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A note on the intersection ideal M ∩ N

Tomasz Weiss

Abstract. We prove among other theorems that it is consistent with ZFC that
there exists a set X ⊆ 2ω which is not meager additive, yet it satisfies the
following property: for each Fσ measure zero set F , X + F belongs to the
intersection ideal M∩N .

Keywords: Fσ measure zero sets; intersection ideal M∩N ; meager additive sets;
sets perfectly meager in the transitive sense; γ-sets

Classification: 03E05, 03E17

0. In the first part of this paper we show that in the Cohen real model there is
a set X ⊆ 2ω which is not meager additive, but it satisfies the following condition:
for every Fσ measure zero set F , X + F is meager and has measure zero. This
contrasts with the recent result of O. Zindulka (see [12]) which states that for
X ⊆ 2ω, being meager additive is equivalent to the property: X +F is contained
in an Fσ measure zero set for every Fσ measure zero set F . Next we give a “new
example” of an AFC′ set, and in the second part we consider relations between
various ideals of subsets of 2ω defined in terms of translations of sets that belong
to the intersection ideal M∩N .

All the arguments that appear in this paper are quite usual and can be found
in the previous literature. Throughout the paper, we assume that the reader is
familiar with standard definitions and terminology of special sets of real numbers,
and we recall below notions that may be less common. By M we denote the
σ-ideal of meager subsets of 2ω, N is the σ-ideal of measure zero subsets of 2ω,
and E stands for the σ-ideal of Fσ measure zero subsets of 2ω. It is well-known
(see [1, p. 73]) that M∩N is a strictly larger σ-ideal than E .

Let + be the standard modulo 2 coordinatewise addition in 2ω, and suppose
that I and J are σ-ideals of subsets of 2ω with I ⊆ J .

Definition 1. We shall say that X ⊆ 2ω is I additive, or X ∈ I∗, if X + A =
{x + a : x ∈ X, a ∈ A} ∈ I, for any set A ∈ I, and X ∈ (I, J)∗ if for every set
A ∈ I, X +A ∈ J .

Some authors use this very notation for the sets which can be “translated away”
from each set in I, i.e., X ∈ I∗ if X +A 6= 2ω for any set A ∈ I (see [11]).

Definition 2. X ⊆ 2ω is called an SMZ (strongly measure zero) set if X +F 6=
2ω, for every meager set F , and Y ⊆ 2ω is an SFC (strongly first category or
strongly meager) set if Y +H 6= 2ω, for every measure zero set H .
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Definition 3. X ⊆ 2ω is an AFC (always first category or perfectly meager) set
if for any perfect P ⊆ 2ω, X ∩ P is meager in the relative topology of P .

Definition 4. X ⊆ 2ω is said to be an AFC′ (perfectly meager in the transitive
sense) set if for any perfect P ⊆ 2ω, one can find an Fσ set F , with X ⊆ F , so
that for each t ∈ 2ω, (F + t) ∩ P is meager in the relative topology of P .

Evidently, Definition 3 and 4 imply that AFC′ ⊆ AFC.
We call a family F of subsets of X ⊆ 2ω an ω-cover of X if each finite subset

of X can be covered by an element of F .

Definition 5. X ⊆ 2ω is a γ-set if for every F , an open ω-cover of X , we can
choose a sequence {Dn}n∈ω ∈ F such that X ⊆

⋃
m∈ω

⋂
n≥m Dn.

1. Let Pℵ1
be an ℵ1-iteration of Cohen forcing (with finite supports) over a

model V of ZFC +GCH . Assume that G is a generic filter in Pℵ1
over V .

Lemma 6. There exists a set X in V which is SFC in V , and such that X is

not meager additive in V [G].

