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LAPLACIAN SPECTRA
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Abstract. Let Wn = K1 ∨ Cn−1 be the wheel graph on n vertices, and let S(n, c, k) be
the graph on n vertices obtained by attaching n− 2c− 2k − 1 pendant edges together with
k hanging paths of length two at vertex v0, where v0 is the unique common vertex of c

triangles. In this paper we show that S(n, c, k) (c > 1, k > 1) and Wn are determined by
their signless Laplacian spectra, respectively. Moreover, we also prove that S(n, c, k) and
its complement graph are determined by their Laplacian spectra, respectively, for c > 0 and
k > 1.
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1. Introduction

Throughout this paper, G = (V, E) is an undirected simple graph. Let N(u) be

the neighbor set of a vertex u, and let d(u) be the degree of the vertex u, namely,

d(u) = |N(u)|. If d(u) = 1, then u is called a pendant vertex of G. Suppose the

degree of the vertex vi equals di for i = 1, 2, . . . , n. In the sequel, we enumerate

the degrees in non-increasing order, i.e., d1 > d2 > . . . > dn. Sometimes we write

di(G) in place of di, in order to indicate the dependence on G. As usual, K1,n−1,

Pn and Cn denote the star, path and cycle of order n, respectively. In particular,

K1 denotes an isolated vertex. The join G1 ∨ G2 of two vertex disjoint graphs G1

and G2 is the graph having the vertex set V (G1 ∨ G2) = V (G1 ∪ G2) and the edge

The research has been supported by the Foundation for Distinguished Young Tal-
ents in Higher Education of Guangdong, China (No. LYM10039), NNSF of China
(Nos. 11071088, 11201156), and Project of Graduate Education Innovation of Jiangsu
Province (No. CXZZ12-0378).
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set E(G1 ∨ G2) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}. Let Wn be the

wheel graph on n vertices, i.e., Wn = K1 ∨ Cn−1. A graph is a cactus, or a treelike

graph, if any pair of its cycles has at most one common vertex [1], [26]. If all cycles

of the cactus G have exactly one common vertex, then G is called a bundle [1]. Let

S(n, c, k) be the bundle graph obtained by attaching n− 2c− 2k − 1 pendant edges

together with k hanging paths of length two at the vertex v0, where v0 is the unique

common vertex of c triangles. For instance, the bundle graph S(15, 3, 2) is shown in

Figure 1.

Figure 1. The bundle S(15, 3, 2).

S(n, c, k) have been investigated in many papers. For instance, S(n, c, 0) is the

unique graph with the maximal spectral radius [1] (or the Merrifield-Simmons in-

dex [19]), the minimal Hosoya index (or the Wiener index [19], the Randić index [19])

in the set of all connected cacti on n vertices with c cycles, and S(n, 0, β − 1) is

the unique tree with the maximum Laplacian Estrada index [8], and the minimum

Laplacian-energy-like invariant [15], (or the Wiener index [9], the hyper-Wiener in-

dex [28]) in the class of trees with n vertices and the matching number β, where

2 6 β 6 ⌊ 1
2n⌋. Moreover, S(n, 1

2 (n − k) − 1, 1) is also an extremal graph [17] with

the maximum signless Laplacian spectral radius in the class of connected cacti with

n vertices and k pendant vertices. Let A(G) be the adjacency matrix, and D(G) the

diagonal matrix of G. Then the Laplacian matrix of G is L(G) = D(G)−A(G), and

the signless Laplacian matrix of G is Q(G) = D(G) + A(G). Since L(G) is positive

semidefinite, its eigenvalues can be arranged as

λ1(G) > λ2(G) > . . . > λn−1(G) > λn(G) = 0,

where λn−1(G) > 0 if and only if G is connected and λn−1(G) is called the alge-

braic connectivity of the graph G [10]. It is easy to see that Q(G) is also positive

semidefinite [2] and hence its eigenvalues can be arranged as

µ1(G) > µ2(G) > . . . > µn(G) > 0.

If there is no confusion, sometimes we write λi(G) as λi, and µi(G) as µi. More-

over, we sometimes abbreviate λ1(G) and µ1(G) as µ(G) and λ(G), respectively, and
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call µ(G) and λ(G) the signless Laplacian and the Laplacian spectral radius of G,

respectively. In the following, let SL(G) and SQ(G) denote the spectra, i.e., the

eigenvalues of L(G) and Q(G), respectively.

Two graphs are said to be Q-cospectral (resp. A-cospectral, L-cospectral) if they

have the same signless Laplacian (resp. adjacency, Laplacian) spectra. A graph G is

said to be determined by its signless Laplacian spectrum (resp. adjacency spectrum,

Laplacian spectrum) if there does not exist other non-isomorphic graph H such that

H and G are Q-cospectral (resp. A-cospectral, L-cospectral).

