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Abstract. A design optimization problem for an elastic beam with a unilateral elastic
foundation is analyzed. Euler-Bernoulli’s model for the beam and Winkler’s model for the
foundation are considered. The state problem is represented by a nonlinear semicoercive
problem of 4th order with mixed boundary conditions. The thickness of the beam and the
stiffness of the foundation are optimized with respect to a cost functional. We establish
solvability conditions for the state problem and study the existence of a solution to the
optimization problem.
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1. Introduction

Shape design optimization has been the subject of an extensive research and has

many engineering applications. The present paper deals with an optimization of an

elastic beam resting on a unilateral elastic foundation.

We do not consider the beam and its foundation to be individual deformable bod-

ies as is usual in classical contact problems. The foundation is included into the

model through a suitable response function s. Nowadays, the linear Winkler’s model

of foundation with the response function s = qu is well known, see e.g. [7], [11], [2].

Unfortunately, in some cases the linear model is not suitable, especially, when the

foundation is not firmly connected to the beam. Then the nonlinear (unilateral)

model with the response function s = qu+ is more realistic and the state prob-
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and structures of Internal Grant Agency of Palacký University in Olomouc.
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lem leads to a nonlinear differential equation. This kind of foundation is from the

theoretical and practical point of view examined e.g. in [7], [13].

The beam thickness and the stiffness of the foundation play the role of design

variables. The optimization problem is then formulated as a minimization of a cost

functional on a set of admissible design variables. Many results have been achieved

in this field. First of all let us mention [4] and [5]. Optimization of beams with a

linear foundation is studied e.g. in [8] or [2]. Design optimization of a beam with

unilateral supports is presented in [6]. A related problem, namely optimization of an

axisymmetric plate on an elastic foundation, is treated in [12]. None of these papers

concerns the beam optimization with semicoercive state problems.

The paper is organized as follows. First, we establish the solvability of the state

problem. Due to prescribed boundary conditions, rigid displacements of the beam are

allowed and the state problem is only semicoercive. Standard Friedrich’s or Poincaré

inequality cannot be used in the existence analysis as is usual for coercive problems.

In this paper we decompose the space of kinematically admissible displacements and

use the modified Poincaré inequality on appropriate subspaces. To obtain the coer-

civity and to prove the existence and uniqueness of a solution to the state problem,

additional assumptions on the beam load must be introduced.

Further we analyze the existence of at least one solution of the beam optimization

problem. The basic step in the analysis is the proof of the continuous dependence

of the state on the design variable. Continuity of this mapping is sufficient for the

existence of an optimal design. Nevertheless, our state problem is very close to

problems governed by variational inequalities. Therefore, it is reasonable to assume

that the optimization problem is nonsmooth, as is known from optimization with

inequality constraints (see [4], [5]). The Lipschitz continuity of the control on the

state mapping and the cost functional is established.

1.1. Notation

In this paper we will use the Lebesgue spaces Lp(Ω), p ∈ [1,∞], the Hilbert case

of Sobolev spaces Hk(Ω), k ∈ N, and the spaces Ck(Ω), k ∈ N, of continuously

differentiable functions up to order k which can be continuously extended to Ω,

where Ω is a nonempty open interval in R
1. Their standard norms will be denoted

by ‖·‖p,Ω, ‖·‖k,2,Ω and ‖·‖Ck(Ω), respectively. The ith seminorm in Hk(Ω) is denoted

as | · |i,2,Ω. For the standard scalar product in L2(Ω) we will use notation (·, ·)2,Ω.

The standard scalar product in Hk(Ω), k ∈ N will be denoted by (·, ·)k,2,Ω. Further,

C0,1(Ω) stands for the space of Lipschitz continuous functions in Ω. The space of

polynomials of kth degree will be denoted by Pk.
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2. Setting of the problem

Let us consider an elastic beam of length l and of a rectangular cross section,

represented by the interval Ω := (0, l). Along its entire length the beam is supported

by a unilaterally elastic foundation. We suppose that the left end of the beam is

allowed to move in the vertical direction but it cannot slope there while the right

end is free. The beam is subject to a vertical load f . The classical theory (see

e.g. [10]) yields the following boundary value problem for the deflection u:

Find u ∈ C4(Ω) ∩ C3(Ω) such that

(2.1)

{

(βt3(x)u′′(x))′′ + q(x)u+(x) = f(x) ∀x ∈ Ω,

u′(0) = u′′′(0) = u′′(l) = u′′′(l) = 0,

where t and q are functions representing the thickness of the beam and the stiffness

coefficient of the foundation, respectively. The constant β = 2
3bE depends on the

beam width b and Young’s modulus of elasticity E. By u+ := (u + |u|)/2 we denote

the positive part of u.

