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Some remarks on distributive semilattices

Sergio Celani, Ismael Calomino

Abstract. In this paper we shall give a survey of the most important characteri-
zations of the notion of distributivity in semilattices with greatest element and
we will present some new ones through annihilators and relative maximal filters.
We shall also simplify the topological representation for distributive semilat-
tices given in Celani S.A., Topological representation of distributive semilattices,
Sci. Math. Japonicae online 8 (2003), 41–51, and show that the meet-relations
are closed under composition. So, we obtain that the DS-spaces with meet-
relations is a category dual to the category of distributive semilattices with ho-
momorphisms. These results complete the topological representation presented
in Celani S.A., Topological representation of distributive semilattices, Sci. Math.
Japonicae online 8 (2003), 41–51, without the use of ordered topological spaces.
Finally, following the work of G. Bezhanishvili and R. Jansana in Generalized

Priestley quasi-orders, Order 28 (2011), 201–220, we will prove a characteriza-
tion of homomorphic images of a distributive semilattice A by means of family
of closed subsets of the dual space endowed with a lower Vietoris topology.

Keywords: distributive semilattices; topological representation; meet-relations

Classification: Primary 03G10, 06A12; Secondary 06D50

1. Introduction

It is well know that the notion of distributivity in a lattice can be characterized
in several equivalent ways. In semilattices we have a different situation, because
there are already several different notions of distributivity. For example, a meet-
semilattice 〈A,∧〉 is called weakly distributive if whenever a1 ∨· · · ∨an exists in A
then (b∧a1)∨· · ·∨(b∧an) exists and (b∧a1)∨· · ·∨(b∧an) = b∧(a1∨· · ·∨an). This
class of semilattices was introduced by R. Balbes in [1] with the name of prime

semilattices , and were intensively studied in [6]. The distributivity implies the
0-distributivity, which is a concept that was introduced and studied by J. Varlet
in [14]. Another interesting class is the class of mildly distributive semilattices

introduced and studied by E.C. Hickman in [9]. A meet-semilattice 〈A,∧〉 is
mildly distributive if the set of all strong ideals is a distributive lattice. Perhaps,
the most studied class is the class of distributive semilattices . A meet-semilattice
〈A,∧〉 is distributive if for all a, b, c ∈ A with a∧ b ≤ c there exist a1, b1 ∈ A such
that a ≤ a1, b ≤ b1 and c = a1 ∧ b1. This class of semilattices was studied by
several authors in [5], [7], [12], [15] and [17].

This research was supported by the CONICET under grant PIP 112-201101-00636.
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In the study of distributive lattices, their topological representation plays an
important role. The first to develop a topological representation for bounded dis-
tributive lattices was M. Stone in [13]. In this paper Stone establishes that the
category of bounded distributive lattices with homomorphisms is dually equiva-
lent to the category of spectral spaces with continuous maps. Later, H. Priestley
in [11] proves that there is a duality between certain ordered topological spaces,
called Priestley spaces , and bounded distributive lattices. Through both versions
we can have a duality for Boolean algebras. In [7] George Grätzer develops a
topological representation for distributive semilattices and extends the represen-
tation given by Stone. On the other hand, a full duality between distributive
meet-semilattices with greatest element and certain ordered topological spaces
was developed in [4]. The main novelty of [4] was the characterization of meet-
semilattice homomorphisms preserving top by means of certain binary relations
defined between certain spectral spaces. Recently in [2], G. Bezhanishvili and
R. Jansana develop a “Priestley-like” duality for the category of bounded dis-
tributive meet-semilattices and bounded meet-semilattice homomorphisms.

This paper has two main objectives. First, we shall survey all known charac-
terizations of distributive semilattices and we will present some new ones. The
second one is to complete and simplify the duality given in [4]. Also we will
show that the homomorphic images of a distributive semilattice A can be char-
acterized in terms of families of closed sets of the DS-space 〈X(A), τ〉 endowed
with a lower Vietoris topology. These results are motivated by similar results
given in [3] on the dual characterization of homomorphic images of a bounded
distributive meet-semilattice by means of Vietoris families.

The paper is organized as follows. In Section 2 we shall provide all the needed
information to make the paper self-contained. In Section 3 we will present the
most important characterizations of distributive semilattices and we will develop
new characterizations through annihilators and relative maximal filters. In Sec-
tion 4 we shall give a simplification of the topological representation developed
in [4] by means of sober spaces. In Section 5 we shall study the structure of the
lattice of filters of a distributive meet-semilattice through the dual space. In Sec-
tion 6 is proved that the composition of meet-relations is a meet-relation and we
will show that the class ofDS-spaces with meet-relations form a category. Finally,
in Section 7 we will study the dual characterization of homomorphic images by
means of a family of closed subsets of a DS-space endowed with a lower Vitories
topology.

2. Preliminaries

In this section we will give some necessary notations and definitions. Let us
consider the poset 〈X,≤〉. A subset U ⊆ X is said to be increasing (decreasing)
if for all x ∈ X such that x ∈ U (y ∈ U) and x ≤ y, we have y ∈ U (x ∈ U). The
set of all subsets of X is denoted by P(X) and the set of all increasing subsets
of X is denoted by Pi(X). A subset K ⊆ P(X) is called dually directed if for
any U, V ∈ K there exists W ∈ K such that W ⊆ U ∩ V . The set complement
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of subset Y ⊆ X will be denoted by Y c or X − Y . For each Y ⊆ X , the
increasing (decreasing) set generated by Y is [Y ) = {x ∈ X : ∃y ∈ Y : y ≤ x}
((Y ] = {x ∈ X : ∃y ∈ Y : x ≤ y}). If Y = {y}, then we will write [y) and (y]
instead of [{y}) and ({y}], respectively.

Let us recall that a meet-semilattice with greatest element is an algebra 〈A,∧, 1〉
of type (2, 0) such that the operation ∧ is idempotent, commutative, associative
and a∧1 = a for all a ∈ A. As usual, the binary relations≤ defined by a ≤ b if and
only if a∧ b = a is a partial order. In what follows we will say semilattice instead
of meet-semilattice with greatest element. A bounded semilattice is an algebra
〈A,∧, 0, 1〉 of type (2, 0, 0) such that 〈A,∧, 1〉 is a semilattice and a∧ 0 = 0 for all
a ∈ A.

A filter of a semilattice A is a subset F ⊆ A such that 1 ∈ F , if a ≤ b and
a ∈ F , then b ∈ F and if a, b ∈ F , then a∧ b ∈ F . The filter generated by a subset

H ⊆ A, in symbols F (H), is the set F (H) = {x ∈ A : ∃{h0, . . . , hn} ⊆ H and
h0 ∧ · · · ∧ hn ≤ x}. A filter F is said to be finitely generated if F = F (H) for
some finite non-empty subset H of A. Note that if H = {a} then F ({a}) = [a).
We will denote by Fi(A) and Fif (A) the set of all filters and finitely generated
filters of A, respectively.

Theorem 1. Let A be a semilattice. Then Fi(A) is a lattice if and only if any

pair of elements of A has an upper bound in common.

A proper filter P of A is irreducible if for all F1, F2 ∈ Fi(A) such that P =
F1 ∩ F2, then P = F1 or P = F2. The set of all irreducible filters of A will be
denoted by X(A). A subset I of A is called an order-ideal of A if I is decreasing
and for all a, b ∈ I there exists an element c ∈ I such that a ≤ c and b ≤ c.
A proper filter F of A is weakly irreducible if I = F c = {a ∈ A : a /∈ F} is
an order-ideal. We note that in all semilattices, every weakly irreducible filter is
an irreducible filter. We will denote by Xω(A) and Id(A) the set of all weakly
irreducible filters and proper order-ideals of A, respectively. Finally, we will say
that a proper filter M of A is maximal if for any F ∈ Fi(A) such that M ⊆ F ,
we have F = M or F = A.

The following result, analogue of the Prime Filter theorem, was proved in [4]
for semilattices in general.

Theorem 2. Let A be a semilattice. Let F ∈ Fi(A) and I ∈ Id(A) such that

F ∩ I = ∅. Then there exists P ∈ X(A) such that F ⊆ P and P ∩ I = ∅.

Corollary 3. Let A be a semilattice. Then every proper filter is the intersection

of irreducible filters.

Lemma 4. Let A be a semilattice and let F ∈ Fi(A). Then F is irreducible if

and only if for every a, b /∈ F there exists c /∈ F and f ∈ F such that a ∧ f ≤ c
and b ∧ f ≤ c.