Which graphs are determined by their spectra? This question was proposed by

Dam and Haemers in [4]. This research has drawn much attention recently, and more

and more results on this item have been reported. For instance, the path, the com-

plement graph of path, the complete graph, the cycle were proved to be determined

by their adjacency spectra [4], [7] respectively, and the path, the complete graph,

the cycle, the star and the multi-fan graphs, together with their complement graphs

were shown to be determined by their Laplacian spectra [4], [7], [22], respectively.

Let Km
n be the graph obtained by attaching m pendant vertices to a vertex of

the complete graph Kn−m, and let Un,p be the graph obtained by attaching n − p

pendant vertices to a vertex of Cp. Let Gc be the complement graph of G. Re-

cently, Zhang et al. in [29] proved that Km
n , Un,p, (K

m
n )c, (Un,p)

c are determined by

their Laplacian spectra, respectively. Moreover, they proved that Km
n , (Km

n )c and

Un,p are determined by their adjacency spectra if p is odd. The wheel graph Wn

was shown to be determined by its Laplacian spectrum [30] except for the case of

n = 7, and the unicyclic graph Gr,p on n vertices, obtained by joining a vertex of

a cycle Cr and the center of a star K1,p−1 to each of the two end vertices of a path

Pn−p−r, was proved to be determined by its Laplacian spectrum when r 6= 4 and r

is even [27].

However, only a few families of graphs were shown to be determined by their

spectra, most of which were restricted to the cases of adjacency or Laplacian spec-

tra. Thus, it seems rather interesting to consider the problem: Which graphs are

determined by their signless Laplacian spectra? Recently, the lollipop graph was

proved to be determined by its signless Laplacian spectrum [31], and the bundle

graph S(n, c, k) and its complement graph were shown to be determined by their

signless Laplacian and Laplacian spectra [21], respectively, for k = 0 and c > 0.

This article is organized in the following way. In Section 2, we introduce the weak

interlacing theorems of Laplacian and signless Laplacian spectra by deleting a vertex.

By employing the weak interlacing theorem of the signless Laplacian spectrum and

some (new) lower bounds for µ2(G), we prove that Wn is determined by its signless

Laplacian spectrum in Section 3. By a similar method, we verify that all the S(n, c, k)

are determined by their signless Laplacian spectra for c > 1 and k > 1 in Section 4,
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and S(n, c, k) and its complement graph are also determined by their Laplacian

spectra, respectively, for k > 1 and c > 0 in Section 5.

2. The weak interlacing theorem of the (signless) Laplacian

spectrum by deleting a vertex

Consider two sequences of real numbers: α1 > α2 > . . . > αn, and β1 > β2 > . . . >

βm with m < n. The latter sequence is said to interlace the former whenever

αi > βi > αn−m+i for i = 1, 2, . . . , m.

Theorem 2.1 ([13]). Let G be a graph of order n, and let G − e be the graph

obtained from G by deleting the edge e of G. Then

0 6 µn(G − e) 6 µn(G) 6 µn−1(G − e) 6 µn−1(G) 6 . . . 6 µ1(G − e) 6 µ1(G),

0 = λn(G − e) = λn(G) 6 λn−1(G − e) 6 λn−1(G) 6 . . . 6 λ1(G − e) 6 λ1(G).

Moreover, it is well-known that the adjacency eigenvalues of G and G − v also

interlace (see [18], Theorem 1.4.8). Recently, the relation between the Laplacian

eigenvalues of G and G − v were considered in [23], and the following result was

proved:

Theorem 2.2 ([23]). Let G be a graph of order n, and let G − v be the graph

obtained fromG by deleting the vertex v of G. Then λi+1(G)−1 6 λi(G−v) 6 λi(G)

for each i = 1, . . . , n − 1.

Lotker [23] called Theorem 2.2 the weak interlacing theorem between the Laplacian

eigenvalues of G and G−v. Now it is natural for us to consider the following problem:

What is the relation between the signless Laplacian eigenvalues of G and G − v? In

the sequel, we shall prove that the weak interlacing theorem also holds for the signless

Laplacian eigenvalues between G and G − v.

Lemma 2.1 ([12]). Suppose B is the principal submatrix of a symmetric ma-

trix A. Then the eigenvalues of B interlace the eigenvalues of A.

Let M be a Hermitian matrix of order n. Denote by ̺1(M) > ̺2(M) > . . . >

̺n(M) the eigenvalues of M .