x

f

q

u

Figure 1. The beam with axes orientation

2.1. Variational formulation of the state problem

In practice, we often cannot guarantee that the parameters β, f , t, and q are

sufficiently smooth as is needed in the classical formulation (2.1). In what follows

we will introduce the variational formulation of the problem. Let us suppose that

t ∈ L∞(Ω), q ∈ L∞(Ω), f ∈ L2(Ω), β ∈ L∞(Ω) and let there exist a constant β0

such that 0 < β0 6 β a.e. in Ω. For purposes of the forthcoming analysis we will

denote the pair {t, q} by e. The space of kinematically admissible displacements is

defined by

(2.2) V = {v ∈ H2(Ω): v′(0) = 0}.

V is a closed subspace of H2(Ω). The variational formulation of the state problem

reads as follows:

(P(e)) Find u ∈ V : Ee(u) 6 Ee(v) ∀ v ∈ V,
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where

(2.3) Ee(v) =
1

2
(at(v, v) + bq(v

+, v+)) − F (v)

is the functional of total potential energy of the system and

at(u, v) :=

∫

Ω

βt3u′′v′′ dx, bq(u, v) :=

∫

Ω

quv dx, u, v ∈ H2(Ω).

The bilinear forms at, bq correspond to the inner energy and the work of the founda-

tion, respectively. The transversal beam load is represented by the continuous linear

functional

F (v) :=

∫

Ω

fv dx, v ∈ H2(Ω).

2.2. Admissible design variables

The thickness t and the stiffness coefficient q will be the object of optimization.

The set of admissible design variables is specified by the Cartesian product Uad =

U t
ad × U q

ad, where

U t
ad =

{

t ∈ C0,1(Ω): 0 < t0 6 t(x) 6 t1, |t′(x)| 6 γ2 in Ω,

∫

Ω

t(x) dx = γ1

}

,

U q
ad = {q ∈ L2(Ω): 0 < q0 6 q(x) 6 q1 a.e. in Ω}.

Positive constants t0, t1, γ1, γ2, q0, and q1 are chosen in such a way that Uad 6= ∅.

It is also possible to keep one of the design variables fixed. This leads only to

thickness or foundation stiffness optimization. The constraints appearing in the

definition of Uad are reasonable from the physical point of view and they play an

important role in the mathematical analysis of the problem as well. The constraint

|t′(x)| 6 γ2 in Ω prevents thickness oscillations and
∫

Ω
t(x) dx = γ1 keeps the beam

volume fixed.

2.3. Cost functional and optimization problem

Finally, let us define a cost functional I : Uad × V → R
1 and denote J(e) :=

I(e, u(e)), with u(e) being a solution of the state problem (P(e)), e ∈ Uad. The

design optimization problem can be stated as follows:

(P) Find e∗ ∈ Uad : J(e∗) 6 J(e) ∀e ∈ Uad.

In the next two sections, the existence and uniqueness of a solution to (P(e)) and

the existence of at least one solution of (P) will be analyzed.
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3. State problem—existence and uniqueness results

In this section we shall analyze the existence and uniqueness of a solution to the

state problem (P(e)). Through the section we will consider e ∈ Uad to be arbitrary

but fixed, β ∈ L∞(Ω), 0 < β0 6 β a.e. in Ω.

3.1. Some preliminaries

We start with auxiliary results that are important in what follows. First we

introduce some properties of the positive part u+ of a function u ∈ H2(Ω). Recall

that Ω = (0, l).

Lemma 3.1. If u ∈ H2(Ω), then the positive part

(3.1) u+(x) = (u(x) + |u(x)|)/2, x ∈ Ω

belongs to the space H1(Ω) and ‖u+‖1,2,Ω 6 ‖u‖1,2,Ω. Moreover, the following

inequality holds:

|u+(x) − v+(x)| 6 |u(x) − v(x)| ∀u, v ∈ C(Ω), x ∈ Ω.

P r o o f. See [13]. �

R em a r k 3.1. If u ∈ H2(Ω), then ‖u+‖1,2,Ω 6 ‖u‖2,2,Ω.

Lemma 3.2. Let un, u ∈ H2(Ω) be such that un ⇀ u in H2(Ω). Then un →

u in L2(Ω) and u+
n → u+ in L2(Ω).

P r o o f. The former part of the assertion is a consequence of the compactness

of the embedding of H2(Ω) into L2(Ω), see e.g. [9]. The latter part follows from

Lemma 3.1. �

Next we introduce a lemma that will play a crucial role in the existence analysis

for (P(e)). In fact it is a modification of the well-known Poincaré inequality.