Lemma 5. Let A be a semilattice and let F ∈ Fi(A). Then F is weakly irre-

ducible if and only if for all F1, F2 ∈ Fi(A) such that F1 ∩ F2 ⊆ F , then F1 ⊆ F
or F2 ⊆ F .
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3. Distributive semilattices

In this section we present several characterizations of distributive semilattices.

Definition 6. A semilattice A is distributive if for all a, b, c ∈ A such that a∧b ≤ c
there exist a1, b1 ∈ A such that a ≤ a1, b ≤ b1 and c = a1 ∧ b1.

A lattice is distributive if and only if it is distributive as a semilattice (see [7]
or [5]). We will denote by DS the class of distributive semilattices.

Lemma 7. Let A ∈ DS. Thus, Fi(A) is a lattice.

Proof: Since 1 ∈ A, then any pair of elements of A has an upper bound in
commmon. Thus, Fi(A) is a lattice. �

In the following theorem we collect different results obtained by different au-
thors that characterize the distributivity in a semilattice.

Theorem 8. Let A be a semilattice. Then the following conditions are equi-

valent.

(1) A is distributive.

(2) The set Fi(A), considered as a lattice, is distributive.

(3) X(A) = Xω(A).
(4) Let F ∈ Fi(A) and I ∈ Id(A) such that F ∩ I = ∅. Then there exists

P ∈ Xω(A) such that F ⊆ P and P ∩ I = ∅.

The equivalence between the condition (1) and (4) of Theorem 8 was given
by J. Varlet in [15]. This result provides a characterization of distributivity of
a semilattice through a separation property and generalize the Stone’s theorem
for distributive lattices. Later, the equivalence between (1) and (2) was proved
by G. Grätzer in [7]. Finally, the equivalence of the conditions (1) and (3) was
proved by S. Celani in [4]. Compared with the theory of lattices, this equivalence
is similar to the well-known result which states that a lattice is distributive if and
only if every irreducible filter is prime.

Now, we will focus on the notion of annihilator . Let A be a semilattice. For
a, b ∈ A, the annihilator 〈a, b〉 of a relative to b is defined by

〈a, b〉 = {x ∈ A : x ∧ a ≤ b}.

In [10] Mandelker studied the properties of relative annihilator and characterized
distributive lattices in terms of their relative annihilators. Later, Varlet in [16]
gave a similar characterization for distributive semilattices. Here we present a
slight generalization of the Varlet’s characterization.

Let A ∈ DS and X,Y ⊆ A. We denote by 〈X,Y 〉 the set

〈X,Y 〉 =
⋃
{〈a, b〉 : (a, b) ∈ X × Y }.

Remark 9. Note that 〈[a), (b]〉 = 〈a, b〉 for all a, b ∈ A.

The following theorem extends the results given in [16] adding the condition (3).
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Theorem 10. Let A be a semilattice. Then the following conditions are equiva-

lent.

(1) A is distributive.

(2) The set 〈a, b〉 ∈ Id(A), for all a, b ∈ A.
(3) The set 〈F, I〉 ∈ Id(A), for all F ∈ Fi(A) and I ∈ Id(A).

Proof: (1)⇒(2) Let a, b ∈ A. It is easy to prove that 〈a, b〉 is decreasing. Let
x, y ∈ 〈a, b〉, then x ∧ a ≤ b and y ∧ a ≤ b. By hypothesis, there exist x1, a1 ∈ A
such that x ≤ x1, a ≤ a1 and b = x1 ∧ a1. In particular, we have b ≤ x1. Then
y∧a ≤ x1, and again by hypothesis there exist y1, a2 ∈ A such that y ≤ y1, a ≤ a2
and x1 = y1 ∧ a2. Later x ≤ y1, y ≤ y1 and

y1 ∧ a ≤ (y1 ∧ a2) ∧ a1 = x1 ∧ a1 = b

i.e., y1 ∈ 〈a, b〉. Therefore 〈a, b〉 ∈ Id(A).

(2)⇒(3) Let F ∈ Fi(A) and I ∈ Id(A). We prove that 〈F, I〉 is an order-ideal.
It is clear that it is decreasing. Let a, b ∈ 〈F, I〉. Then there exist (f1, i1), (f2, i2) ∈
F × I such that a ∈ 〈f1, i1〉 and b ∈ 〈f2, i2〉, i.e., a∧ f1 ≤ i1 and b∧ f2 ≤ i2. Since
F is a filter, then f = f1 ∧ f2 ∈ F and as I is an order-ideal there exists y ∈ I
such that i1 ≤ y and i2 ≤ y. Then a∧f ≤ y and b∧f ≤ y. So, a, b ∈ 〈f, y〉 and by
hypothesis there exists c ∈ 〈f, y〉 such that a ≤ c and b ≤ c, where 〈f, y〉 ⊆ 〈F, I〉.
Thus, 〈F, I〉 is an order-ideal.

(3)⇒(1) Let a, b, c ∈ A such that a ∧ b ≤ c. Since 〈a, c〉 = 〈[a), (c]〉 and
b, c ∈ 〈a, c〉 by hypothesis we have there exists b1 ∈ 〈a, c〉 such that c ≤ b1, b ≤ b1.
Then b1 ∧ a ≤ c and c, a ∈ 〈b1, c〉. Again, as 〈b1, c〉 is an order-ideal, there exists
a1 ∈ 〈b1, c〉 such that c ≤ a1, a ≤ a1 and a1 ∧ b1 ≤ c. But c ≤ b1 and c ≤ a1, so
c ≤ a1 ∧ b1. Therefore c = a1 ∧ b1 and A is distributive. �

Now we present a new characterization of distributive semilattices in terms of
the notion of relative maximal filter with respect to a set.

Definition 11. Let A be a semilattice and let S be a subset of A closed under
meet. A filter F of A shall be called a relative maximal filter with respect to S,
when F is maximal among filters which are disjoint to S.

If S = (a], for some a ∈ A, then F is called relative maximal filter with respect

to a.

Lemma 12. Let A be a semilattice. Let F ∈ Fi(A) and I ∈ Id(A). Then F
is relative maximal filter with respect to I if and only if 〈H, I〉 ∩ F 6= ∅, for all

H ∈ Fi(A) such that H * F .

Proof: Suppose that F is relative maximal filter with respect to I. Let H ∈
Fi(A) such that H * F . Consider F ∨H . Since F is relative maximal filter with
respect to I and F ⊆ F ∨H then (F ∨H) ∩ I 6= ∅, i.e., there exist i ∈ I, f ∈ F
and h ∈ H such that f ∧ h ≤ i. Moreover, we have f ∈ 〈h, i〉 ⊆ 〈H, I〉 and
〈H, I〉 ∩ F 6= ∅.
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Assume that 〈H, I〉∩F 6= ∅ for allH ∈ Fi(A) such thatH * F . Suppose that F
is not relative maximal filter with respect to I. Then there exists H ∈ Fi(A) such
that F ⊂ H and H ∩ I = ∅. Since H * F , by hypothesis we get 〈H, I〉 ∩ F 6= ∅.
So, there exist f ∈ F and (h, i) ∈ H × I such that f ∈ 〈h, i〉, i.e., f ∧ h ≤ i. But
as f ∧ h ∈ H , we get i ∈ H which is a contradiction. �

Theorem 13. Let A be a semilattice. Then the following conditions are equiva-

lent.

(1) A is distributive.

(2) Every relative maximal filter F with respect to an order-ideal I of A is

weakly irreducible.

Proof: (1)⇒(2) Let I ∈ Id(A) and F ∈ Fi(A) be such that it is relative maximal
filter with respect to I. Let us prove that F is weakly irreducible using Lemma 5.
Let F1, F2 ∈ Fi(A) and F1 ∩ F2 ⊆ F . Suppose that F1 * F and F2 * F , then
there exist a ∈ F1 − F and b ∈ F2 − F . Consider the filters Fa = F ∨ [a) and
Fb = F ∨ [b). Since F is relative maximal filter with respect to I, Fa ∩ I 6= ∅
and Fb ∩ I 6= ∅. Then, there are elements f1, f2 ∈ F and i1, i2 ∈ I such that
f1 ∧a ≤ i1 and f2 ∧ b ≤ i2. As F is a filter, then f = f1 ∧ f2 ∈ F . Also, as I is an
order-ideal, there exists i ∈ I such that i1, i2 ≤ i. Then f ∧ a ≤ i and f ∧ b ≤ i.
By distributivity of Fi(A), we have

i ∈ Fa ∩ Fb = (F ∨ [a)) ∩ (F ∨ [b)) = F ∨ ([a) ∩ [b))
⊆ F ∨ (F1 ∩ F2) = F

and this implies that i ∈ F , i.e., F ∩ I 6= ∅, which is a contradiction. Therefore,
F is weakly irreducible.

