

2 . . . λHar
r − 1| > δ(r),

then there exists n ∈ B
(r)

ε(r),0
such that

max
i=1,...,r

|λn
i − 1| < ε(r).

P r o o f of Lemma 4.3. We prove Lemma 4.3 by induction on r > 2. First, it

follows from Corollary 3.4 that Lemma 4.3 holds true for r = 2, with ∆
(r)
∅ = Σ(2)L

and ∆
(r)
{1} = Γ(2). To carry out the induction step, let r > 3, ε(r) > 0 and L > 1. Let

ε(r−1) and ε(2) be two positive numbers, and let δ(r−1) and δ(2) be the two positive

numbers associated to ε(r−1) and L, and ε(2), respectively, given by Lemma 4.3 for

r−1 and by Lemma 3.3. The numbers ε(r−1) and ε(2) will be fixed during the proof,

as well as the number δ(r) > 0. The quantity ε(r−1) will be determined first, much

smaller than ε(r). This choice will determine δ(r−1). Then ε(2) will be chosen much

smaller than ε(r−1), δ(r−1) and ε(r) (and this will determine δ(2)), and only after this

will the choice of δ(r) be made, with δ(r) much smaller than any of the quantities

considered before.

Fix (λ1, . . . , λr) ∈ Tr. We consider again two separate cases, depending on whether

|λHa1
1 λHa2

2 . . . λHar
r − 1| 6 δ(r) for some (a1, . . . , ar) ∈ E

(r)

ε(r) or not.

Case 1 : There exists (a1, . . . , ar) ∈ E
(r)

ε(r) such that

(17) |λHa1
1 λHa2

2 . . . λHar
r − 1| 6 δ(r).

Without loss of generality we suppose that (a2, . . . , ar) 6= (0, . . . , 0). Then, replacing

a1 by −a1, (17) is equivalent to

(18) |λHa1
1 − λHa2

2 . . . λHar
r | 6 δ(r)

for some (a1, . . . , ar) ∈ E
(r)

ε(r) . Set ν1 = λ1 and ν2 = λa2
2 . . . λar

r . We have |ν
Ha1
1 −

νH
2 | 6 δ(r), i.e.

|νHã1
1 − νHã2

2 | 6 δ(r)

with (ã1, ã2) = (a1, 1) ∈ Z2 \ {(0, 0)}. We have |a1| + 1 6 2|a1| < 2cr/ε(r) < c2/ε(2)

if ε(2) is small enough. So we get that (ã1, ã2) belongs to E
(2)

ε(2) . If δ
(r) is chosen so

that δ(r) < δ(2), (18) implies that

|λHa1
1 − λHa2

2 . . . λHar
r | 6 δ(2).
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We can now apply Corollary 3.4 to ε(2) and L: we get that there exists n(2) ∈

B
(2)

ε(2),1
∪ B

(2)

ε(2),2
such that

(19) |νn(2)

1 − 1| < ε(2) and |νn(2)

2 − 1| < ε(2).

The integer n(2) is either equal to HΣ(2)L or has the form n(2) = HΓ(2)(Lj + 1) for

some 1 6 j 6 Θ(2). In particular, n(2) is a multiple of H , and we write n(2) = Hp(2)

with p(2) ∈ C
(2)

ε(2) ,1
∪ C

(2)

ε(2),2
. So we have

|λHp(2)

1 − 1| < ε(2) and |λHp(2)a2

2 . . . λHp(2)ar
r − 1| < ε(2).

The (r − 1)-tuple (a2, . . . , ar) satisfies |a2| + . . . + |ar| < cr/ε(r) < cr−1/ε(r−1)

if ε(r−1) is chosen sufficiently small. Moreover, (a2, . . . , ar) 6= (0, . . . , 0), and so

(a2, . . . , ar) belongs to E
(r−1)

ε(r−1) . If additionally ε(2) is so small that ε(2) < δ(r−1),

the induction assumption applied at rank r − 1 to the (r − 1)-tuple (λ2, . . . , λr−1)

and the integers L and H̃ = Hp(2) gives us an integer n(r−1) belonging to the set⋃
A′⊆{1,...,r−2}

H̃C
(r−1)

ε(r−1) ,A′ such that

max
i=2,...,r

|λn(r−1)

i − 1| < ε(r−1).