Lemma 3.3 (Poincaré type inequality). Let V be defined by (2.2). Then there

exists a positive constant cP depending only on the interval Ω such that

(3.2) ‖v‖2
2,2,Ω 6 cP (|v|22,2,Ω + (v, 1)22,Ω) ∀ v ∈ V.

P r o o f. Suppose that (3.2) does not hold. Then one can find a sequence

{vn} ⊂ V such that

(3.3)
1

n
‖vn‖

2
2,2,Ω > |vn|

2
2,2,Ω + (vn, 1)22,Ω > 0 ∀n > 1.
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First, we divide the inequality (3.3) by ‖vn‖2
2,2,Ω and pass to the limit with n → ∞.

We have

(3.4) lim
n→∞

|wn|
2
2,2,Ω = 0 and lim

n→∞
(wn, 1)22,Ω = 0,

where wn := vn/‖vn‖2,2,Ω. Clearly ‖wn‖2,2,Ω = 1 and {wn} is bounded in H2(Ω).

Hence one can find a subsequence of {wn} (denoted as the original sequence) and

an element w ∈ V such that wn ⇀ w in V . Due to the Rellich theorem one has

wn → w in H1(Ω). In view of (3.4) it holds that

‖wn − wm‖2,2,Ω 6 |wn|2,2,Ω + |wm|2,2,Ω + ‖wn − wm‖1,2,Ω → 0, m, n → ∞.

Therefore wn → w in V and we have

0 = lim
n→∞

|wn|
2
2,2,Ω = |w|22,2,Ω

so that w ≡ p ∈ P0. From

0 = lim
n→∞

(wn, 1)22,Ω = (w, 1)22,Ω

it follows that p = 0. But this is a contradiction with ‖wn‖2,2,Ω = 1 and the fact

that wn → p in V . �

3.2. Existence of a solution to (P(e))

At the beginning of this section we recall the boundedness property of the bilinear

forms at, bq.

Lemma 3.4. There exist positive constants c1, c2 such that

|at(u, v)| 6 c1‖u‖2,2,Ω‖v‖2,2,Ω ∀u, v ∈ H2(Ω), ∀ e ∈ Uad,

|bq(u
+, v)| 6 c2‖u‖2,2,Ω‖v‖2,2,Ω ∀u, v ∈ H2(Ω), ∀ e ∈ Uad.

Further, we present properties of the functional Ee needed in what follows. Its

Gâteaux differentiability, convexity and coercivity on the reflexive Banach space V

will be sufficient conditions for the existence of a solution to (P(e)). It can be shown

in a standard way that the functional Ee is Gâteaux differentiable on H2(Ω). The

Gâteaux derivative at any point u ∈ H2(Ω) and in any direction v ∈ H2(Ω) has the

form

(3.5) E ′

e(u; v) = at(u, v) + bq(u
+, v) − F (v) ∀u, v ∈ H2(Ω), ∀ e ∈ Uad.

Lemma 3.5. Let e ∈ Uad. Then the functional Ee is convex on H2(Ω).
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P r o o f. Using the fact that e ∈ Uad, 0 < β0 6 β a.e. in Ω and the inequality

(s+ − t+)(s − t) > (s+ − t+)2 ∀ s, t ∈ R
1

we have

E ′

e(u; u − v) − E ′

e(v; u − v) = at(u − v, u − v) + bq(u
+ − v+, u − v)

> at(u − v, u − v) + bq(u
+ − v+, u+ − v+)

> β0t
3
0|u − v|22,2,Ω + q0‖u

+ − v+‖2
2,Ω

> 0 ∀u, v ∈ H2(Ω), ∀ e ∈ Uad.

This is a sufficient condition of convexity of the Gâteaux differentiable functional Ee,

see e.g. [3]. �

According to the previous results we can introduce the equivalent weak formulation

of the state problem (P(e)):

(P ′(e)) Find u ∈ V : at(u, v) + bq(u
+, v) = F (v) ∀ v ∈ V.

In our case the functional Ee is only semicoercive on V , i.e. there exists a constant

c > 0 such that

at(v, v) + bq(v
+, v) > c|v|22,2,Ω ∀ v ∈ V, ∀ e ∈ Uad.

To get the existence and uniqueness of a solution to (P(e)), additional assumptions

on the beam load f eliminating the rigid motions have to be introduced. First of all

let us define the convex closed cone of kinematically admissible rigid displacements

(3.6) RV = {v ∈ V : at(v, v) + bq(v
+, v) = 0} = {p ∈ P0 : p 6 0}.

Therefore, using the definition of the standard scalar product in H2(Ω), the negative

polar cone R⊖

V is characterized by

(3.7) R⊖

V = {v ∈ V : (v, p)2,2,Ω 6 0 ∀ p ∈ RV } = {v ∈ V : (v, 1)2,Ω > 0}.