(2)⇒(1) By Lemma 7, Fi(A) is a lattice. We prove that Fi(A) is a distributive
lattice. Let F1, F2, F3 ∈ Fi(A). We know that it is always (F1 ∩F2)∨ (F1 ∩F3) ⊆
F1 ∩ (F2 ∨ F3). Suppose that F1 ∩ (F2 ∨ F3) * (F1 ∩ F2) ∨ (F1 ∩ F3), then there
exists a ∈ F1∩(F2∨F3) such that a /∈ (F1∩F2)∨(F1∩F3). Consider the following
family

F = {F ∈ Fi(A) : (F1 ∩ F2) ∨ (F1 ∩ F3) ⊆ F and F ∩ (a] = ∅}.

This family is non-empty. By Zorn’s Lemma there exists maximal elementM ∈ F .
It is not difficult to show thatM is relative maximal filter with respect to a. Then,
by hypothesis, M is weakly irreducible. As F1∩F2 ⊆ M,F1∩F3 ⊆ M,a ∈ F1 and
a /∈ M , we deduce that F1 * M and that F2 ⊆ M and F3 ⊆ M . So, F2∨F3 ⊆ M ,
but a ∈ (F2 ∨ F3), which is a contradiction. Thus, Fi(A) is distributive and by
Theorem 8 A is distributive. �

A known result of lattice theory states that a lattice is distributive if and only
if every filter is intersection of prime filters. Here we present a generalization of
this characterization.
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Let A be a semilattice. For each filter F of A we consider the family

F̂ = {P ∈ Xω(A) : F ⊆ P}.

Theorem 14. Let A be a semilattice. Then the following conditions are equiva-

lent.

(1) A is distributive.

(2) F =
⋂
F̂ for all F ∈ Fi(A).

Proof: (1)⇒(2) By Theorem 8 and Corollary 3, we have that F =
⋂
F̂ for all

F ∈ Fi(A).

(2)⇒(1) Let a, b ∈ A. We prove that 〈a, b〉 is an order-ideal of A. It is easy to
show that 〈a, b〉 is increasing. Let x, y ∈ 〈a, b〉 and suppose that [x)∩[y)∩〈a, b〉 = ∅.
Let F = [x) ∩ [y). Since A is a distributive semilattice, then F 6= ∅. Consider the
filter [F ∪ {a}). Then b /∈ [F ∪ {a}), because if b ∈ [F ∪ {a}) then there exists
f ∈ F such that f ∧ a ≤ b, i.e., f ∈ 〈a, b〉. Therefore [x) ∩ [y) ∩ 〈a, b〉 6= ∅, which
is a contradiction. Moreover, as [F ∪ {a}) ∈ Fi(A), by hypothesis,

[F ∪ {a}) =
⋂

̂[F ∪ {a})

and there existsQ ∈ Xω(A) such that F ⊆ Q, a ∈ Q and b /∈ Q. Since [x)∩[y) ⊆ Q
and Q is weakly irreducible, by Lemma 5 then x ∈ Q or y ∈ Q. In any case
Q ∩ 〈a, b〉 6= ∅. So, there exists q ∈ Q such that q ∧ a ≤ b, but as q ∧ a ∈ Q and
Q is a filter, we have b ∈ Q which is a contradiction. Thus, [x) ∩ [y) ∩ 〈a, b〉 6= ∅
and therefore there exists z ∈ 〈a, b〉 such that x ≤ z and y ≤ z, i.e., 〈a, b〉 is an
order-ideal. �

4. DS-spaces

The purpose of this section is to simplify the topological representation of
distributive semilattices given in [4]. We note that this simplification lies in a
Stone style duality which differs from the results given in [2], where a full Priestley
style duality is developed for bounded distributive semilattices.

We will recall some topological notions. The following definitions can be found
in [8]. Let 〈X, τ〉 be a topological space. The closure of a set Y ⊆ X is denoted
by cl(Y ). If Y = {y}, then we will write cl({y}) = cl(y). An arbitrary non-empty
subset Y ⊆ X is irreducible if Y ⊆ Z ∪ W for closed subsets Z and W implies
Y ⊆ Z or Y ⊆ W . Remark that for each x ∈ X the set cl(x) is irreducible.

We recall that the specialization order of X is defined by

x � y iff x ∈ cl(y).

The dual order of � is denoted by ≤, i.e., x ≤ y if and only if y ∈ cl(x). Note
that the relation � is reflexive and transitive, but not necessarily antisymmetric.

Definition 15. A topological space 〈X, τ〉 is sober if for every irreducible closed
set Y of X , there exists a unique x ∈ X such that cl(x) = Y .
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We have the following result, which indicates the necessary and sufficient con-
ditions for the relation � to be an order.

Lemma 16. Let X = 〈X, τ〉 be a topological space. Then:

(1) if X is sober, then � is an order;

(2) the relation � is an order if and only if X is T0.

Proof: (1) It is clear that � is reflexive and transitive. We need to show that
� is antisymmetric. Let x, y ∈ X such that x � y and y � x. Then x ∈ cl(y) and
y ∈ cl(x). So, cl(y) = cl(x), but as cl(x) and cl(y) are closed and irreducible, by
hypothesis we have x = y.

(2) Let x, y ∈ X such that x 6= y. Since � is an order, we have x � y or y � x.
Suppose x � y. The other case is analogous. Then x � y if and only if x /∈ cl(y).
Later, if we take the open set U = cl(y)c, we have that x ∈ U and y /∈ U . So, X
is T0.

Conversely, it is easy to check that � is reflexive and transitive. Let x, y ∈ X
such that x � y and y � x. Suppose x 6= y. Since X is T0, then there exists an
open U such that x ∈ U and y /∈ U . So, x /∈ U c and y ∈ U c, i.e., cl(y) ⊆ U c.
Therefore, we have that x /∈ cl(y), which is a contradiction because x � y. �

Remark 17. By Lemma 16, observe that a sober space is automatically T0.

In [4] the dual space of a distributive semilattice was defined as an ordered
topological space 〈X,≤, τ〉 satisfying certain additional conditions. To be more
precise:

Definition 18. An ordered DS-space is an ordered topological space 〈X,≤, τ〉
such that:

(1) the set of all open and compact subsets K forms a basis for the topology τ ;
(2) all closed subsets are increasing;
(3) for every x, y ∈ X , if x � y, then there exists U ∈ K such that x ∈ U and

y /∈ U ;
(4) if Y is a closed subset of X , and L ⊆ K is a dually directed set such that

Y ∩ U 6= ∅ for all U ∈ L, then Y ∩
⋂
{U : U ∈ L} 6= ∅.

Let 〈X, τ〉 be a topological space with a basis K of open and compact subsets.
Consider the set

DK(X) = {U ⊆ X : U c ∈ K}.

It is clear that 〈DK(X),∩, X〉 is a semilattice. If 〈X,≤, τ〉 is an orderedDS-space,
then 〈DK(X),∩, X〉 is a distributive semilattice (see [7]).

Remark 19. We note that an ordered DS-space 〈X,≤, τ〉 is compact if and only
if DK(X) is a bounded distributive semilattice.

Now we will give an equivalent definition of ordered DS-space without using
the order. This allows us to give a simplified topological representation. Moreover,
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we can dispense with the condition (2). In fact, any closed subset in a sober space
X is increasing respect to the dual specialization order of X .

We are able to show the equivalence between the last two conditions of the
Definition 18 and sober spaces.

Theorem 20. Let X = 〈X, τ〉 be a topological space with a basis K of open and

compact subsets for τ . Then the following conditions are equivalent.

(1) X is T0 and, for each closed subset Y and each dually directed subset L ⊆
K such that Y ∩U 6= ∅ for all U ∈ L, we have that Y ∩

⋂
{U : U ∈ L} 6= ∅.

(2) X is T0, and the application HX : X → Xω(DK(X)), defined by

HX(x) = {U ∈ DK(X) : x ∈ U}

for each x ∈ X , is onto.

(3) X is sober.