Proof: We apply a reasoning similar to those in Lemma 8.5.3 of [1] and Theo-
rem 8.5 of [6]. Working in V , we construct sets X = {xα}α<c=ω1

, Y = {yα}α<c

and R = {rα}α<c by induction. Let {Hα}α<c be a list of all measure zero Borel
subsets of 2ω, and let {zα}α<c denote a bijective enumeration of 2ω. Suppose
now that {xα}α<λ<c, {yα}α<λ<c and {rα}α<λ<c are already defined, and for ev-
ery α < λ < c, xα + yα = zα. Let rλ be a real number that does not belong to
any set of the form xα+Hλ, yα+Hλ, for α < λ. Pick xλ, yλ which do not belong
to

⋃
α≤λ(rα +Hα) and such that xλ + yλ = zλ. It is easy to verify that for every

λ < c, we have (X + rλ) ∩ Hλ = ∅, and (Y + rλ) ∩ Hλ = ∅, thus X and Y are
strongly meager sets satisfying X + Y = 2ω. Since V ∩ 2ω is a non-meager set in
V [G], both X and Y are not meager additive in V [G]. �

Lemma 7. Suppose that F ∈ V [G], F =
⋃

n∈ω Fn, where for every n ∈ ω, Fn is

a closed measure zero set, and Fn ⊆ Fn+1. Then there exists H , a Gδ measure

zero set coded in V , such that F ⊆ H .

Proof: For n ∈ ω, let Sn =
{
s : s is a clopen subset of 2ω and µ(s) < 1

2n

}
,

where µ denotes the Lebesgue measure on 2ω. Since each Sn is countable, we can

identify it with ω. Assume that
•

F , {
•

F n}n∈ω, and
•

F ′ are Pℵ1
-names such that

1Pℵ1



•

F =
⋃

n∈ω

•

F n, ∀n∈ω

•

F n is a closed measure zero set,
•

F n ⊆
•

F n+1,

and (by compactness)

1Pℵ1



•

F
′ ∈ ωω, ∀n∈ω

•

F n ⊆
•

F
′(n), and µ(

•

F
′(n)) <

1

2n
.
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Then there exists H̃ ∈ ωω ∩ V (compare it to Lemma 3.1.2 in [1]) such that

1Pℵ1

 ∃∞n

•

F
′(n) = H̃(n).

Clearly,

F =
⋃

n∈ω

Fn ⊆
⋃

m∈ω

⋂

n≥m

F ′(n) ⊆
⋂

m∈ω

⋃

n≥m

H̃(n) = H. �

Remark 8. It was pointed out to us by the referee that the following argu-
ment proves the crucial step in Lemma 7 as well: Assume for all H ∈ ωω ∩ V ,

 ∀∞n F ′(n) 6= H(n); then in the extension, the meager set

⋃
k∈ω{H ∈ ωω :

∀n ≥ k F ′(n) 6= H(n)} would cover the ground model reals ωω ∩ V , which is
a contradiction.

Let X ∈ V be the SFC set in V defined in Lemma 6 above.

Lemma 9. For every set F ∈ E ∩ V [G], we have that X + F ∈ M.

Proof: Let F ⊆
⋃

n∈ω Fn, where for each n ∈ ω, Fn is a closed measure zero set,
and Fn ⊆ Fn+1. Suppose that

⋃
n∈ω Fn ⊆ H , where H is a Gδ measure zero set

coded in V (see Lemma 7). We may assume without loss of generality that there
are f ∈ ωω↑ and a sequence {Hn}n∈ω such that H =

⋂
m∈ω

⋃
n≥m[Hn], every

Hn ⊆ 2[f(n),f(n+1)), [Hn] = {x ∈ 2ω : x ↾ [f(n), f(n+ 1)) ∈ Hn}, and

∑

n∈ω

|Hn|

|2[f(n),f(n+1))|
< +∞.

For each n ∈ ω, define a finite subsequence {Hkn
, . . . , Hkn+mn

} of the sequence
{Hn}n∈ω satisfying kn = kn−1+mn−1+1, and so that Fn ⊆ [Hkn

]∪· · ·∪[Hkn+mn
].

For n ∈ ω, put

Mn = {x ∈ 2ω : x ↾ [f(kn), f(kn+1)) ≡ 0} .

Also, let H ′
n ⊆ 2[f(kn),f(kn+1)) be chosen in such a way that [H ′

n] = [Hkn
] ∪ · · · ∪

[Hkn+mn
]. We have that

⋃

n∈ω

Fn ⊆
⋃

m∈ω

⋂

n≥m

[H ′
n] ⊆

⋃

m∈ω

⋂

n≥m

[H ′
n] +

⋂

m∈ω

⋃

n≥m

Mn

=
⋂

m∈ω

⋃

n≥m

[H ′
n] =

⋂

m∈ω

⋃

n≥m

[Hn].