Lemma 2.2 ([14] Weyl). Let A, B be two Hermitian matrices of order n with

eigenvalues ̺i(A), ̺i(B) and ̺i(A + B). For each k = 1, 2, . . . , n, we have

(2.1) ̺k(A) + ̺n(B) 6 ̺k(A + B) 6 ̺k(A) + ̺1(B).
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Theorem 2.3. Let G be a graph of order n, and let G− v be the graph obtained

from G by deleting the vertex v of G.

(1) If d(v) = n − 1, then µn(G) − 1 6 µn−1(G − v) 6 µn−1(G) − 1 6 . . . 6

µ2(G) − 1 6 µ1(G − v) 6 µ1(G) − 1.

(2) If d(v) 6 n−2, then µi+1(G)−1 6 µi(G− v) 6 µi(G) for each i = 1, . . . , n−1.

P r o o f. Let P be the principal submatrix after we delete the row and column

that correspond to the vertex v of Q(G). By Lemma 2.1, we have

(2.2) µ1(G) > ̺1(P ) > µ2(G) > ̺2(P ) > . . . > µn−1(G) > ̺n−1(P ) > µn(G).

Let Iv = P − Q(G − v). Then Iv is a (0, 1) diagonal matrix whose jth diagonal

entry is 1 if and only if vj is connected to v in G.

If d(v) = n−1, then Iv is the identity matrix of order n−1, and hence ̺n−1(Iv) =

̺1(Iv) = 1. By inequality (2.1), we have ̺i(P ) = µi(G − v) + 1. Then (1) follows

from inequality (2.2).

If d(v) 6 n − 2, then ̺n−1(Iv) = 0 and ̺1(Iv) = 1. By inequality (2.1), we have

µi(G − v) 6 ̺i(P ) 6 µi(G − v) + 1. Then (2) follows from inequality (2.2). �

Remark 2.1. Actually, when d(v) = n − 1, the result of Theorem 2.2 can be

improved to [5]: λn(G) = 0, λ1(G) = n and λi(G−v)+1 = λi+1(G) for n−2 6 i 6 1.

Moreover, the proof in [23] seems too difficult, and Theorem 2.2 can be proved

analogously to Theorem 2.3.

3. Wn is determined by its signless Laplacian spectrum

In [30] it was proved that Wn, except for W7, is determined by its Laplacian

spectrum. In this section, we shall show that Wn is also determined by its signless

Laplacian spectrum.

Lemma 3.1. For any graph G, if d2(G) = d3(G), then

µ2(G) > min
{

d2(G),
1

2

(

d1(G) + d2(G)

+ 1 −
√

(

d1(G) − d2(G) − 2
)(

d1(G) − d2(G)
)

+ 9
)

}

.

Moreover, if d3(G) = d2(G) 6 d1(G) − 2, then µ2(G) > d2(G).

P r o o f. Suppose d(vi) = di for 1 6 i 6 3. By u ∼ v, we mean that u is adjacent

to v in G. If v2 6∼ v3, then Q(G) has B =
(

d2 0

0 d2

)

as its principal submatrix. By
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Lemma 2.1, µ2(G) > ̺2(B) = d2. If v1 6∼ v2 or v1 6∼ v3, then Q(G) has B =
(

d1 0

0 d2

)

as its principal submatrix. By Lemma 2.1, µ2(G) > ̺2(B) = d2. If v1 ∼ v2,

v1 ∼ v3 and v2 ∼ v3, then Q(G) has B =

(

d1 1 1

1 d2 1

1 1 d2

)

as its principal submatrix. By

Lemma 2.1, µ2(G) > ̺2(B) = 1
2

(

d1 + d2 + 1 −
√

(d1 − d2 − 2)(d1 − d2) + 9
)

.

If d3 = d2 6 d1 − 2, it is easy to see that µ2 > d2. �

Lemma 3.2 ([2]). In any bipartite graph G, L(G) and Q(G) have the same

eigenvalues. Moreover, the least eigenvalue of the signless Laplacian of a connected

graph is equal to 0 if and only if the graph is bipartite. In this case 0 is a simple

eigenvalue.

Lemma 3.3. 1 6 µn(Wn) 6 µ2(Wn) < 5, and

µ1(Wn) =
1

2

(

n + 4 +
√

(n − 4)2 + 16
)

.

P r o o f. Suppose a is an eigenvalue of Q(Wn), and d(v1) = n − 1. Let X =

(x1, x2, . . . , xn)T be an eigenvector corresponding to a, and let xi correspond to vi,

where 1 6 i 6 n. By the equalities Q(Wn)X = aX corresponding to v2, . . . , vn, we

have

(3.1)



















































x1 + x3 + xn = (a − 3)x2,

x1 + x2 + x4 = (a − 3)x3,

x1 + x3 + x5 = (a − 3)x4,

...

x1 + xn−2 + xn = (a − 3)xn−1,

x1 + x2 + xn−1 = (a − 3)xn.