Theorem 3.1 (Necessary condition for the existence of a solution to (P(e))). Let

there exist a solution of the state problem (P(e)), e ∈ Uad. Then the condition

(S1) F (1) > 0

has to be satisfied.
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P r o o f. Let u ∈ V be a solution of (P(e)). Inserting v := p ∈ RV into (P ′(e))

we get

0 > bq(u
+, p) = at(u, p) + bq(u

+, p) = F (p) = pF (1) ∀ p ∈ RV .

�

Lemma 3.6. Let RV , R
⊖

V be defined by (3.6) and (3.7), respectively. Then

the space V can be uniquely decomposed into the orthogonal sum RV ⊕ R⊖

V :

∀ v ∈ V ∃ {p, v} ∈ RV ×R⊖

V such that

(3.8) v = p ⊕ v, (p, v)2,2,Ω = p(1, v)2,Ω = 0.

P r o o f. For the proof we refer to [1]. �

Taking into account the orthogonality conditions in (3.8) and the definitions ofRV ,

R⊖

V , we can deduce that only one of the following cases can occur:

p = 0 and (v, 1)2,Ω > 0,(A1)

p 6 0 and (v, 1)2,Ω = 0.(A2)

Lemma 3.7. Let e ∈ Uad and

(S2) F (1) > 0.

Then the functional Ee is coercive on V .

P r o o f. Let (S2) be satisfied. According to the decomposition (3.8), the func-

tional Ee can be written as

2Ee(v) = 2Ee(p + v) = at(v, v) + bq(v
+, v+) − 2F (p) − 2F (v)

> β0t
3
0|v|

2
2,2,Ω + q0‖(p + v)+‖2

2,Ω + 2|p|F (1) − 2F (v).

First, if (A1) holds then p = 0. Consequently v ≡ v and (v, 1)2,Ω > 0. This implies

that

(3.9) 0 6 (v, 1)22,Ω 6 (v+, 1)22,Ω 6 l‖v+‖2
2,Ω.

From (3.9) and (3.2) we obtain

2Ee(v) = 2Ee(v) = at(v, v) + bq(v
+, v+) − 2F (v)(3.10)

> β0t
3
0|v|

2
2,2,Ω + q0‖v

+‖2
2,Ω − 2F (v)

> β0t
3
0|v|

2
2,2,Ω +

q0

l
(v, 1)22,Ω − 2F (v)

> ‖v‖2,2,Ω(c1‖v‖2,2,Ω − 2‖f‖2,Ω),

where c1 := (1/cP )min{β0t
3
0, q0/l}.
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On the other hand, if (A2) holds, then (v, 1)2,Ω = 0 and p 6 0. This and (3.2)

yield

2Ee(v) = 2Ee(p + v) = at(v, v) + bq(v
+, v+) − 2F (p) − 2F (v)(3.11)

> β0t
3
0|v|

2
2,2,Ω + q0‖(p + v)+‖2

2,Ω + 2|p|F (1) − 2F (v)

> β0t
3
0|v|

2
2,2,Ω + 2|p|F (1) − 2F (v)

= β0t
3
0|v|

2
2,2,Ω + (v, 1)22,Ω + 2|p|F (1) − 2F (v)

> c2‖v‖
2
2,2,Ω + 2|p|F (1) − 2‖f‖2,Ω‖v‖2,2,Ω,

where c2 := (1/cP )min{β0t
3
0, 1}. Due to the orthogonality of the decomposi-

tion (3.8), the relation ‖v‖2
2,2,Ω = ‖v‖2

2,2,Ω + ‖p‖2
2,2,Ω is satisfied. Therefore,

‖v‖2,2,Ω → ∞ implies that either ‖v‖2
2,2,Ω or |p| converges to ∞. Using the as-

sumption (S2) and (3.10), (3.11) we arrive at the assertion of the lemma. �

Now we can establish the main results of this section. The coercivity of Ee enables

us to prove the following theorem.

Theorem 3.2 (Necessary and sufficient condition for the existence and uniqueness

of a solution to (P(e))). The state problem (P(e)) has a unique solution for any e ∈

Uad if and only if the condition (S2) is satisfied. In addition,

(S3) µ(Mu) > 0

holds, where Mu = {x ∈ Ω: u(x) > 0} and µ is the one-dimensional Lebesgue

measure.