Proof: (1)⇒(2) First, we prove that HX is well-defined. Let x ∈ X . It is clear
that HX(x) is a filter of DK(X). We prove that HX(x) is weakly irreducible. Let
F1, F2 ∈ Fi(DK(X)) such that F1 ∩ F2 ⊆ HX(x) and suppose that F1 * HX(x)
and F2 * HX(x). Then there exist U1 ∈ F1 and U2 ∈ F2 such that U1 /∈ HX(x)
and U2 /∈ HX(x), i.e., x /∈ U1 ∪ U2. Since U c

1 ∩ U c
2 is open and K is a basis, there

exists Oc ∈ K such that x ∈ Oc ⊆ U c
1 ∩ U c

2 . Later, O /∈ HX(x). On the other
hand, as U1 ⊆ O we have that O ∈ F1. Similarly O ∈ F2. Therefore, O ∈ F1 ∩F2

and O ∈ HX(x), which is a contradiction. So, HX(x) is a weakly irreducible filter.
Thus, HX is well-defined.

Let P ∈ Xω(DK(X)). Let us consider the set L = {U c
j : Uj /∈ P} ⊆ K. We

prove that L is dually directed. Let U c
i , U

c
j ∈ L. Since P is a weakly irreducible

filter and Ui, Uj /∈ P then there exists Uk /∈ P such that Ui ⊆ Uk and Uj ⊆ Uk.
Then we have U c

k ⊆ U c
i ∩U

c
j and thus L is dually directed. The set Y =

⋂
{Vi : Vi ∈

P} is closed and Y ∩U c
j 6= ∅ for each U c

j ∈ L because, otherwise, there exists U c
j ∈

L such that U c
j ⊆

⋃
{V c

i : Vi ∈ P}. Since U c
j is compact, U c

j ⊆ V c
1 ∪V c

2 ∪ · · · ∪V c
n ,

i.e., V1∩V2∩· · ·∩Vn ⊆ Uj . It follows that Uj ∈ P , which is a contradiction. Then
Y ∩

⋂
{U c

j : Uj /∈ P} 6= ∅, i.e., there exists x ∈
⋂
{Vi : Vi ∈ P} ∩

⋂
{U c

j : Uj /∈ P},
which implies that P = HX(x).

(2)⇒(3) Let Y be an irreducible closed subset of X . Let us consider the set
PY = {U ∈ DK(X) : Y ⊆ U}. It is easy to see that PY is a filter of DK(X).
We prove that PY is weakly irreducible. Let F1, F2 ∈ Fi(DK(X)) be such that
F1∩F2 ⊆ PY . Suppose that F1 * PY and F2 * PY , then there exist U ∈ F1−PY

and V ∈ F2−PY . Hence, Y * U and Y * V , and as Y is irreducible, Y * U ∪V .
So, there exists x ∈ Y such that x ∈ U c ∩ V c. As U c, V c ∈ K and K is a basis of
open and compact subsets for the topology τ , there exists W ∈ DK(X) such that
x ∈ W c ⊆ U c ∩ V c. So, Y * W . Thus, W /∈ PY . On the other hand U ⊆ W ,
but as F1 is a filter, W ∈ F1. Analogously W ∈ F2. Later W ∈ PY , which is
a contradiction. Then F1 ⊆ PY or F2 ⊆ PY and by Lemma 5 PY is a weakly
irreducible filter of DK(X). Since X is T0, HX is one-to-one, and as HX is onto,
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there exists a unique y ∈ X such that HX(y) = PY . It is easy to check that
Y = cl(y). Thus, X is sober.

(3)⇒(1) Let Y be a closed subset of X and let L = {Ui : i ∈ I} be a dually
directed subfamily of K such that Y ∩ Ui 6= ∅ for all i ∈ I. Since Y c is an
open subset and K is a basis, Y =

⋂
{V : V ∈ B ⊆ DK(X)}. Let us consider

the set H = {U c
i : Ui ∈ L} ⊆ DK(X). Since L is dually directed, the subset

(H ] = {W ∈ DK(X) : W ⊆ U c
i , for some U c

i ∈ H} is an order-ideal of DK(X).
Let F (B) be the filter generated by B. We prove that

F (B) ∩ (H ] = ∅.

Suppose the contrary. Then, there exists U c
k ∈ H and there exist V1, . . . , Vn ∈ B

such that V1 ∩ · · · ∩ Vn ⊆ U c
k . Since Y ∩ Uk 6= ∅, there exists x ∈ X such that

x ∈ Y and x ∈ Uk. As x ∈ V1, . . . , Vn and V1 ∩ · · · ∩ Vn ⊆ U c
k , we deduce that

x ∈ U c
k, which is a contradiction. Thus, there exists P ∈ X(DK(X)) such that

F (B) ⊆ P and P ∩ (H ] = ∅. Consider the set

Z =
⋂

{V : V ∈ P}.

Then, Z ⊆ Y . It is easy to see that Z is an irreducible set. As X is sober, there
exists a unique x ∈ X such that Z = cl(x). We prove that x ∈

⋂
{U : U ∈ L}. If

there exists U ∈ L such that x /∈ U , then Z = cl(x) ⊆ U c. So, U ⊆
⋃
{V c : V ∈ P}

and as U is compact, there exists a finite subset {V1, . . . , Vn} of P such that
U ⊆ V c

1 ∪ · · · ∪ V c
n , i.e., V1 ∩ · · · ∩ Vn ⊆ U c, but as P is a filter, U c ∈ P , which is

a contradiction. Thus, x ∈
⋂
{U : U ∈ L} ∩ Y . �

From Theorem 20, we can simplify the Definition 18 saying that an ordered
DS-space can be characterized as a topological space 〈X, τ〉 by the following
conditions:

(1) the set of all open and compact subsets K forms a basis for the topology τ ;
(2) 〈X, τ〉 is sober.

In this case, the order ≤ is the dual of the specialization order. Consequently
from now on an ordered DS-spaces will be called a DS-space. Note that from
Theorem 20 we have a new characterization ofDS-spaces different of the definition
given by G. Grätzer in [7].

Let A ∈ DS. Let us consider the set X(A) and let us consider the mapping

β : A → Pi(X(A))

defined by β(a) = {P ∈ X(A) : a ∈ P}. Let β[A] = {β(a) : a ∈ A}. In [4] the
following theorem was obtained.

Theorem 21 (Representation theorem). Let A ∈ DS. Then, A is isomorphic to

the subalgebra β[A] of Pi(X(A)).
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With the results of this section and [4], we define the dual space of A (without
using the order), as the structure F(A) = 〈X(A), β[A]c〉 where β[A]c is a basis
for a topology on X(A). Then from the results given in [4] we have that:

Theorem 22. Let A ∈ DS. Then F(A) = 〈X(A), β[A]c〉 is a DS-space.

5. The lattice of filters

The purpose of this section is to study the structure of the lattice of filters of
a distributive semilattice A. For each F ∈ Fi(A), let us consider the set

Φ(F ) = {P ∈ X(A) : F ⊆ P}.

Note that

Φ(F ) =
⋂

{β(a) : a ∈ F},

for each F ∈ Fi(A). If F ∈ Fif (A) then there exists a finite subset {a1, . . . , an} ⊆
A such that F = F ({a1, . . . , an}). It is not difficult to show that

F = F ({a1, . . . , an}) iff Φ(F ) = β(a1) ∩ · · · ∩ β(an).

Remark that if F = [a), then Φ(F ) = β(a). For the proof of the following
result see [4].

Theorem 23. Let A ∈ DS. Let F(A) be the dual space of A. Then:

(1) a subset U ⊆ X(A) is open in F(A) if and only if there exists F ∈ Fi(A)
such that U = Φ(F )c;

(2) a subset U ⊆ X(A) is open-compact in F(A) if and only if there exists

a ∈ A such that U = Φ([a))c.

Let 〈X, τ〉 be a topological space. We will denote by C(X) (resp. O(X)) the set
of all non-empty closed subsets (resp. open) of X . Let us denote by KO(X) the
set of all compact and open subsets of X . Note that C(X) and O(X) are lattices
under the inclusion relation.

From the result developed in [4], we have the following theorem.