Now suppose a = 5, then x1 = 0 follows from equalities (3.1). Suppose that

xk = max{xi : 2 6 i 6 n}. If k = 2, then 2x2 = x3 + xn 6 2x2, and hence

x2 = x3 = xn. By equalities (3.1), we have x2 = x3 = . . . = xn. It can be

proved similarly that x2 = x3 = . . . = xn for k 6= 2. Moreover, by the equality

Q(Wn)X = 5X corresponding to v1 we have (n− 1)x1 + x2 + . . . + xn = 5x1. Thus,

x1 = x2 = . . . = xn = 0, a contradiction. So, a 6= 5.

By Theorem 2.3, we have µ2(Wn) 6 µ1(Wn − v1) + 1 = µ1(Cn−1) + 1 = 5. Thus,

µ2(Wn) < 5. Next we shall show that µn(Wn) > 1. On the contrary, suppose

µn(Wn) = a < 1.
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Case 1. x1 6= 0. Then (n − 1)x1 = (a − 5)(x2 + x3 + . . . + xn) follows from

equalities (3.1). Moreover, by the equality Q(Wn)X = 5X corresponding to v1 we

have (n− 1)x1 + x2 + . . . + xn = ax1. Thus, a = 1
2

(

n + 4−
√

(n − 4)2 + 16
)

because

x1 6= 0 and a < 1. But 1
2

(

n + 4 −
√

(n − 4)2 + 16
)

> 1, a contradiction.

Case 2. x1 = 0. Let xj = min{xi : 2 6 i 6 n} and xk = max{xi : 2 6 i 6 n}.
Note that 0 < a < 1 by Lemma 3.2. Then xj < xk by equalities (3.1). If k,

j ∈ {3, 4, . . . , n−1}, by the equalities Q(Wn)X = aX corresponding to vj and vk we

have
{

xk−1 + xk+1 = (a − 3)xk,

xj−1 + xj+1 = (a − 3)xj .

Thus, xk−1 + xk+1 − xj−1 − xj+1 = (a − 3)(xk − xj) < −2(xk − xj), which implies

that 0 6 (xk−1 + xk+1 − 2xj) + (2xk − xj−1 − xj+1) < 0, a contradiction. This can

also yield a contradiction for the other cases.

By combining Case 1 and Case 2, µn(Wn) > 1. From the Perron-Frobenius Theo-

rem on non-negative matrices, µ1(G) has multiplicity one and there exists a unique

positive unit eigenvector corresponding to µ1(G). Thus, it can be proved analogously

to Case 1 that µ1(Wn) = 1
2

(

n + 4 +
√

(n − 4)2 + 16
)

. �

Lemma 3.4 ([6]). If G is a graph on n vertices with vertex degrees d1 > d2 >

. . . > dn and signless Laplacian eigenvalues µ1 > µ2 > . . . > µn, then µ2 > 1
2

(

d1 +

d2 −
√

(d1 − d2)2 + 4
)

> d2 − 1. Moreover, if G is connected, then µn < dn.

Lemma 3.5 ([5]). Let G be a connected graph on n vertices. Then µ1(G) 6

max{d(v) + m(v) : v ∈ V }, where m(v) =
∑

u∈N(v)

d(u)/d(v). Moreover, µ1(G) 6

d1(G) + d2(G), where equality holds if and only if G is regular or G ∼= K1,n−1.

Lemma 3.6 ([2]). Let G be a graph with n vertices, m edges and t triangles.

Then
n
∑

i=1

µi =
n
∑

i=1

di = 2m,
n
∑

i=1

µ2
i = 2m +

n
∑

i=1

d2
i and

n
∑

i=1

µ3
i = 6t + 3

n
∑

i=1

d2
i +

n
∑

i=1

d3
i .

Lemma 3.7. If G and Wn are Q-cospectral, then G is connected with 2 6

dn(G) 6 d2(G) 6 5.

P r o o f. By Lemmas 3.3 and 3.4 we have d2(G) − 1 6 µ2(G) = µ2(Wn) < 5.

So, d2(G) 6 5. Now, we assume that G is disconnected. By Lemmas 3.3 and 3.5,

n < µ1(Wn) = µ1(G) 6 d1(G) + d2(G). Thus, n − 4 6 d1(G) 6 n − 2. Note that

1 6 µn(Wn) = µn(G) by Lemma 3.3. So, d1(G) = n − 4 and G = G1 ∪ C3, where

d1(G1) = n− 4. Clearly, n > 8 and hence µ1(G) = µ1(G1). Next we shall show that

µ1(G1) < µ1(Wn). Suppose max{d(v) + m(v) : v ∈ V (G1)} occurs at the vertex u0.