Notice that we can choose ε(r−1), and so, by Corollary 3.4, determine C
(r−1)

ε(r−1) ,A′ ,

before we fix ε(2). Writing n(r−1) = H̃p(r−1), we have n(r−1) = Hp(2)p(r−1). Thus

max
i=2,...,r

|λHp(2)p(r−1)

i − 1| < ε(r−1).

Moreover, we have by (19) that

|λHp(2)

1 − 1| < ε(2), and so |λHp(2)p(r−1)

1 − 1| < ε(2)p(r−1).

Now

p(r−1) 6 max
A′⊆{1,...,r−2}

∆
(r−1)
A′ (LΘ(r−1) + 1).

Hence if we first fix ε(r−1) very small, we can then take ε(2) so small that (in addition

to the other conditions) ε(2)p(r−1) < ε(r−1) for any p(r−1) ∈
⋃

A′⊆{1,...,r−2}

C
(r−1)

ε(r−1) ,A′ .

We obtain then that

max
i=1,...,r

|λHp(2)p(r−1)

i − 1| < ε(r−1),
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and if we have taken at the beginning ε(r−1) < ε(r) we get what we need, namely

that

max
i=1,...,r

∣∣λHp(2)p(r−1)

i − 1
∣∣ < ε(r).

It remains to check that the numbers Hp(2)p(r−1) belong to a set of the form

B
(r)

ε(r),A
. We know that such a number belongs to a set of the form

HC
(2)

ε(2),θ
· C

(r−1)

ε(r−1) ,A′

for some A′ ⊆ {1, . . . , r − 2} and θ ∈ {1, 2}. If θ = 1 the set has the form

(20) {HΣ(2)L∆
(r−1)
A′ (Ljr−1 + 1); 1 6 jr−1 6 Θ(r−1)}

for A′ 6= ∅ and

(21) {HΣ(2)L∆
(r−1)
∅ }

for A′ = ∅. If θ = 2 the set has the form

(22) {HΓ(2)∆
(r−1)
A′ (Lj2 + 1)(Ljr−1 + 1); 1 6 j2 6 Θ(2), 1 6 jr−1 6 Θ(r−1)}

for A′ 6= ∅ and

(23) {HΓ(2)∆
(r−1)
∅ (Lj2 + 1); 1 6 j2 6 Θ(2)}

for A′ = ∅. Observing that the set in (22) is contained in

{HΓ(2)∆
(r−1)
A′ (Lj + 1); 1 6 j 6 Θ(2)Θ(r−1)},

we see that these four sets have the required form: if we set Θ(r) = max(Θ(2), Θ(r−1)),

we have

HC
(2)

ε(2),1
· C

(r−1)

ε(r−1),A′ ⊆ B
(r)

ε(r),A

with A = A′ ⊂ {1, . . . , r − 1} and ∆
(r)
A = Σ(2)L∆

(r−1)
A′ (observe that with this

definition of ∆
(r)
A we have ∆

(r)
A = ∆

(2)
∅ ∆

(r−1)
A′ ), and

HC
(2)

ε(2),2
· C

(r−1)

ε(r−1),A′ ⊆ B
(r)

ε(r),A

with A = A′ ∪ {r − 1} ⊆ {1, . . . , r − 1} and ∆
(r)
A = Γ(2)∆

(r−1)
A′ (observe that in this

case ∆
(r)
A = ∆

(2)
{1}∆

(r−1)
A′ ).
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At the end of this case, the quantities ∆
(r)
A , Θ

(r) and δ(r) are fixed. They depend

on ε(r) and L, but not on H . It remains to determine Q(r).