Theorem 24. Let A ∈ DS. Let F(A) be the dual space of A. Then:

(1) the lattices Fi(A) and C(X(A)) are dually isomorphic under the map

Φ : Fi(A) → C(X(A));

(2) the poset KO(X(A)) is isomorphic to the poset Fif (A) under the map

Ψ : Fif (A) → KO(X(A))

defined by

Ψ(F ) = (Φ(F ))c.
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Recall that a Heyting algebra is an algebra 〈A,∨,∧,⇒, 0, 1〉 of type (2, 2, 2, 0, 0)
such that 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice and the operation ⇒
satisfies the condition: a ∧ b ≤ c if and only if a ≤ b ⇒ c, for all a, b, c ∈ A.

For each pair F,H ∈ Fi(A) let us define the subset F 7→ H of A as follows:

F 7→ H = {a ∈ A : [a) ∩ F ⊆ H}.

Theorem 25. Let A ∈ DS. Let F,H ∈ Fi(A). Then:

(1) F 7→ H ∈ Fi(A);
(2) 〈Fi(A),∨,∧, 7→, {1}, A〉 is a Heyting algebra.

Proof: (1) Let a, b ∈ A such that a ≤ b and a ∈ F 7→ H . Then b ∈ [a) and
[a) ∩ F ⊆ H . Since [b) ⊆ [a), we have [b) ∩ F ⊆ H , i.e., b ∈ F 7→ H . Let
a, b ∈ F 7→ H . We prove that a ∧ b ∈ F 7→ H . As Fi(A) is distributive,

[a ∧ b) ∩ F = {[a) ∨ [b)} ∩ F

= {[a) ∩ F} ∨ {[b) ∩ F}

⊆ H.

Therefore, a ∧ b ∈ F 7→ H and F 7→ H ∈ Fi(A).

(2) Let F1, F2, F3 ∈ Fi(A). We prove that F1 ∩ F2 ⊆ F3 if and only if F1 ⊆
F2 7→ F3. Suppose that F1∩F2 ⊆ F3 and let a ∈ F1. Take x ∈ [a)∩F2, then a ≤ x
and x ∈ F2. Therefore x ∈ F1 ∩F2 and by hypothesis x ∈ F3, i.e., F1 ⊆ F2 7→ F3.

Conversely, let x ∈ F1 ∩ F2. By hypothesis F1 ⊆ F2 7→ F3, then x ∈ F2 7→ F3.
As [x) ∩ F2 ⊆ F3, we have x ∈ F3. �

The following result is known for the lattice of all open subsets of a topological
space. Here we need the version of this result for the lattice of all closed subsets
of a topological space.

Lemma 26. Let 〈X, τ〉 be a topological space. Then 〈C(X),∪,∩, , ∅, X〉 where

U  V = cl(U c ∩ V )

is a Heyting algebra.

Now we will prove that the isomorphism given in Theorem 24 is an isomorphism
of Heyting algebras.

Theorem 27. Let A ∈ DS. Let F(A) be the dual space of A. Then the

application Φ is an isomorphism between Heyting algebras 〈Fi(A),∨,∧, 7→, {1}, A〉
and 〈C(X(A)),∪,∩, , ∅, X〉.

Proof: We only have to prove that if F,H ∈ Fi(A) then

Φ(F 7→ H) = cl(Φ(F )c ∩Φ(H)).

If we prove first that Φ(F )c ∩Φ(H) ⊆ Φ(F 7→ H), then as Φ(F 7→ H) is a closed
subset of X(A), we get cl(Φ(F )c ∩ Φ(H)) ⊆ Φ(F 7→ H). Let P ∈ Φ(F )c ∩ Φ(H).
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Then F * P and H ⊆ P . Let f ∈ F and f /∈ P . If a ∈ F 7→ H , then [a)∩F ⊆ H .
So, [a)∩F ⊆ P , and since P is weakly irreducible and f /∈ P we have by Lemma 5
that [a) ⊆ P , i.e., a ∈ P . Later, F 7→ H ⊆ P and Φ(F )c ∩Φ(H) ⊆ Φ(F 7→ H).

Let P ∈ Φ(F 7→ H). Suppose that

P /∈ cl(Φ(F )c ∩ Φ(H)) =
⋂

{Φ(D) : D ∈ Fi(A) and Φ(F )c ∩Φ(H) ⊆ Φ(D)}.

Then there exists D ∈ Fi(A) such that

Φ(F )c ∩ Φ(H) ⊆ Φ(D) and D * P.

Then, there exists d ∈ D and d /∈ P . By hypothesis, since F 7→ H ⊆ P , then
d /∈ F 7→ H , i.e., there exists x ∈ A such that d ≤ x, x ∈ F and x /∈ H . From
Theorem 2 there exists Q ∈ X(A) such that H ⊆ Q and x /∈ Q. So, as F * Q,
we have that

Q ∈ Φ(F )c ∩ Φ(H) ⊆ Φ(D).

Then D ⊆ Q and d ∈ Q. Therefore, x ∈ Q which is a contradiction. Thus,
P ∈ cl(Φ(F )c ∩ Φ(H)). �

6. Meet-relations

In this section we will focus in the representation of homomorphisms of dis-
tributive semilattices. In [4] it was shown that there exists a duality between
homomorphisms of distributive semilattices and certain binary relations, called
meet-relations . It was mentioned that the DS-spaces with meet-relations form a
category, but this result was not given. Our purpose is to show that the usual
composition of two meet-relations is a meet-relation and that matches with the
composition introduced in [2].

Definition 28. Let A,B ∈ DS. A mapping h : A → B is a homomorphism if for
every a, b ∈ A:

(1) h(a ∧ b) = h(a) ∧ h(b),
(2) h(1) = 1.

Let us define a binary relation Rh ⊆ X(B)×X(A) by

(P,Q) ∈ Rh iff h−1(P ) ⊆ Q

where h−1(P ) = {x ∈ A : h(x) ∈ P}.
Let X1 and X2 be two sets and let R ⊆ X1×X2 be a binary relation. For each

x ∈ X1, let R(x) = {y ∈ X2 : (x, y) ∈ R}. Define the mapping hR : P(X2) →
P(X1) by

hR(U) = {x ∈ X1 : R(x) ⊆ U}.

It is easy to verify that hR(U ∩ V ) = hR(U) ∩ hR(V ) and hR(X2) = X1. If
S ⊆ X2 ×X3 is another relation, then the composition of the relations R and S
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is the relation S ◦R ⊆ X1 ×X3 defined by:

S ◦R = {(x, z) ∈ X1 ×X3 : ∃y ∈ X2 [(x, y) ∈ R and (y, z) ∈ S]}.

Note that h(S◦R)(U) = (hR ◦ hS)(U) for all U ∈ P(X3).
Recall that in [4] a meet-relation was defined as a subset R ⊆ X1 × X2 such

that:

(1) for every U ∈ DK2
(X2), hR(U) ∈ DK1

(X1), and
(2) R(x) =

⋂
{U ∈ DK2

(X2) : R(x) ⊆ U}, for all x ∈ X1.

The last item can be formulated in two equivalent forms.

Lemma 29. Let X1 and X2 be two DS-spaces. Let R ⊆ X1 ×X2 be a binary

relation. Suppose that for every U ∈ DK2
(X2), hR(U) ∈ DK1

(X1). Then the

following conditions are equivalent.

(1) For every (x, y) /∈ R, there exists U ∈ DK2
(X2) such that R(x) ⊆ U and

y /∈ U .

(2) R(x) =
⋂
{U ∈ DK2

(X2) : R(x) ⊆ U}, for all x ∈ X1.

(3) For any (x, y) ∈ X1 ×X2,

(x, y) ∈ R iff (HX1
(x), HX2

(y)) ∈ RhR
.

Proof: (1)⇒(2) It is clear that R(x) ⊆
⋂
{U ∈ DK2

(X2) : R(x) ⊆ U}. Let us
prove the other inclusion. Suppose that

⋂
{U ∈ DK2

(X2) : R(x) ⊆ U} * R(x).
So there exists y ∈

⋂
{U ∈ DK2

(X2) : R(x) ⊆ U} such that (x, y) /∈ R. By
hypothesis, there exists U0 ∈ DK2

(X2) such that R(x) ⊆ U0 and y /∈ U0, which is
a contradiction. Therefore, R(x) =

⋂
{U ∈ DK2

(X2) : R(x) ⊆ U}.