Since d2(G1) 6 5, we consider the following two cases.
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Case 1. 1 6 d(u0) 6 4. Then d(u0) + m(u0) 6 d(u0) + d1(G1) 6 d(u0) + n − 4 6

n < µ1(Wn).

Case 2. d(u0) = 5 or d(u0) = n − 4. By Lemma 3.6, G1 has 2n − 5 edges. Then

d(u0) + m(u0) 6 d(u0) +
2(2n − 5) − d(u0)

d(u0)

= d(u0) − 1 +
4n − 10

d(u0)

6 max
{

4 +
4n − 10

5
, n − 5 +

4n − 10

n − 4

}

<
1

2

(

n + 4 +
√

(n − 4)2 + 16
)

.

By Lemmas 3.3 and 3.5, µ1(Wn) = µ1(G) = µ1(G1) < µ1(Wn), a contradiction.

Thus, G is connected. Then 1 6 µn(Wn) = µn(G) < dn(G) by Lemmas 3.3 and 3.4,

which implies that dn(G) > 2. �

Lemma 3.8. If d1(G) 6 n − 3, then G and Wn are not Q-cospectral.

P r o o f. Next we assume that d1(G) 6 n − 3 but SQ(G) = SQ(Wn). By

Lemmas 3.3 and 3.7, G is connected with 2 6 dn(G) 6 d2(G) 6 5 and µ1(Wn) =
1
2

(

n + 4 +
√

(n − 4)2 + 16
)

. Suppose max{d(v) + m(v) : v ∈ V (G)} occurs at the
vertex u0.

Case 1. 2 6 d(u0) 6 3. Then d(u0) + m(u0) 6 d(u0) + d1(G) 6 d(u0) + n − 3 6

n < µ1(Wn), a contradiction.

Case 2. d(u0) = 4. Then n > 7, since d(u0) = 4 6 n − 3.

When n = 7, then d1(G) = 4. Note that µ1(G) = µ1(Wn) = 8 = 2d1(G).

By Lemma 3.5, G is regular and hence G has 14 edges. But W7 has 12 edges,

a contradiction to Lemma 3.6.

When n = 8, by Lemmas 3.6–3.7, G also has 14 edges, and dn(G) > 2. Then

d(u0) + m(u0) 6 4 + 28−4−3×2
4 = 8.5 < 6 + 2

√
2 = µ1(Wn), a contradiction.

Now we suppose that n > 9. Since d2(G) 6 5 by Lemma 3.7, we have d(u0) +

m(u0) 6 4 + n−3+3×5
4 < µ1(Wn), a contradiction.

Case 3. 5 6 d(u0) 6 n − 3. By Lemmas 3.6–3.7, G also has 2n − 2 edges, and

dn(G) > 2. Then

d(u0) + m(u0) 6 d(u0) +
2m − d(u0) − 2 × 2

d(u0)
= d(u0) − 1 +

4n − 8

d(u0)
.

Let f(x) = x − 1 + (4n − 8)/x, where 5 6 x 6 n − 3. It is easy to see that

f(x) 6 max
{

4 +
4n − 8

5
, n− 4 +

4n− 8

n − 3

}

<
1

2

(

n + 4 +
√

(n − 4)2 + 16
)

= µ1(Wn).

Thus, µ1(G) < µ1(Wn), a contradiction.
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By combining the above arguments, we can conclude that G and Wn are not Q-

cospectral. �

Lemma 3.9. If G and Wn are Q-cospectral, then d1(G) = n − 1.

P r o o f. Assume that G has ni vertices of degree i for i = 2, . . . , n − 1. If

SQ(G) = SQ(Wn), by Lemmas 3.6–3.8 G is connected with 2 6 dn(G) 6 d2(G) 6 5,

n − 2 6 d1(G) 6 n − 1 and

(3.2)

n−1
∑

i=2

ni = n,

n−1
∑

i=2

ini = 4(n − 1),

n−1
∑

i=2

i2ni = n2 + 7n − 8.

Now assume that d1(G) = n − 2.

Case 1. nn−2 > 2. Then 4 6 n 6 7, since n − 2 = d1(G) = d2(G) 6 5. Clearly,

n = 4 and n = 5 are impossible by equalities (3.2).

If n = 7, then d1(G) = d2(G) = 5. By equalities (3.2), we have n5 = 2, n3 = 4,

n2 = 1. It is easily checked with the aid of a computer that G and Wn are not

Q-cospectral, a contradiction.

If n = 6, then d1(G) = d2(G) = 4. By equalities (3.2), we have n4 = 3, n3 = 2,

n2 = 1. It is easily checked with the aid of a computer that G and Wn are not

Q-cospectral, a contradiction.