P r o o f. Necessity. The first part of the proof will be done by contradiction. Let

us suppose that u ∈ V is a unique solution of (P(e)) and (S2) does not hold. Then

Theorem 3.1 implies F (1) = 0. Taking v ≡ p ∈ RV in (P ′(e)) we have

(3.12) at(u, p) + bq(u
+, p) = F (p) = pF (1) ∀ p ∈ RV , p 6= 0,

so that bq(u
+, p) = 0 ∀ p ∈ RV , p 6= 0 implying u+ = 0 in Ω. Thus u 6 0 in Ω and

u + p < 0 in Ω, ∀ p ∈ RV , p 6= 0. Therefore bq((u + p)+, v) = 0 ∀ p ∈ RV , p 6= 0

and ∀ v ∈ V . Then it is easy to see that u + p is another solution of (P(e)), which

contradicts our assumption. Hence the condition (S2) must be satisfied.

Sufficiency. Let the condition (S2) be fulfilled. Due to Lemma 3.5 and Lemma 3.7

we already know that Ee is Gâteaux differentiable, convex and coercive on V , imply-

ing the existence of a solution u ∈ V to (P(e)), see [3].
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Next, let u ∈ V solve (P(e)) and let u 6 0 a.e. in Ω. Then using v := p ∈ RV ,

p 6= 0 in (P ′(e)) we have

(3.13) 0 = bq(u
+, p) = pF (1).

But (3.13) contradicts (S2). Thus the set Mu = {x ∈ Ω: u(x) > 0} has a positive

Lebesgue measure.

Finally, let us assume that there exist solutions u1, u2 ∈ V of (P ′(e)). Then

at(u1, v) + bq(u
+
1 , v) = F (v) ∀ v ∈ V,(3.14)

at(u2, v) + bq(u
+
2 , v) = F (v) ∀ v ∈ V.(3.15)

By subtracting (3.15) from (3.14) and choosing v := u1 − u2 we obtain

at(u1 − u2, u1 − u2) + bq(u
+
1 − u+

2 , u1 − u2) = 0.

This definition of at, bq yields

u1 − u2 = p ∈ P0 and u+
1 − (u1 − p)+ = 0 a.e. in Ω.

Taking into account (S3) we obtain p = 0 and consequently u1 = u2 a.e. in Ω.

Therefore, the solution of (P(e)) is unique. �

R em a r k 3.2. The condition (S2) is the basic assumption in the existence and

uniqueness analysis. In practice it means that the load resultant is oriented against

the foundation. Therefore the rigid beam motions for which the foundation is not

active are eliminated.

R em a r k 3.3. We considered the particular boundary condition u′(0) = 0.

However, this procedure can be applied, with small modifications, also to other

types of boundary conditions. As an example let us mention the boundary condition

u(0) = 0. In this case the state problem remains semicoercive.
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4. Existence of solutions to (P)

We have proved the existence of a unique solution u(e) to the state problem (P(e))

provided that (S2) is satisfied. Next we shall prove the existence of at least one

solution to the optimization problem (P). The continuous dependence of u(e) on

the design variable e will be the key point of the analysis. First of all let us define

convergence in the set U t
ad as the uniform convergence of continuous functions in Ω

and convergence in U q
ad as the weak convergence in the Lebesgue space L2(Ω):

(4.1) en → e in Uad ⇔ tn ⇒ t in Ω ∧ qn ⇀ q in L2(Ω),

where en = {tn, qn}, e = {t, q}. The following result is standard.

Theorem 4.1. The set Uad is compact in C(Ω) × L2(Ω) with respect to the

convergence defined by (4.1).

Assume that β ∈ L∞(Ω) and F ∈ V ∗ satisfying F (1) > 0 are given. Then we know

that for any e ∈ Uad there exists a unique solution of (P(e)) with the property (S3).

The set of all such solutions will be denoted by W in what follows:

W := {{u, t, q} ∈ V × U t
ad × U q

ad : u = u(e) solves (P(e)), e = {t, q}}.

The next lemma plays an important role in the existence analysis.

Lemma 4.1. There exists a positive constant c1 such that

(4.2) c1‖u‖
2
2,2,Ω 6 at(u, u) + bq(u

+, u) ∀ {u, t, q} ∈ W.

In addition, c1 does not depend on {u, t, q} ∈ W .

P r o o f. Let us suppose that (4.2) does not hold. Then one can find a sequence

{un, tn, qn} ⊂ W such that

(4.3)
1

n
‖un‖

2
2,2,Ω > atn

(un, un) + bqn
(u+

n , un) > 0 ∀n > 1.

Dividing (4.3) by ‖un‖2
2,2,Ω and letting n → ∞ we obtain

lim
n→∞

atn
(wn, wn) = 0 and lim

n→∞
bqn

(w+
n , wn) = 0,

where wn := un/‖un‖2,2,Ω. Clearly ‖wn‖2,2,Ω = 1. Hence there exists a subsequence

of {wn} (denoted as the original sequence) and an element w ∈ V such that wn ⇀

w in V . Therefore

0 = lim
n→∞

atn
(wn, wn) > t0 lim inf

n→∞
|wn|

2
2,2,Ω > t0|w|22,2,Ω > 0.
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Thus |w|22,2,Ω = 0 so that w ≡ p ∈ P0. Since |wn|22,2,Ω → 0 and wn ⇀ p in V we see

that

(4.4) wn → p in V.