(2)⇒(3) Let (x, y) /∈ R, i.e., y /∈ R(x) =
⋂
{U ∈ DK2

(X2) : R(x) ⊆ U}. Then
there exists U0 ∈ DK2

(X2) such that R(x) ⊆ U0 and y /∈ U0. As x ∈ hR(U0),
we have hR(U0) ∈ HX1

(x). It follows that U0 ∈ h−1
R (HX1

(x)) and U0 /∈ HX2
(y),

and therefore, h−1
R (HX1

(x)) * HX2
(y), or equivalently, (HX1

(x), HX2
(y)) /∈ RhR

.
The other direction is similar.

(3)⇒(1) Suppose that (x, y) /∈ R. Then, by hypothesis, (HX1
(x), HX2

(y)) /∈
RhR

, i.e., hR(HX1
(x))−1 * HX2

(y). Therefore there exists U ∈ DK2
(X2) such

that U ∈ hR(HX1
(x))−1 and U /∈ HX2

(y). Since hR(U) ∈ HX1
(x), we have

x ∈ hR(U), i.e., R(x) ⊆ U . So, there exists U ∈ DK2
(X2) such that R(x) ⊆ U

and y /∈ U . �

Remark 30. Let R ⊆ X1 × X2 be a meet-relation. Then R(y) ⊆ R(x) for all
x, y ∈ X such that x ≤ y.

In [2] the following definition is introduced.

Definition 31. LetX1, X2 andX3 areDS-spaces and R ⊆ X1×X2, S ⊆ X2×X3

are meet-relations. Define a new binary relation S ∗R ⊆ X1 ×X3 by

(x, z) ∈ S ∗R iff (∀U ∈ DK3
(X3))((S ◦R)(x) ⊆ U ⇒ z ∈ U),
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where S ◦R denotes the usual composition.

We note that

(S ∗R)(x) =
⋂
{U ∈ DK3

(X3) : (S ◦R)(x) ⊆ U}
=

⋂
{U ∈ DK3

(X3) : R(x) ⊆ hS(U)}
=

⋂
{U ∈ DK3

(X3) : x ∈ hR(hS(U))}
=

⋂
{U ∈ DK3

(X3) : x ∈ (hR ◦ hS)(U)}
= cl((S ◦R)(x)).

As an immediate consequence, we have S ◦R ⊆ S ∗R.

Lemma 32. Let X1 and X2 be two DS-spaces. Let R ⊆ X1 × X2 be a meet-

relation. For each closed subset C of X1,

R[C] = {y ∈ X2 : ∃x ∈ C ((x, y) ∈ R)}

is a closed subset of X2.

Proof: Let C ∈ C(X1). By Lemma 29, it suffices to prove that for any y /∈ R[C]
there exists U ∈ K2 such that R[C] ⊆ U c and y ∈ U . So, let y /∈ R[C], i.e.,
y /∈ R(x) for all x ∈ C. Since R(x) is closed, for each x ∈ C there exists Ux ∈ K2

such that y ∈ Ux and R(x) ⊆ (Ux)
c, i.e., x ∈ hR((Ux)

c). Then we have that
C ⊆

⋃
{hR(U

c
x) : x ∈ C}, or equivalently, C ∩

⋂
{hR(U

c
x)

c : x ∈ C} = ∅. Now
consider the set H = {hR(U

c
x)

c : x ∈ C}. Since R is a meet-relation, H ⊆ K1.
Moreover, it is easy to prove that H is a dually directed family. So by Theorem 20,
there exists hR(U

c)c ∈ H such that C∩hR(U
c)c = ∅, i.e., C ⊆ hR(U

c). Thus there
exists U ∈ K2 such that R[C] ⊆ U c and y ∈ U . It follows that R[C] ∈ C(X2). �

Remark 33. We note that in the DS-spaces the usual composition of meet-
relations coincides with the composition ∗ introduced in [2].

Theorem 34. Let X1, X2 and X3 be DS-spaces and R ⊆ X1×X2, S ⊆ X2×X3

are meet-relations. Then:

(1) the relation ≤2 ⊆ X2 ×X2 satisfies

R ◦ ≤2 = R and ≤2 ◦ S = S;

(2) S ◦R ⊆ X1 ×X3 is a meet-relation.

Proof: (1) We prove that R ◦ ≤2 = R and ≤2 ◦ S = S. It is clear that
R ⊆ R ◦ ≤2 and S ⊆ ≤2 ◦S. Let (x, z) ∈ R ◦ ≤2, then there exists y ∈ X2

such that (x, y) ∈≤2 and (y, z) ∈ R, i.e., x ≤2 y and z ∈ R(y). Later, by
Remark 30, R(y) ⊆ R(x) and z ∈ R(x). So, (x, z) ∈ R and R◦ ≤2= R. Similarly,
let (x, z) ∈≤2 ◦S, then there exists y ∈ X2 such that (x, y) ∈ S and (y, z) ∈≤2.
Thus, y ∈ S(x) and y ≤2 z. As S(x) is closed, and therefore increasing, we have
z ∈ S(x). Then (x, z) ∈ S and ≤2 ◦S = S.

(2) It is easy to prove that (hR ◦ hS)(U) = h(S◦R)(U) ∈ DK1
(X1) for all

U ∈ DK3
(X3). By Lemma 32 it follows that (S ◦ R)(x) is a closed subset of X3

for all x ∈ X1. Therefore, S ◦R ⊆ X1 ×X3 is a meet-relation. �
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By Theorem 34 we conclude that the DS-spaces with meet-relations form a
category where the identity morphism of an DS-space X is ≤X . Note that the
composition of relations reverses the order of the actual composition in the cate-
gory.

Now we study the characterization of onto and one-to-one homomorphisms
between distributive semilattices using special meet-relations. These results are
similar to those given by G. Bezhanishvili and R. Jansana in [2] for generalized
Priestley morphisms between generalized Priestley spaces, and we will use them
to characterize the homomorphic images of a distributive semilattice.

Definition 35. Let X1 and X2 be two DS-spaces. Let R ⊆ X1 ×X2 be a meet-
relation. We shall say that R is one-to-one if for each x ∈ X1 and U ∈ DK1

(X1)
with x /∈ U , there exists V ∈ DK2

(X2) such that U ⊆ hR(V ) and x /∈ hR(V ).

Theorem 36. Let X1 and X2 be two DS-spaces. Let R ⊆ X1 ×X2 be a meet-

relation. Then:

(1) the homomorphism hR : DK2
(X2) → DK1

(X1) is one-to-one if and only

if for each y ∈ X2 there exists x ∈ X1 such that R(x) = cl(y);
(2) the homomorphism hR : DK2

(X2) → DK1
(X1) is onto if and only if R is

one-to-one.

Proof: (1) Suppose that hR : DK2
(X2) → DK1

(X1) is one-to-one. Let y ∈ X2.
Consider the set L = {hR(V )c : y /∈ V }. Let Z =

⋂
{hR(U) : y ∈ U}. As R is

a meet-relation, hR(U) ∈ DK1
(X1). Then Z is a closed subset of X1. We prove

that Z ∩ hR(V )c 6= ∅, for each V ∈ DK2
(X2) such that y /∈ V . Suppose that

there exists V ∈ DK2
(X2) with y /∈ V such that Z ∩hR(V )c = ∅. Then hR(V )c ⊆⋃

hR(U)c : y ∈ U} and as hR(V ) is compact, there exists a finite set {U1, . . . , Un}
such that hR(V )c ⊆ hR(U1)

c ∪ · · · ∪ hR(Un)
c = hR(U1 ∩ · · · ∩Un)

c = hR(U)c. So,
hR(U) ⊆ hR(V ) and as hR is one-to-one, we get U ⊆ V , but this implies that
y ∈ V , which is a contradiction. Thus, Z ∩ hR(V )c 6= ∅, for each V ∈ DK2

(X2)
such that y /∈ V . It is easy to see that the family L = {hR(V )c : y /∈ V } is dually
directed. By Theorem 20, Z ∩

⋂
{hR(V )c : y /∈ V } 6= ∅. Then there exists x ∈ X1

such that x ∈
⋂
{hR(U) : y ∈ U}∩

⋂
{hR(V )c : y /∈ V }. As x ∈

⋂
{hR(U) : y ∈ U},

we have that R(x) ⊆ U for all U such that y ∈ U . Then R(x) ⊆ cl(y). If there
exists z ∈ cl(y) such that z /∈ R(x), then as R is a meet-relation, there exists
V ∈ DK2

(X2) such that R(x) ⊆ V and z /∈ V . So, x /∈ hR(V )c and since z ∈ cl(y)
and z /∈ V , we have y /∈ V . But x ∈

⋂
{hR(V )c : y /∈ V }, which is a contradiction.