Case 2. nn−2 = 1.

Subcase 1. n5 > 2. Then n > 8 because d1(G) = n − 2 > 5 = d2(G). If

n = 8, by equalities (3.2) we have n4 + 3n5 = 4, a contradiction to n5 > 2. Thus,

n > 9. Note that n − 2 > 7 = d2(G) + 2. By Lemmas 3.1 and 3.3, we have

5 > µ2(Wn) = µ2(G) > 5, a contradiction.

Subcase 2. n5 = 1. If n − 2 = 5 > d2(G), then n = 7, and hence G is a connected

graph with n5 = 1, n4 = 3, n3 = 1 and n2 = 2 by equalities (3.2). It is easily checked

that G and W7 are not Q-cospectral.

If n − 2 > 5, by equalities (3.2) we have nn−2 = n5 = 1, n4 = n − 7, n3 = 11 − n,

n2 = n − 6. Thus, 8 6 n 6 11. If n = 8, then d1(G) = 6 and d2(G) = 5. By

Lemma 3.4, 4.25 > µ2(W8) = µ2(G) > 4.38, a contradiction.

It can be proved similarly that 9 6 n 6 11 is also impossible.

Subcase 3. n5 = 0. Since n5 = 0, it is easy to see that n > 7 by equalities (3.2).

By equalities (3.2), we have nn−2 = 1, n4 = n − 4, n3 = 8 − n, n2 = n − 5. Then,

n = 8, and hence G is a connected graph on eight vertices with n6 = 1, n4 = 4,

n2 = 3. It is easily checked with the aid of a computer that G and Wn are not

Q-cospectral, a contradiction.

By combining the above arguments, we can conclude that d1(G) = n − 1. �
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Theorem 3.1. Wn is determined by its signless Laplacian spectrum.

P r o o f. If n = 4, it is easily checked that the result holds. Thus, we may

suppose n > 5 in the sequel. Suppose SQ(G) = SQ(Wn). By Lemmas 3.7 and 3.9,

then 2 6 dn(G) 6 d2(G) 6 5, d1(G) = n − 1. If d2(G) = n − 1, then 5 6 n 6 6, and

this will yield a contradiction by equalities (3.2). Thus, d2(G) < n − 1, and hence

nn−1 = 1.

By equalities (3.2), we can conclude that G and Wn share the same degree se-

quences. Thus, G = K1 ∨ (Ck1
∪ Ck2

∪ . . . ∪ Ckt
), where k1 + k2 + . . . + kt = n − 1.

Now we only need to prove that t = 1. On the contrary, assume that t > 2. Choose

v ∈ V (G) with d(v) = n−1. By Theorem 2.3, we have 4 = µ2(G− v) 6 µ2(G)−1 6

µ1(G − v) = 4, and hence µ2(G) = 5. On the other hand, Lemma 3.3 implies that

µ2(G) = µ2(Wn) < 5, a contradiction.

Thus, t = 1 and hence G ∼= Wn. �

4. S(n, c, k) is determined by its signless Laplacian spectrum

In [21], S(n, c, k) was proved to be determined by its signless Laplacian spectrum

for c > 0 and k = 0. In this section, we shall show that S(n, c, k) is also determined

by its signless Laplacian spectrum for c > 1 and k > 1.

Suppose v is a vertex of a connected graph G with at least two vertices. Let

Gk,l (l > k > 1) be the graph obtained from G by attaching two new paths P :

v(= v0)v1v2 . . . vk and Q : v(= u0)u1u2 . . . ul of length k and l, respectively, at v,

where v1, v2, . . . , vk and u1, u2, . . . , ul are distinct new vertices. Let Gk−1,l+1 =

Gk,l − vk−1vk + ulvk. The following results have been proved:

Lemma 4.1 ([3], [20]). Let G be a connected graph on n > 2 vertices. If l > k >

1, then µ(Gk,l) > µ(Gk−1,l+1).

Lemma 4.2 ([24], [25]). If G is a graph on n vertices with at least one edge, then

µ(G) > λ(G) > d1 + 1. If G is connected, the former equality holds if and only if G

is bipartite, the latter holds if and only if d1 = n − 1.

Lemma 4.3. For k > 1 and n > 4, µ2(S(n, c, k)) 6 3 and n−k < µ1(S(n, c, k)) <

n − k + 1. Moreover, if 0 6 c 6 1, then µ2(S(n, c, k)) < 3.

P r o o f. Let v1 be the vertex of S(n, c, k) such that d(v1) = n − k − 1. By

Theorem 2.3, µ2(S(n, c, k)) 6 µ1(S(n, c, k) − v1) + 1 = µ1(P2) + 1 = 3. Thus,

µ2(S(n, c, k)) 6 3.
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Since n > 4, we have 2 + 1
2 (n − k + 1) 6 n − k + 1 because n − k > 3. Thus,

n − k < µ1(S(n, c, k)) < n − k + 1 follows from Lemmas 3.5 and 4.2.