From

0 = lim
n→∞

bqn
(w+

n , w+
n ) > q0 lim inf

n→∞
‖w+

n ‖2
2,Ω = q0‖w

+‖2
2,Ω > 0

it follows that w ≡ p 6 0 in Ω. From (4.4) and the compact embedding of V

into C(Ω) we have that wn ⇒ p in Ω. From (S3) we know that ∀n > 1, ∃xn ∈ Ω

such that wn(xn) > 0. Without loss of generality we may assume xn → x in Ω.

Then wn(xn) → p(x) > 0. Therefore p = 0 in Ω. But this contradicts ‖wn‖2,2,Ω = 1

and (4.4). �

Lemma 4.2 (Continuous dependence). Let en, e ∈ Uad, en → e and let un :=

u(en) ∈ V be a solution of (P(en)). Then there exists a function u ∈ V such that

un → u in V.

Moreover, u := u(e) is a solution of the state problem (P(e)).

P r o o f. Let {u(en), tn, qn} ∈ W . Using the definition of (P(en)) and setting

v = un we have

c1‖un‖
2
2,2,Ω 6 atn

(un, un) + bqn
(u+

n , un) = F (un) 6 ‖f‖2,Ω‖un‖2,2,Ω,

making use of (4.2). Thus the sequence {un} is bounded in H2(Ω):

(4.5) ∃ c = const. > 0: ‖un‖2,2,Ω 6 c ∀n ∈ N.

Consequently, one can pass to a subsequence of {un} (denoted as the original se-

quence) such that

(4.6) un ⇀ u in V

for some u ∈ V . In order to show that u solves (P(e)) we use the definition of (P(en)):

(4.7) atn
(un, v) + bqn

(u+
n , v) = F (v) ∀ v ∈ V

and pass to the limit with n → ∞. First of all we will focus on the first term

in (4.7). We employ the boundedness of {un}, (4.1), and (4.6). It is readily seen

that lim
n→∞

(atn
(un, v) − at(un, v)) = 0 ∀ v ∈ V so that

lim
n→∞

atn
(un, v) = lim

n→∞
(atn

(un, v) − at(un, v)) + lim
n→∞

at(un, v) = at(u, v).
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To analyze the second term in (4.7) we make use of (4.1), (4.6), and Lemma 3.2. It

is easy to see that lim
n→∞

(bqn
(u+

n , v) − bqn
(u+, v)) = 0 ∀ v ∈ V so that

lim
n→∞

bqn
(u+

n , v) = lim
n→∞

(bqn
(u+

n , v) − bqn
(u+, v)) + lim

n→∞
bqn

(u+, v) = bq(u
+, v).

Thus the limit element u ∈ V satisfies

(4.8) at(u, v) + bq(u
+, v) = F (v) ∀ v ∈ V,

i.e. u solves (P(e)). Since u(e) is unique, not only the subsequence but the whole

sequence {un} tends weakly to u in V . Since un ⇀ u in V , due to the Rellich theorem

one has that un → u in H1(Ω). To prove the strong convergence it is sufficient to

show the convergence of the seminorm |u|at,Ω :=
√

at(u, u), i.e. at(un, un) → at(u, u)

as n → ∞. From (4.8) and the definition of (P(e)), (P(en)) it follows that

(4.9) atn
(un, un) + bqn

(u+
n , un) = F (un) → F (u) = at(u, u) + bq(u

+, u)

as n → ∞. It is not difficult to see that lim
n→∞

(bqn
(u+

n , un)−bq(u
+, u)) = 0. Therefore

lim
n→∞

(atn
(un, un) − at(u, u)) = 0 and consequently

(4.10) at(un, un) = at(un, un) ± atn
(un, un) → at(u, u), n → ∞,

by virtue of atn
(un, un)− at(u, u) → 0, n → ∞. The assertion of the theorem is now

proved. �

Lemma 4.3. There exists a constant c2 > 0 such that ∀ {ui, ti, qi} ∈ W , i = 1, 2

(4.11) c2‖u1 − u2‖
2
2,2,Ω 6 at1(u1 − u2, u1 − u2) + bq1

(u+
1 − u+

2 , u1 − u2).

The constant c2 does not depend on {ui, ti, qi} ∈ W , i = 1, 2.