Case 2 : For all (a1, . . . , ar) ∈ E
(r)

ε(r) ,

|λHa1
1 λHa2

2 . . . λHar
r − 1| > δ(r).

Let Q(r) be an integer such that Q(r) > cr/δ(r). By Corollary 3.2, there ex-

ists an integer q with 1 6 q 6 Q(r) such that max
i=1,...,r

|λHq+1
i − 1| < ε(r), and so

max
i=1,...,r

|λn
i − 1| < ε(r) for some n ∈ B

(r)

ε(r),0
.

We have thus proved Lemma 4.3 at rank r, and the principle of induction completes

the proof. �

A direct corollary of Lemma 4.1 is the following

Corollary 4.4. Let r > 3, let (ε
(r)
N ) be a sequence of positive numbers going to

zero as N goes to infinity and (LN) be any sequence of integers. There exist 2r−1

sequences of integers (∆
(r)
N,A), A ⊆ {1, . . . , r−1}, and two sequences (Θ

(r)
N ) and (Q

(r)
N )

of integers such that for any sequence of integers (HN ), the union {n
(r)
k } of the sets

{n
(r)
k,0} =

⋃

N>1

B
(r)
N,0 and {n

(r)
k,A} =

⋃

N>1

B
(r)
N,A, A ⊆ {1, . . . , r − 1}

where

B
(r)
N,0 = B

(r)

ε
(r)
N ,0

= {HNq + 1; 1 6 q 6 Q
(r)
N }

B
(r)
N,∅ = B

(r)

ε
(r)
N ,∅

= {HN∆
(r)
N,∅}

B
(r)
N,A = B

(r)

ε
(r)
N

,A
= {HN∆

(r)
N,A(LNj + 1); 1 6 j 6 Θ

(r)
N }

is an r-Bohr set.

The quantities ∆
(r)
N,A, Θ

(r)
N and Q

(r)
N are obtained by applying Lemma 4.1 to the

numbers ε
(r)
N and LN . In order to finish the proof of Theorem 1.3, it remains to

prove that {n
(r)
k } is not a recurrence set for some product of 2r−1 +1 rotations if the

sequences (LN ) and (HN ) grow sufficiently fast.

Proposition 4.5. Let r > 3. If the sequences (LN ) and (HN ) grow sufficiently

fast, with LN ≪ HN ≪ LN+1, then there exist 2r−1 + 1 elements µ0 and µA of T

such that for any k and any A ⊆ {1, . . . , r − 1},

(24)
∣∣∣µ

n
(r)
k,0

0 − 1
∣∣∣ >

1

2
and

∣∣∣µ
n

(r)
k,A

A − 1
∣∣∣ >

1

2
·
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P r o o f of Proposition 4.5. We obtain µ0 in exactly the same way as in the proof

in the 2-dimensional case of Theorem 1.3. The construction of µ∅ is also similar:

whatever the choice of LN , we can ensure that for some µ∅ ∈ T with |µ∅ + 1| < 1,

∣∣∣µ
HN ∆

(r)

N,∅
−1

∅ − 1
∣∣∣ < 2−N

for all N > 1, provided the sequence (HN ) grows sufficiently fast. This shows that

∣∣∣µ
HN ∆

(r)

N,∅

∅ − 1
∣∣∣ >

1

2

for all N > 1. Let now A ⊆ {1, . . . , r − 1}, A 6= ∅, and consider the sequence (mN )

defined by m2N = HN∆
(r)
N,A − 1 and m2N+1 = HN∆

(r)
N,ALN . The argument is again

the same as in the proof of the 2-dimensional case (the fact that ∆
(r)
N,A depends on

LN does not play a role here). By Lemma 3.3, if H1 is very large we can find µA

very close to −1 such that for all N > 1,

∣∣∣µ
HN ∆

(r)
N,A−1

A − 1
∣∣∣ 6 M

HN∆
(r)
N,A − 1

HN∆
(r)
N,ALN

and
∣∣∣µ

HN ∆
(r)
N,ALN

A − 1
∣∣∣ 6 M

HN∆
(r)
N,ALN

HN+1
.