Since X is an SFC set in V , and
⋂

m∈ω

⋃
n≥m[Hn] is coded in V , we have (see

Theorem 8.5.21 in [1] and (5), page 182 in [10] for a similar argument)

X +
⋃

n∈ω

Fn ⊆ X +
⋃

m∈ω

⋂

n≥m

[H ′
n] +

⋂

m∈ω

⋃

n≥m

Mn 6= 2ω.
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This implies that for some t ∈ 2ω, the set

X +
⋃

n∈ω

Fn ⊆ X +
⋃

m∈ω

⋂

n≥m

[H ′
n]

is disjoint with

t+
⋂

m∈ω

⋃

n≥m

Mn,

and since the latter is a dense Gδ set, we are done. �

Theorem 10. In V [G] there exists a set X which is not meager additive and

such that for every Fσ measure zero set F , X + F ∈ M∩N .

Proof: Suppose that X ∈ V is as in Lemma 6. By Lemma 9, for every Fσ

measure zero set F , X + F ∈ M. Since we add iteratively ℵ1 Cohen reals over
V , X becomes strongly measure zero in V [G]. This implies that X + F ∈ N , for
each F ∈ E (see Theorem on page 172 in [10] or Theorem 8.1.18 in [1]). �

Remark 11. Notice that the conclusion of Theorem 10 holds also in V [G], where
G is a generic filter in Pℵ2

, the ℵ2-iteration of Cohen forcing (with finite supports)
over a model V of ZFC +GCH . By Carlson’s argument, we have that in V [G]
all SFC sets are countable (see Theorem 8.5.22 in [1]).

One can prove that Theorem 10 holds as well in a single Cohen real extension,
V [c]. This is a consequence of a non-trivial but well-known fact in the theory of
forcing which we state below. Let us add that the author of this paper could not
find the explicit proof of the below Lemma 12 in the literature.

Lemma 12 (Folklore). The set 2ω ∩V (old reals) is strongly measure zero in the

extension V [c], where c is a Cohen real over V .

Proof: The proofs, due to M. Goldstern and J. Steprāns, can be found through
the Internet (see [13]). �

Next we show that X defined in Lemma 6 is a “new example” of an AFC′ set,
that is, it neither belongs to the σ-ideal generated by meager additive sets and
SFC sets, nor it is a carefully constructed scale {fα : α < κ} ⊆ ωω↑, identified
with a subset of 2ω by characteristic functions (see [7], [8] and [9]).

Remark 13. To see that a scale, treated as a subset of 2ω, does not need to be
meager additive, consider a set X of cardinality c in the iterated Laver model ob-
tained by a successive adding of Laver reals. Since in this model Borel Conjecture
holds, X cannot be strongly measure zero (see Section 8.3 in [1]). On the other
hand, X , as a subset of 2ω, is not strongly meager. This follows from the result
of Bartoszyński and Shelah which states that in the iterated Laver model we have
SFC ⊆ [2ω]<c (see Theorem 23, 24 and 26 in [3]).

Theorem 14. Let X ∈ V be the set constructed in Lemma 6, and let c be a

Cohen real over V . Then X is an AFC′ set in V [c].
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Proof: Suppose that P is a perfect set in 2ω, coded in V [c]. We follow the argu-
ment from the proof of Theorem 9 in [8]. Let {Sn}n∈ω be a bijective enumeration
of all basic clopen sets in 2ω. For each n ∈ ω, we put Pn = Sn ∩ P . If Pn is a
perfect set, let An be a perfect measure zero set such that Pn+An = 2ω. Assume
that

⋃
n∈ω An ⊆ F , where F is an Fσ measure zero set. Let H with F ⊆ H , be a

Gδ measure zero set coded in V as in Lemma 7. Then X +H 6= 2ω ∩ V . Hence
X ∩ (H + r) = ∅, for some r ∈ 2ω. To finish the proof of Theorem 14 we proceed
as in Theorem 9 from [8] to show that 2ω \ (H + r) is an Fσ set containing X and
chosen for P as in Definition 4. �

By Lemma 6 above, X is not meager additive, and strongly meagerness of X
is destroyed by adding a single Cohen real. Also, X cannot be equal to the set of
characteristic functions of a scale as it would contradict the fact that no real in
ωω↑ ∩ V dominates a Cohen real seen as a member of ωω↑.