Thus, R(x) = cl(y).
Conversely, we assume that for each y ∈ X2 there is x ∈ X1 such that R(x) =

cl(y). Let U, V ∈ DK2
(X2) such that hR(U) = hR(V ). Suppose that U 6= V .

Then there exists y ∈ U −V. So, cl(y) ⊆ U and by hypothesis, there exists x ∈ X1

such that R(x) = cl(y). Then x ∈ hR(U) ⊆ hR(V ). So, R(x) = cl(y) ⊆ V , which
is a contradiction.

(2) Assume that hR : DK2
(X2) → DK1

(X1) is onto. Let x ∈ X1 and U ∈
DK1

(X1) with x /∈ U . Since hR is onto, there exists V ∈ DK2
(X2) such that

hR(V ) = U . So, x /∈ hR(V ).
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Suppose that for each x ∈ X1 and U ∈ DK1
(X1) with x /∈ U , there is V ∈

DK2
(X2) such that U ⊆ hR(V ) and x /∈ hR(V ). Let U ∈ DK1

(X1). For each
x /∈ U there exists Vx ∈ DK2

(X2) such that U ⊆ hR(Vx) and x /∈ hR(Vx). So,
U c ⊆

⋃
{hR(Vx)

c : x /∈ U} and as U c is compact, there exists Vx1
, . . . , Vxn

∈
DK2

(X2) such that hR(Vx1
)∩ · · ·∩hR(Vx2

) = hR(V ) ⊆ U . Thus U = hR(V ), and
consequently hR is onto. �

Example 37. Let A ∈ DS and θ ⊆ A × A be a semilattice congruence. As
the class of distributive semilattice is not a variety, the quotient semilattice A/θ
cannot be a distributive semilattice. We say that θ is a distributive congruence

when A/θ is a distributive semilattice. If θ is a distributive congruence of A, then
we have a natural homomorphism qθ : A → A/θ assigning to a ∈ A the equivalence
class qθ(a) ∈ A/θ. Since qθ is onto, we have that Rqθ ⊆ X(A/θ)×X(A) is a meet-
relation one-to-one.

7. Homomorphic images of a distributive semilattice

Let C(X) be the family of all non-empty closed subsets of a topological space
〈X, τ〉. Let F be a subfamily of C(X). The lower Vietoris topology τL is the
topology generated by the collection of all sets of the form

HU = {Y ∈ F : Y ∩ U 6= ∅}

as a sub-basis where U is an open set of 〈X, τ〉. For each open subset U we
consider the set

MU = {Y ∈ F : Y ∩ U = ∅} .

We note that MU = F −HU = Hc
U . The Vietoris topology τV defined on F is the

topology generated by the collection of sets

{HU : U ∈ O(X)} ∪ {MV : V ∈ O(X)}

as a sub-basis.
In [3] it was shown that if X = 〈X, τ,≤, X0〉 is a generalized Priestley space,

then there exists a duality between homomorphic images of the bounded distribu-
tive semilattice X∗ and generalized Priestley spaces 〈F , τV ,⊇,F0〉, where τV is
the Vietoris topology defined on a family of closed subsets F of X , F0 ⊆ F and
each element Y ∈ F is intersection of elements of X∗. Here we will show that
the homomorphic images can be described by means of DS-spaces of the form
〈F , τL〉, where τL is a lower Vietoris topology and F is a family of closed subsets
of a DS-space 〈X, τ〉.

Let A ∈ DS and let 〈X, τ〉 be a DS-space. Consider a one-to-one meet-relation
R ⊆ X×X(A). Let FR = {R(x) : x ∈ X}. It is clear that FR ⊆ C(X(A)). Define
the lower Vietoris topology τL on FR as follows. For a ∈ A, we consider the set

Ha = {R(x) : R(x) ∩ β(a)c 6= ∅}.
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Then B = {Ha : a ∈ A} is a sub-basis for τL. Indeed, let R(x) ∈ FR. Since K is a
basis of X , there exists U ∈ DK(X) such that x /∈ U . Then, as R is a one-to-one
meet-relation, there exists V ∈ DKA

(X(A)) such that U ⊆ hR(V ) and x /∈ hR(V ).
By Theorem 21, there exists a ∈ A such that V = β(a). So, x /∈ hR(β(a)) and
x ∈ Ha. Therefore, FR =

⋃
{Ha : a ∈ A} and B is a sub-basis for τL.

Let Ma = {R(x) : R(x) ⊆ β(a)}. Note that Ma = FR −Ha = Hc
a. It is easy

to see that Ma ∩Mb = Ma∧b, and M1 = FR. Thus DB(FR) = {Ma : a ∈ A} is a
meet-semilattice.

Lemma 38. Let A ∈ DS and 〈X, τ〉 be a DS-space. Let R ⊆ X ×X(A) be a

one-to-one meet-relation. Then the family

B = {Ha : a ∈ A}

is a basis for a topology τL defined on FR.

Proof: Let a, b ∈ A such that Ha ∩Hb 6= ∅. Then there exists x ∈ X such that
R(x) ∩ β(a)c 6= ∅ and R(x) ∩ β(b)c 6= ∅. So, x /∈ hR(β(a)) and x /∈ hR(β(b)), i.e.,
hR(β(a)), hR(β(b)) /∈ HX(x). As HX(x) is irreducible, by Lemma 4, there exists
U1 /∈ HX(x) and U2 ∈ HX(x) such that

hR(β(a)) ∩ U2 ⊆ U1 and hR(β(b)) ∩ U2 ⊆ U1.

Since the map hR : DKA
(X(A)) → DK(X) is onto, by Theorem 36, there exists

c ∈ A such that hR(β(c)) = U1. Later, x /∈ hR(β(c)), i.e., R(x) ∈ Hc. On the
other hand, Hc ⊆ Ha ∩ Hb. In fact, if R(x) ∈ Hc then x /∈ hR(β(c)) = U1 and
x /∈ hR(β(a)) ∩ U2. As x ∈ U2, then it must be x /∈ hR(β(a)), i.e., R(x) ∈ Ha.
Similarly, we have that R(x) ∈ Hb. So, R(x) ∈ Hc ⊆ Ha ∩ Hb and B is a basis
for τL. �

Lemma 39. Let A ∈ DS and 〈X, τ〉 be a DS-space. Let R ⊆ X ×X(A) be a

one-to-one meet-relation. Then the following statements hold.

(1) Let a ∈ A and consider the set Ha. We have Ha ⊆
⋃
{Hb : b ∈ B ⊆ A} if

and only if hR(β(a))
c ⊆

⋃
{hR(β(b))

c : b ∈ B ⊆ A}.
(2) A subset U ⊆ FR is open-compact in 〈FR, τL〉 if and only if U ∈ B.

(3) A subset Y ⊆ FR is closed in 〈FR, τL〉 if and only if there exists a filter

F ∈ Fi(A) such that Y = {R(x) : R(x) ⊆ Φ(F )}.

Proof: (1) We consider Ha with a ∈ A. Assume that Ha ⊆
⋃
{Hb : b ∈ B ⊆

A}. If x ∈ hR(β(a))
c then R(x) * β(a). Later, R(x) ∩ β(a)c 6= ∅ and R(x) ∈

Ha ⊆
⋃
{Hb : b ∈ B ⊆ A}. So, there exists b ∈ B such that R(x) ∈ Hb, i.e.,

R(x) ∩ β(b)c 6= ∅. Thus, R(x) ∈
⋃
{hR(β(b))

c : b ∈ B ⊆ A}. The converse is
similar.

(2) Suppose that U ⊆ FR is an open-compact of 〈FR, τL〉. Since B is a basis,
we have U =

⋃
{Hb : b ∈ B ⊆ A}. As U is compact, there exist b1, . . . , bn ∈ B

such that U = Hb1 ∪ · · · ∪Hbn = Hb1∧···∧bn . Thus, U ∈ B. The other direction is
immediate.
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(3) Let Y ⊆ FR be a closed set of 〈FR, τL〉. Then Y c = FR − Y is open. Since
B is a basis, then Y c =

⋃
{Hb : b ∈ B ⊆ A}, or equivalently, Y =

⋂
{Mb : b ∈

B ⊆ A}. Take the filter F = F (B). Let R(x) ∈ Y , then for all b ∈ B, R(x) ∈ Mb,
i.e., R(x) ⊆ β(b). So, R(x) ⊆

⋂
{β(b) : b ∈ B ⊆ A} = Φ(F ). The reciprocal is

analogous. �

The following result motivates our next definition.