Thus
∣∣∣µ

HN∆
(r)
N,ALN j

A − 1
∣∣∣ 6 MΘ

(r)
N

HN∆
(r)
N,ALN

HN+1

for all 1 6 j 6 Θ
(r)
N . It follows that for all N > 1 and all 1 6 j 6 Θ

(r)
N ,

∣∣∣µ
HN ∆

(r)
N,A

(LN j+1)

A − µA

∣∣∣ 6
M

LN
+ MΘ

(r)
N

HN∆
(r)
N,ALN

HN+1
.

If for each N > 1 we take LN very large, and then choose HN+1 very large with

respect to LN and HN , we can ensure for instance that

∣∣∣µ
HN∆

(r)
N,A

(LN j+1)

A −µA

∣∣∣ 6 2−N , so that
∣∣∣µ

HN ∆
(r)
N,A

(LN j+1)

A −1
∣∣∣ > |µA−1|−2−N >

1

2

if |µA − 1| > 1. This proves that
∣∣µn

(r)
k,A

A − 1
∣∣ > 1

2 for all k, and Proposition 4.5 is

proved. �

We have thus exhibited a product of 2r−1 + 1 rotations for which {n
(r)
k } is not

a recurrence set. Theorem 1.3 is proved.
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Remark 4.6. Inspection of the proof of Theorem 1.3 shows that the same phe-

nomenon appears for general r as for r = 1: the sets B
(r)
N,A, B

(r)
N,0 are by construction

intertwined, and they cannot be forced far away from one another. Indeed, for any

ε > 0, let us write Γ(2), Σ(2) and Θ(2) as Γ
(2)
ε , Σ

(2)
ε and Θ

(2)
ε in order to indicate their

dependence on ε. It follows from the proofs of Lemma 2.4 and 3.3 that Γ
(2)
ε divides

Σ
(2)
ε , that Θ

(2)
ε is much larger than Σ

(2)
ε , and that if ε′ is much smaller than ε, Σ

(2)
ε

divides Σ
(2)
ε′ . Also, the proof of Lemma 2.4 yields that Σ

(2)
ε = Γ

(2)
ε Σ

(1)

ε(1) , where ε(1) is

much smaller than ε. So if M > 1 is an integer, and if we take ε(1) small enough, it

follows from Remark 2.3 that we can ensure that Σ
(1)

ε(1) is divisible with M . Looking

more closely at the expressions of ∆
(r)
A in the proof of Lemma 4.3, we see that

∆
(r)

ε(r),A′ = Σ
(2)

ε(2)L∆
(r−1)

ε(r−1),A′ = Γ
(2)

ε(2)Σ
(1)

ε(1)L∆
(r−1)

ε(r−1),A′

and

∆
(r)

ε(r),A′∪{r−1}
= Γ

(2)

ε(2)∆
(r−1)

ε(r−1) ,A′

for A′ ⊆ {1, . . . , r − 2}, where ε(2) is extremely small. Now ε(r−1) is small, but

only compared to ε(r), and if we take ε(2) small enough we can ensure that Σ
(2)

ε(2) is

divisible with any of the numbers Γ
(2)

ε(2)∆
(r−1)

ε(r−1),A′ , where A′ runs over all subsets of

{1, . . . , r−2}. It follows from this observation that given two distinct subsets A1 and

A2 of {1, . . . , r − 1}, one of the two integers ∆
(r)

ε(r),A1
and ∆

(r)

ε(r),A2
is always divisible

with the other. As Θ
(r)

ε(r) is very large compared to all the numbers ∆
(r)

ε(r),A
, the two

arithmetic progressions {H∆
(r)

ε(r),A1
(Lj+1); 1 6 j 6 Θ

(r)

ε(r)} and {H∆
(r)

ε(r),A2
(Lj+1);

1 6 j 6 Θ
(r)

ε(r)} are necessarily intertwined. Lastly, since Q(r) is much larger than any

integer ∆
(r)

ε(r),A
LΘ

(r)

ε(r) , these arithmetic progressions are also intertwined with the set

B
(r)

ε(r),0
.