Assume that µ2(S(n, c, k)) = 3. Let X = (x1, x2, . . . , xn)T be an eigenvector

corresponding to 3, and xi let correspond to vi, where 1 6 i 6 n.

If c = 1, suppose V (C3) = {v1, v2, v3}. By the equalities Q(S(n, 1, k))X = 3X

corresponding to v2, v3, we have x1 +x3 = x2, x1 +x2 = x3, and hence x1 = 0, x2 =

x3. From the equalities Q(S(n, 1, k))X = 3X corresponding to v4, . . . , vn, we have

x4 = . . . = xn = 0 because x1 = 0. Moreover, from the equality Q(S(n, 1, k))X = 3X

corresponding to v1, we have x2 = x3 = 0. Thus, X = (0, 0, . . . , 0)T , a contradiction.

So, µ2(S(n, 1, k)) < 3.

If c = 0, suppose N(v1) = {v2, v4, . . . , v2k, v2k+2, v2k+3, . . . , vn} and v2 ∼ v3,

v4 ∼ v5, . . . , v2k ∼ v2k+1. By the equalities Q(S(n, 0, k))X = 3X corresponding

to v2, . . . , vn we have x1 = x3 = 1
2x2, x1 = x5 = 1

2x4, . . . , x1 = x2k+1 = 1
2x2k,

x1 = 2x2k+2, . . . , x1 = 2xn. From the equalities Q(S(n, 0, k))X = 3X corresponding

to v1, we have
1
2 (3n − 3)x1 = 3x1, and hence x1 = 0. Thus, X = (0, 0, . . . , 0)T ,

a contradiction. So, µ2(S(n, 0, k)) < 3. �

Lemma 4.4. Suppose n > 4, k > 1 and SQ(G) = SQ(S(n, c, k)). (1) If c > 2,

then G is connected with d2(G) 6 4. Moreover, d2(G) = 4 implies that d1(G) =

d2(G). (2) If 0 6 c 6 1, then d2(G) 6 3. Moreover, if c = 1, then G is connected.

P r o o f. (1) By Lemmas 3.4 and 4.3, it follows that

d2(G) − 1 6
1

2

(

d1 + d2 −
√

(d1 − d2)2 + 4
)

6 µ2(G) = µ2(S(n, c, k)) 6 3.

Thus, d2(G) 6 4, and d2(G) = 4 implies that d1(G) = d2(G).

By Lemma 3.2, µn(G) = µn(S(n, c, k)) > 0. If G is disconnected, then no con-

nected component of G is a tree by Lemma 3.2. Hence, G has at least two con-

nected components, which contain at least one cycle. By Theorem 2.1, we have

µ2(S(n, c, k)) = µ2(G) > 4, a contradiction to Lemma 4.3. So, G is connected.

(2) By Lemma 4.3, (2) can be proved similarly to (1). �

Lemma 4.5. Suppose k > 1, n > 2c + 2k + 3 and let G be a connected graph

with n vertices and n + c − 1 edges. If d1(G) 6 n − k − 2, then µ1(G) 6 n − k.

P r o o f. Suppose max{d(v) + m(v) : v ∈ V } occurs at the vertex u0 of G.

Case 1. 1 6 d(u0) 6 2. Then d(u0) + m(u0) 6 d(u0) + d1(G) 6 n − k.
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Case 2. 3 6 d(u0) 6 n − k − 2. Note that 3 6 d(u0) 6 n − k − 2 and G has

n + c − 1 edges. Since dn(G) > 1, we have

d(u0) + m(u0) 6 d(u0) +
2(n + c − 1) − d(u0) − k − 1

d(u0)

= d(u0) − 1 +
2n + 2c− k − 3

d(u0)

6 max
{

2 +
2n + 2c − k − 3

3
, n − k − 3 +

2n + 2c − k − 3

n − k − 2

}

6 n − k.

By Lemma 3.5, the result follows. �

Lemma 4.6. Suppose k > 1 and n = 2c + 2k + 2. If d1(G) 6 n− k − 2 and G is

connected, then G and S(n, c, k) are not Q-cospectral.

P r o o f. We assume that SQ(G) = SQ(S(n, c, k)). By Lemma 3.5 and Lem-

mas 4.3–4.4 we can conclude that G is connected with d2(G) 6 4 and n − k − 3 6

d1(G) 6 n − k − 2.