Remark 15. It is quite obvious that Lemma 9 and Theorem 14 are true in every
extension V [G], where G is a generic filter in a forcing notion (not necessarily
Cohen) P such that each Fσ measure zero set in V [G] can be covered by a Gδ

measure zero set coded in V (which is in particular true if P preserves non-
meagerness).

The following notion appeared in a recent paper by J. Kraszewski (see [5]).

Definition 16. An X ⊆ 2ω is said to be an EM (or everywhere meager) set if
for any infinite a ⊆ ω, the set {x ↾ a : x ∈ X} ⊆ 2a is a meager subset of 2a.

In [5] the author investigates the relationship between some well-known special
subsets of 2ω and the σ-ideal EM, and he proves that X ⊆ 2ω is an EM set if
and only if for every set A of the form {x ∈ 2ω : x ↾ a = O}, where a is an infinite
subset of ω, X + A is meager. So, in particular, (E ,M)∗ ⊆ EM. To prove that
a scale viewed as a subset of 2ω is in EM, we argue as follows. First we use the
easy lemma below, and then we apply Rothberger’s theorem (see Theorem 5.6 in
[6]) which states that every scale in ωω↑ and in 2ω is a perfectly meager set.

Lemma 17. Suppose that X ⊆ ωω↑ is a scale. Then for every infinite a ⊆ ω, the

set {x ↾ a : x ∈ X} is a scale in aω↑.

Proof: Obvious. �

Since SFC sets are in (E ,M)∗ (see Theorem 8.5.21 in [1] or (5), page 182 in
[10]), and M∗ = (M,M)∗ ⊆ (E ,M)∗, it is clear that all AFC′ sets mentioned
above, including a set X from Theorem 14, are everywhere meager. Nevertheless
the following question of Kraszewski (see Problem 1 in [5]) remains open.

Problem 18. Is there an AFC′ set which is not a member of the class EM?

2. To conclude this paper, we present relations between various ideals which
appeared above (see Definition 1 and 2). Suppose that → denotes the inclusion
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and 8 means that the reverse inclusion cannot be proved in ZFC. Recall (see
the first part of this paper) that Zindulka’s result states that E∗ = M∗.

Proposition 19. The following diagram of inclusions holds.

N ∗
//
(M ∩N )∗

?
oo //

E∗ = M∗/oo //
(E,M∩N )∗/oo

(E,M)∗

/

��

/ //

\②
②②
②②

||②②
②②
②

SFC
oo

<<②②②②②②②②②

""❊
❊❊

❊❊
❊❊

❊❊

(E,N )∗

/

OO

/❊❊❊❊❊

bb❊❊❊❊❊

= SMZ

Proof: Most inclusions are immediate consequences of the definitions. By She-
lah’s characterization of sets in N ∗ (see Theorem 2.7.18 in [1]) which implies
N ∗ → M∗, we have that N ∗ → (M ∩ N )∗. For the reverse inclusion see
Problem 20 below. In Theorem 22 we prove that there may be a particularly
small meager additive set which does not belong to (M ∩ N )∗. This implies
that (M ∩ N )∗ 8 E∗ = M∗. Theorem 23 below provides the proof of the
inclusion (M ∩ N )∗ → E∗ = M∗. Moreover, E∗ = M∗ 8 (E ,M ∩ N )∗ fol-
lows from Theorem 10. By Theorem on page 172 in [10] or Theorem 8.1.18
in [1], we have (E ,N )∗ = SMZ. Since SMZ sets do not have to be mea-
ger, we obtain (E ,M ∩ N )∗ 8 (E ,N )∗ = SMZ. As mentioned in the previ-
ous remarks, we have SFC → (E ,M)∗. Crossed arrow in SFC 8 (E ,M)∗