5. Final remarks

5.1. Back to Question 1.1. Let (Nr)r>1 be an increasing sequence of integers,

and (εr)r>1 a sequence of positive real numbers going to 0 as r goes to infinity.

Consider the set {nk} defined by {nk} =
⋃

r>1

{n
(r)
k ; k ∈ INr

}, where {n
(r)
k ; k ∈ INr

}

is the part of the set {n
(r)
k } constructed at step Nr, with suitable integers LNr

and

HNr
:

{n
(r)
k ; k ∈ INr

} = {HNr
q + 1; 1 6 q 6 Q

(r)
Nr

} ∪ {HNr
∆

(r)
Nr,∅}

∪
⋃

A⊆{1,...,r−1},A 6=∅

{HNr
∆

(r)
Nr,A(LNr

j + 1); 1 6 j 6 Θ
(r)
Nr

}.
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All the sets {n
(r)
k ; k ∈ INr

} are disjoint, and very far away from one another.

For all r > 1 and (λ1, λ2, . . . , λr) ∈ Tr, we can consider for s > r the s-tuple

(λ1, . . . , λr, 1, . . . , 1) ∈ Ts. We know from Theorem 4.1 that there exists a k ∈ INs

such that

max
i=1,...,r

∣∣∣λn
(s)
k

i − 1
∣∣∣ < εs,

and so we see that the set {nk} is a Bohr set. Moreover it is not difficult to see from

the construction that if (Π
(r)
Nr

)r>1 is any sequence of integers, the sets

{n
(r)
k ; k ∈ INr

} = {HNr
q + 1; 1 6 q 6 Q

(r)
Nr

} ∪ {HNr
∆

(r)
Nr,∅}

∪
⋃

A⊆{1,...,r−1},A 6=∅

{HNr
∆

(r)
Nr,A(LNr

j + 1); Π
(r)
Nr

6 j 6 Θ
(r)
Nr

}.

are also r-Bohr provided Θ
(r)
Nr
is sufficiently large for each r > 1. Hence {n

(r)
k ; k ∈

INr
} is a Bohr set as well in this case.

All these sets {nk} are “small” (in particular they have density zero), and, more im-

portantly, they have a very explicit arithmetical structure. We do not know whether

{nk} can be non-recurrent for some suitable choice of the parameters in the construc-

tion, but we do know that, for some particular choices, {nk} is a recurrence set, and

even a Poincaré set. This leaves the following question open to further investigation:

Question 5.1. Is it possible to choose the parameters in the construction of the

set {nk} above in such a way that {nk} is not a recurrence set?

5.2. Other classes of non-recurrent systems for {n
(r)
k }. We have seen that

each one of the sets {n
(r)
k } constructed in the proof of Theorem 1.3 is not recurrent

for some product of 2r−1 + 1 rotations. These are very specific dynamical systems,

and one can wonder whether there are other “natural” dynamical systems which

would be non-recurrent with respect to {n
(r)
k }. In particular, in a recent work [2],

Bergelson, Del Junco, Lemańczyk and Rosenblatt initiated the study of sets which are

non-recurrent in the measure-theoretic sense for weakly mixing dynamical systems.

Thus the question naturally arises: is it possible to find an r-Bohr set which is

non-recurrent (in the measure-theoretic sense) for some weakly mixing dynamical

system? Such r-Bohr sets would necessarily have density zero, so that the examples

of [13] cannot have this property. It is possible to show that for each r > 1, each

of the sets {n
(r)
k } obtained in Theorem 1.3 is non-recurrent for some weakly mixing

dynamical system. This is developed in the paper [11].
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