P r o o f. Assume that (4.11) does not hold. Then there exist sequences

{u1,n, t1,n, q1,n}, {u2,n, t2,n, q2,n} ⊂ W such that

1

n
‖u1,n − u2,n‖

2
2,2,Ω > at1,n

(u1,n − u2,n, u1,n − u2,n)(4.12)

+ bq1,n
(u+

1,n − u+
2,n, u1,n − u2,n) > 0 ∀n > 1.

According to (4.5) the sequences {u1,n}, {u2,n} are bounded in H2(Ω). Thus one

can find their subsequences (denoted as the original sequences) and functions û1, û2
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such that ui,n ⇀ ûi in H2(Ω), i = 1, 2 implying ui,n ⇒ ûi in Ω, i = 1, 2. Inserting

v = 1 into (P ′(ei)) we obtain for i = 1, 2

q1

∫

Ω

u+
i dx = q1 lim

n→∞

∫

Ω

u+
i,n dx > lim

n→∞

∫

Ω

qi,nu+
i,n dx = F (1) > 0.

Hence, we can find sets M1, M2 ⊂ Ω with positive one-dimensional Lebesgue mea-

sures such that ui,n > 0, ûi > 0 in Mi, i = 1, 2 for n large enough.

Dividing (4.12) by ‖u1,n − u2,n‖
2
2,2,Ω (6= 0) we have

(4.13) at1,n
(w1,n−w2,n, w1,n−w2,n) → 0 and bq1,n

(w+
1,n−w+

2,n, w1,n−w2,n) → 0,

where wi,n := ui,n/‖u1,n−u2,n‖2,2,Ω, i = 1, 2. Clearly ‖w1,n −w2,n‖2,2,Ω = 1. Hence

there exist subsequences of {wi,n}, i = 1, 2 (denoted as the original sequences) and

an element w ∈ V such that w1,n − w2,n ⇀ w in V . Thus

0 = lim
n→∞

at1,n
(w1,n−w2,n, w1,n−w2,n) > t0 lim inf

n→∞
|w1,n−w2,n|

2
2,2,Ω > t0|w|22,2,Ω > 0.

Therefore |w|22,2,Ω = 0, i.e. w ≡ p ∈ P0 and in addition w1,n − w2,n → p in H2(Ω).

Consequently, (4.13) yields

(4.14) w1,n − w2,n → p in H2(Ω) and w+
1,n − w+

2,n → 0 in L2(Ω).

First suppose that

(4.15) ∃ c > 0: ‖u1,n − u2,n‖2,2,Ω > c ∀n ∈ N.

Then {w1,n}, {w2,n} are bounded in H2(Ω) and there exist subsequences (denoted

as the original sequences) converging weakly to ŵ1, ŵ2 in H2(Ω). Hence (4.14) leads

to

(4.16) ŵ1 − ŵ2 = p and ŵ+
1 − (ŵ+

1 − p) = 0 a.e. in Ω.

As û1 > 0 in M1, also ŵ1 > 0 in M1. From this and (4.16) we have p = 0 in Ω on

the one hand and ‖p‖2,2,Ω = 1 on the other hand as follows from (4.14) and the fact

that ‖w1,n − w2,n‖2,2,Ω = 1.

If (4.15) is not satisfied then ‖u1,n − u2,n‖2,2,Ω → 0. Thus û1 = û2 in Ω. Denote

by M1,2 ⊆ Ω a subinterval where û1, ui,n, i = 1, 2 are positive for n large enough.

This implies that wi,n > 0, i = 1, 2 in M1,2. Then

(4.17) w1,n − w2,n = w+
1,n − w+

2,n → 0 a.e. in M1,2 as n → ∞.

From (4.17) and (4.14) it follows that p = 0 in Ω, contradicting

‖w1,n − w2,n‖2,2,Ω = 1 ∀n ∈ N.

�
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Let us now recall that the optimization problems with the state relations given by

a variational inequality are in general nonsmooth, see [4] or [5]. Our state problem is

represented by a nonlinear variational equation which contains the non-differentiable

term bq. Accordingly, one can assume that the problem (P) is non-differentiable as

well. In Lemma 4.2 the continuity of the mapping u : e 7→ u(e) was established. In

what follows we shall prove that this mapping is even Lipschitz continuous in Uad.

Lemma 4.4. The mapping u : e 7→ u(e), where u(e) is a solution of (P(e)), is

Lipschitz continuous in Uad, i.e., there exists a constant K1 > 0 such that for any

e1 = {t1, q1}, e2 = {t2, q2} ∈ Uad:

‖u(e1) − u(e2)‖2,2,Ω 6 K1(‖t1 − t2‖C(Ω) + ‖q1 − q2‖2,Ω).