was explained earlier in (5), page 182 in [10], and can be found implicit in Re-
mark 11. The fact that SFC sets (hence sets in (E ,M)∗) do not have to be
measure zero yields (E ,M ∩ N )∗ 8 (E ,M)∗. By the same argument as above,
both (E ,M)∗ 8 (E ,N )∗ and (E ,M)∗ 9 (E ,N )∗ hold. The author of this paper
does not currently know whether (E ,M)∗ can be equal to the collection of all
countable sets of reals (see Problem 21 below). However, all the other nodes in
the diagram are equal to the countable sets of reals under Borel Conjecture, or
dual Borel Conjecture in case of SFC. �

Problem 20. Is it consistent with ZFC that the class (M∩N )∗ contains sets

that are not in N ∗?

Problem 21. Is there a model of ZFC in which every element of the class

(E ,M)∗ is at most countable?

Theorem 22. Assume CH (the continuum hypothesis), or p = c. Then there

exist a γ-set X ⊆ 2ω and a set A ⊆ 2ω, A ∈ M∩N , such that

X +A /∈ M∩N .

In particular, the set X is meager additive (but not in (M∩N )∗).

Proof: This is exactly the same as the proof of Theorem 2.1 from [2] with one
modification. Suppose that {kn}n∈ω is an increasing sequence of natural numbers
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such that the set

A′ =
⋂

m∈ω

⋃

n≥m

{x ∈ 2ω : x ↾ [kn, kn+1) ≡ O}

has measure zero. Let

A = A′ ∩ {x ∈ 2ω : ∀∞n x ↾ [kn, kn+1) 6≡ 1}.

Clearly, A ∈ M∩N . Let

B = {x ∈ 2ω : ∀∞n (x ↾ [kn, kn+1) 6≡ O and x ↾ [kn, kn+1) 6≡ 1)}.

Similar to the A′, the set 2ω \B has measure zero. Therefore, µ(B) = 1. Suppose
that {yα}α<c is a bijective enumeration of B. Applying Lemma 2.2 from [2],
we construct by induction on α a γ-set X = Q ∪ X ′ ⊆ 2ω, where Q is the
set of sequences eventually equal to zero, and X ′ = {xα}α<c. Assume that for
α < λ < c, xα is already given, so that:

∀α<λ ∃∞n xα ↾ [kn, kn+1) ≡ 1,

∀α<λ ∀∞n xα+1(n) ≤ xα(n), and

∀κ<λ, κ∈Lim, ∀α<κ ∀∞n xκ(n) ≤ xα(n).

Using CH , or p = c (see Lemma 2.3 in [2] in case λ ∈ Lim) we find xλ such that:

∃∞n xλ ↾ [kn, kn+1) ≡ 1, and ∀α<λ∀
∞
n xλ(n) ≤ xα(n).

We may assume without loss of generality that ∀n∈ω (xλ ↾ [kn, kn+1) ≡ O or
xλ ↾ [kn, kn+1) ≡ 1). Thus we can choose xλ, so that it satisfies the following two
additional conditions: there exists an infinite a ⊆ ω with ω \ a infinite such that
∀n∈a xλ ↾ [kn, kn+1) = yλ, and ∀n∈ω\a (xλ ↾ [kn, kn+1) ≡ O or xλ ↾ [kn, kn+1) ≡
1). It follows by the definition of the set B that

xλ + yλ ∈ A.

Consequently, B ⊆ X+A, and since every γ-set is meager additive (see Theorem 6
in [4]), we have the theorem. �

Next theorem contrasts with Theorem 10 above.

Theorem 23. (M∩N ,M)∗ ⊆ E∗ = M∗.

Proof: We follow closely the notation and the proof of Lemma 2.7.5 from [1],
and we finesse it with one minor observation. Assume X ∈ (M ∩N ,M)∗. We
will show that X is meager additive using the characterization (see below) in
Theorem 2.7.17 from [1].