Lemma 40. Let A,B ∈ DS. Let h : A → B be an onto homomorphism. Then

〈FRh
, τL〉 is a DS-space which is homeomorphic to X(B).

Proof: By Lemma 39, B = {Ha : a ∈ A} is the set of all open-compact subsets
of 〈FRh

, τV 〉. It is clear that 〈FRh
, τV 〉 is T0. We prove that if Y ⊆ FRh

is a
closed subset of 〈FRh

, τL〉 and L = {Ha : a ∈ D} is a dually directed family such
that Y ∩Ha 6= ∅ for all Ha ∈ L, then Y ∩

⋂
{Ha : Ha ∈ L} 6= ∅.

As Y is closed, by Lemma 39 there exists a filter F ∈ Fi(A) such that

Y = {Rh(P ) : Rh(P ) ⊆ Φ(F )} .

Consider the filter F ′ generated by the set h[F ] = {h(f) : f ∈ F} and also
the set I = {h(c) : ∃Ha ∈ L(c ≤ a)}. Since L is a dually directed family,
we have that I is an order-ideal of B. We prove F ′ ∩ I = ∅. Suppose that
there exists e ∈ F ′ ∩ I. Then there exist f1, . . . , fn ∈ F and a ∈ D such that
h(f1 ∧ · · · ∧ fn) ≤ h(e) ≤ h(a). As Y ∩ Ha 6= ∅, there exists P ∈ X(B) such
that Rh(P ) ∩ β(a)c 6= ∅ and Rh(P ) ⊆ Φ(F ). Later, P /∈ hRh

(β(a)). Since
f1, . . . , fn ∈ F , we get Rh(P ) ⊆ β(f1 ∧ · · · ∧ fn), i.e., P ∈ hRh

(β(f1 ∧ · · · ∧ fn)) ⊆
hRh

(β(e)) ⊆ hRh
(β(a)) which is a contradiction. Thus, F ∩ I = ∅. Then there

exists Q ∈ X(B) such that h[F ] ⊆ Q and Q ∩ I = ∅. So, F ⊆ h−1(Q) and
a /∈ h−1(Q), for any a ∈ D. Then Rh(Q) ⊆ Φ(F ) and Rh(Q) ∈

⋂
{Ha : Ha ∈ L}.

This implies that Y ∩
⋂
{Ha : Ha ∈ L} 6= ∅. Thus, we obtain that 〈FRh

, τL〉 is a
DS-space.

We show that 〈FRh
, τV 〉 is homeomorphic to 〈X(B), τ〉. We define the appli-

cation

f : X(B) → FRh

by

f(P ) = Rh(P ).

Let P,Q ∈ X(B) be such that Rh(P ) = Rh(Q) but P 6= Q. We can suppose
that P * Q, i.e., Q /∈ cl(P ). Then there exists a ∈ B such that P ∈ β(a)
and Q /∈ β(a). Since h is onto, by Theorem 36, there exists b ∈ B such that
β(a) ⊆ hR(β(b)) and Rh(Q) * β(b). As P ∈ β(a) ⊆ hR(β(b)), we get that
Rh(P ) = Rh(Q) ⊆ β(b), which is a contradiction. Thus P = Q. It is clear
that f is onto. Thus f is a bijection. Moreover, for a ∈ A and P ∈ X(B) we
have P ∈ f−1[Ha] if and only if f(P ) ∈ Ha, i.e., Rh(P ) ∩ β(a)c 6= ∅. Then
Rh(P ) * β(a) and P /∈ hRh

(β(a)) = β(h(a)). Thus, P ∈ β(h(a))c. Consequently,
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f−1[Ha] = β(h(a))c and so f is continuous. We prove that f is an open map. Let
b ∈ B. As h is onto, there exists a ∈ A such that h(a) = b. Then

f [β(b)c] = {f(P ) : P ∈ β(b)c} = {Rh(P ) : P ∈ β(h(a))c}
= {Rh(P ) : P /∈ hR(β(a))} = {Rh(P ) : Rh(P ) * β(a)}
= {Rh(P ) : Rh(P ) ∩ β(a) 6= ∅} = Ha.

So, f is open. Therefore, f is a homeomorphism. �

Definition 41. Let 〈X, τ〉 be a DS-space. We say that a family F of non-empty
closed sets of 〈X, τ〉 is a lower Vietoris family if 〈F , τL〉 is a DS-space.

Let A ∈ DS. If F ⊆ C(X(A)) is a lower Vietoris family, then by Lemma 39
the family B = {Ha : a ∈ A} is the set of all open-compact subsets of 〈F , τL〉
and DB(F) = {Ma : a ∈ A} is the dual distributive semilattice.

For a lower Vietoris family F ⊆ C(X(A)) we define a relation RF ⊆ F ×X(A)
by

(Y, P ) ∈ RF iff P ∈ Y.

Lemma 42. Let A ∈ DS and let F be a lower Vietoris family of 〈X(A), β[A]c〉.
Then RF ⊆ F ×X(A) is a one-to-one meet-relation.

Proof: First we show that RF ⊆ F × X(A) is a meet-relation. Suppose that
Y ∈ F , P ∈ X(A) and (Y, P ) /∈ RF . Then P /∈ Y , and as Y =

⋂
{β(a) : Y ⊆

β(a)}, there exists a ∈ A such that P /∈ β(a) and Y ⊆ β(a). Thus, there is a ∈ A
such that P /∈ β(a) and RF(Y ) ⊆ β(a). Then RF is a closed relation.

Now, let a ∈ A and Y ∈ F . We prove that hRF
(β(a)) = Ma ∈ DB(F) for

each a ∈ A. Let a ∈ A and Y ∈ hRF
(β(a)). Then RF (Y ) ⊆ β(a). Later

{P ∈ X(A) : P ∈ RF(Y )} ⊆ β(a) and by definition of RF we have {P ∈ X(A) :
P ∈ Y } ⊆ β(a). So, Y ⊆ β(a), which implies Y ∈ Ma. By backward reasoning,
we have that hRF

(β(a)) = Ma. Therefore, RF is a meet-relation.
We show that RF is one-to-one. Let Y ∈ F such that Y /∈ Ma. As RF (Y ) = Y ,

we have that RF(Y ) * β(a), i.e., Y /∈ hRF
(β(a)). On the other hand, it is clear

that Ma ⊆ hRF
(β(a)). Thus, RF is one-to-one. �

Lemma 43. Let A ∈ DS and 〈X, τ〉 be a DS-space. Then:

(1) if R ⊆ X ×X(A) is a one-to-one meet-relation, then for each x ∈ X and

P ∈ X(A) we have

(x, P ) ∈ R iff (R(x), P ) ∈ RFR
;

(2) if F ⊆ C(X(A)) is a lower Vietoris family, then F = FRF
.

Proof: (1) Let x ∈ X and P ∈ X(A). Then (R(x), P ) ∈ RFR
if and only if

P ∈ R(x), i.e., (x, P ) ∈ R.

(2) Let F ∈ FRF
. Then there exists G ∈ F such that F = RF(G), but as

RF (G) = G, we have F ∈ F and FRF
= F . �
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Since homomorphic images of a distributive semilattice A are dually character-
ized by one-to-one meet-relations of X(A) then, by Theorem 36 and Lemmas 40,
42 and 43 together, we obtain:

Theorem 44. Let A ∈ DS. Then the homomorphic images of an A are dually

characterized by lower Vietoris families on X(A).

Remark 45. Let A,B ∈ DS and h : A → B be a homomorphism. We say that
B is a distributive homomorphic image of A if h is onto. Suppose that B is a
distributive homomorphic image of A. We consider the set

kerh = {(a, b) ∈ A2 : h(a) = h(b)}.

It is easy to see that kerh is a semilattice congruence of A. By the Homomorphism
Theorem of Universal Algebra we have that the quotient semilattice A/ kerh is
isomorphic to B. Then A/ kerh is a distributive semilattice and thus kerh is a
distributive congruence of A. Conversely, let θ be a distributive congruence of A.
By Example 37, we have that qθ : A → A/θ is onto and the quotient semilattice
A/θ is a distributive homomorphic image of A. Then there is an isomorphism
between distributive congruences and distributive homomorphic images. Also, by
Theorem 44, there exists a isomorphism between distributive congruences and
lower Vietoris families.
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