P r o o f. Let e1, e2 ∈ Uad and let u1 := u(e1), u2 := u(e2) be solutions of (P(e1)),

(P(e2)), respectively. Subtracting (P(e2)) from (P(e1)) we have

(4.18) at1(u1, v) − at2(u2, v) + bq1
(u+

1 , v) − bq2
(u+

2 , v) = 0 ∀ v ∈ V.

Adding the terms at2(u1, v), −bq2
(u+

1 , v) to both sides of (4.18) we obtain

at2(u1 − u2, v) + bq2
(u+

1 − u+
2 , v)(4.19)

= (at2 − at1)(u1, v) + (bq2
− bq1

)(u+
1 , v) ∀ v ∈ V.

Inserting v = u1 − u2 into (4.19) and using (4.11) we obtain

(4.20) c‖u1 − u2‖
2
2,2,Ω 6 at2(u1 − u2, u1 − u2) + bq2

(u+
1 − u+

2 , u1 − u2),

where c is a positive constant independent of {u1, t1, q1}, {u2, t2, q2} ∈ W . The

right-hand side of (4.19) can be estimated as follows:

(at2 − at1)(u1, u1 − u2) 6 c‖t1 − t2‖C(Ω)‖u1‖2,2,Ω‖u1 − u2‖2,2,Ω,(4.21)

(bq2
− bq1

)(u+
1 , u1 − u2) 6 ‖q1 − q2‖2,Ω‖u

+
1 ‖1,2,Ω‖u1 − u2‖2,2,Ω.(4.22)

Therefore the assertion of the lemma is a consequence of (4.19)–(4.22) and of the

uniform boundedness of u(e), e ∈ Uad. �

To ensure the existence of a solution to (P), it remains to assume the lower semi-

continuity of the cost functional I:

(I1) If e, en ∈ Uad, en → e in Uad and v, vn ∈ V , vn → v in V , then

lim inf
n→∞

I(en, vn) > I(e, v).

Theorem 4.2. Let the cost functional I satisfy (I1). Then there exists at least

one solution of (P).
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P r o o f. Let {en} ⊂ Uad be a minimization sequence of (P):

λ := inf
e∈Uad

I(e, u(e)) = lim
n→∞

I(en, u(en)).

The compactness of Uad (see Theorem 4.1) implies the existence of a subsequence

(denoted as the original sequence) {en} ⊂ Uad and an element e∗ ∈ Uad such that

en → e∗ in Uad. Making use of Lemma 4.2 we obtain u(en) → u(e∗) in V , where

u(en), u(e∗) solve P(en) and P(e∗), respectively. Due to (I1) we have

λ = lim inf
n→∞

I(en, u(en)) > I(e∗, u(e∗)) > λ;

i.e., e∗ is a solution of (P). �

In addition, let us suppose that I is Lipschitz continuous in Uad × V :

(I2) There exists a constant c > 0 such that ∀ e1, e2 ∈ Uad and ∀ v1, v2 ∈ V we have

|I(e1, v1) − I(e2, v2)| 6 c(‖v1 − v2‖2,2,Ω + ‖t1 − t2‖C(Ω) + ‖q1 − q2‖2,Ω).

Lemma 4.5. Let I satisfy (I2). Then the functional J(e) := I(e, u(e)), with

u(e) being a solution of (P(e)), is Lipschitz continuous in Uad, i.e. there exists a

constant K2 > 0 such that ∀ e1, e2 ∈ Uad:

|J(e1) − J(e2)| 6 K2(‖t1 − t2‖C(Ω) + ‖q1 − q2‖2,Ω).

P r o o f. The assertion directly follows from (I2) and Lemma 4.4. �

R em a r k 4.1. As an example of the cost functional satisfying (I1) and (I2) we

mention the compliance of the beam:

I(e, v) =

∫

Ω

fv dx.

In fact, the minimization of the compliance is equivalent to the maximization of the

total potential energy evaluated at the equilibrium state u(e).
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5. Conclusion

Design optimization problems for an elastic beam on a unilateral elastic founda-

tion of Winkler’s type is studied in this paper. In order to eliminate the rigid dis-

placements from the state problem, the decomposition of the space of kinematically

admissible displacements has been used. We have formulated additional conditions

on the resultant of the beam load which ensures the coercivity Ee and the existence

and uniqueness of a solution to (P(e)). The approach has been used for a boundary

condition u′(0) = 0. Nonethless, it can be also used, with some modifications, for

other types of boundary conditions such as u(0) = 0 for which the state problem

remains semicoercive. The existence of optimal thickness of the beam and opti-

mal stiffness of its foundation has been proved using standard approach based on

the continuous dependence of the arguments (Lemma 4.2), compactness of Uad and

lower semicontinuity of the cost functional. We proved that the control of the state

mapping is Lipschitz continuous.
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