For f ∈ ωω↑ and x ∈ 2ω, let

Bf,x = {y ∈ 2ω : ∀∞n y ↾ [f(n), f(n+ 1)) 6= x ↾ [f(n), f(n+ 1))}.
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It was shown in Theorem 2.2.4, [1] that every meager set in 2ω is contained in a
set of the above form. Given f ∈ ωω↑ with f(n+1) ≥ f(n)+n for every n ∈ ω, let
Hf = {x ∈ 2ω : ∃∞n x ↾ [f(n), f(n+ 1)) ≡ 1}. Put Bf,O = Bf,O ∩Hf . Obviously,

Bf,O ∈ M∩N . By the assumption that X ∈ (M∩N ,M)∗, X+Bf,O is meager.

This implies that X + Bf,O ⊆ Bg,y, for some g ∈ ωω↑ and y ∈ 2ω. We will show
that for every x ∈ X ,

∀∞n ∃k (g(n) ≤ f(k) < f(k + 1) ≤ g(n+ 1) and

x ↾ [f(k), f(k + 1)) = y ↾ [f(k), f(k + 1)))

which finishes the proof by Theorem 2.7.17 from [1].
So, assume that the above condition is not true for some x ∈ X . Then the set

S = {n ∈ ω : ∀k(g(n) ≤ f(k) < f(k + 1) ≤ g(n+ 1) →

x ↾ [f(k), f(k + 1)) 6= y ↾ [f(k), f(k + 1)))}

is infinite. Let a ⊆ S be infinite with ω \ a infinite. Define t ∈ 2ω as follows: for
each n ∈ a, let t ↾ [g(n), g(n + 1)) = y ↾ [g(n), g(n + 1)) (this ensures t /∈ Bg,y);
for n /∈ a, let t ↾ [g(n), g(n + 1)) = x ↾ [g(n), g(n + 1)) + 1. We can choose a
sufficiently fast growing function g such that each interval [g(n), g(n+1)) contains
an interval [f(k), f(k + 1)), so t+ x ∈ Hf ; it is also easy to see that t+ x ∈ Bf,O

(using the definition of S). Thus t ∈ x+Bf,O which brings us to a contradiction
as t /∈ Bg,y. �

With the hope that it may help to find a solution of Problem 21 above we end
this article with stating a combinatorial characterization of sets belonging to the
class (E ,M)∗.

Let F̂ ⊆ ωω↑ be the set of functions f such that we have ∀n∈ω f(n + 1) ≥

f(n) + n. If f ∈ F̂ , then we define

Ωf =

{
h : h is a function with dom(h) = ω,

∀n∈ω h(n) ⊆ 2[f(n),f(n+1)), and ∀n∈ω

|h(n)|

2f(n+1)−f(n)
≤

1

2n

}
.

Theorem 24. cX ∈ (E ,M)∗ if and only if ∀
f∈F̂

∀h∈Ωf
∃g∈ωω↑ ∃y∈2ω ∀x∈X ∀∞n

∃k (g(n) ≤ f(k) < f(k + 1) ≤ g(n + 1) and x ↾ [f(k), f(k + 1)) /∈ h(k) + y ↾

[f(k), f(k + 1))).

Proof: We prove the non-trivial direction. Suppose that X ∈ (E ,M)∗, and that

the above characterization fails for f ∈ F̂ and h ∈ Ωf . Applying the characteri-
zation of sets in E from Chapter 2.6 in [1], we define F ∈ E to be equal to the set
{x ∈ 2ω : ∀∞n x ↾ [f(n), f(n+1)) ∈ h(n)}. By assumption, X+F ⊆ Bg,y for some
g ∈ ωω↑ and y ∈ 2ω (see the proof of Theorem 23). Clearly, we may suppose that
the range of g is included in the range of f . Fix x ∈ X for which the assertion of
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the theorem fails. Put

S = {n : ∀k (g(n) ≤ f(k) < f(k + 1) ≤ g(n+ 1) → x ↾ [f(k), f(k + 1)) ∈ h(k)

+ y ↾ [f(k), f(k + 1)))}.

Obviously, S is infinite, thus we can proceed as in the proof of Theorem 23 above
to get a contradiction. �

Acknowledgments. We thank the referee for suggestions leading to improve-
ments of this paper.
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