Case 1. d1(G) = n − k − 3. If d2(G) 6 3, then Lemma 3.5 implies that µ1(G) 6

n−k < µ1(S(n, c, k)), a contradiction. Thus, d2(G) = 4. So Lemma 4.4 implies that

d1(G) = d2(G) and c > 2. Thus, n = k + 7. Since 2 + 2c + 2k = n = k + 7, we

have 5 = 2c + k. Then c = 2, k = 1 and n = 8. By Lemma 3.6, we can conclude

that either n1 = 6, n2 = −4, n3 = 4, n4 = 2, or n1 = 5, n2 = −1, n3 = 1, n4 = 3,

a contradiction.

Case 2. d1(G) = n−k−2. By Lemmas 3.5 and 4.3, either d2(G) = 4 or d2(G) = 3.

If d2(G) = 4, by Lemma 4.4 we have d1(G) = d2(G) = n− k − 2 and c > 2. Thus,

2 + 2c + 2k = n = k + 6 and hence 4 = 2c + k, which contradicts k > 1 and c > 2.

Thus, d2(G) = 3. If d1(G) = 3, then 2 + 2c + 2k = n = k + 5. Thus, either c = 1,

k = 1 and n = 6 or c = 0, k = 3 and n = 8. By Lemma 3.6, either G is a unicyclic

graph with n1 = n3 = 3 or G is a tree with n1 = 5, n3 = 3. It is easily checked with

the aid of a computer that G and S(n, c, k) are not Q-cospectral. If d1(G) > 4, by

Lemma 3.6 and n = 2c + 2k + 2 it follows that

(4.1)











n1 + n2 + n3 = 2k + 2c + 1,

n1 + 2n2 + 3n3 = 3k + 4c + 2,

n1 + 4n2 + 9n3 = 7k + 12c + 2.

By equalities (4.1), we have n1 = 2k + 2c − 1, n2 = 3 − 2c − k and n3 = k + 2c − 1.

Since 2c + k = n − k − 2 > 4, it follows that n2 < 0, a contradiction.

By combining the above arguments, we complete the proof of this result. �

1128



Lemma 4.7. Suppose n > 4, k > 1 and n = 2c + 2k + 1. If d1(G) 6 n − k − 2

and G is connected, then G and S(n, c, k) are not Q-cospectral.

P r o o f. We assume that SQ(G) = SQ(S(n, c, k)). By Lemma 3.5 and Lem-

mas 4.3–4.4 we can conclude that G is connected with d2(G) 6 4 and n − k − 3 6

d1(G) 6 n − k − 2.

Case 1. d1(G) = n − k − 3. By Lemmas 3.5 and 4.3, it follows that d2(G) = 4.

Thus, by Lemma 4.4 we have d1(G) = d2(G) and c > 2. Hence, n = k + 7. Since

1 + 2c + 2k = n = k + 7, we have 6 = 2c + k. Then c = 2, k = 2 and n = 9. By

Lemma 3.6, we can conclude that n1 = 5, n3 = 1, n4 = 3. By Lemmas 3.5 and 4.3,

µ1(G) 6 4 + 8+3+1
4 = 7 < µ1(S(9, 2, 2)), a contradiction.

Case 2. d1(G) = n−k−2. By Lemmas 3.5 and 4.3, either d2(G) = 4 or d2(G) = 3.

If d2(G) = 4, by Lemma 4.4 we have d1(G) = d2(G) = n − k − 2 and c > 2. Thus,

1 + 2c + 2k = n = k + 6 and hence 5 = 2c + k. Then c = 2, k = 1 and n = 7. By

Lemma 3.6 we can conclude that n1 = n4 = 2, and n2 = 3. It is easily checked with

the aid of a computer that G and S(n, c, k) are not Q-cospectral, a contradiction.

Thus, d2(G) = 3. If d1(G) = 3, then 1 + 2c + 2k = n = k + 5 and hence either

c = 1, k = 2 and n = 7 or c = 0, k = 4 and n = 9. By Lemma 3.6, G is a unicyclic

graph with n1 = n3 = 3 and n2 = 1 or G is a tree with n1 = 5, n2 = 1 and n3 = 3.

It is easily checked with the aid of a computer, a contradiction that G and S(n, c, k)

are not Q-cospectral. If d1(G) > 4, by Lemma 3.6 and n = 2c + 2k + 1 we have

n1 = 2k +2c− 3, n2 = 5− 2c− k and n3 = k +2c− 2. Note that 0 6 n2 = 5− 2c− k

and 4 6 d1(G) = n − k − 2 = 2c + k − 1. Then 2c + k = 5. Either c = 0, k = 5 and

n = 11 or c = 1, k = 3 and n = 9 or c = 2, k = 1 and n = 7.

If c = 0, k = 5 and n = 11, then G is a tree with n1 = 7, n3 = 3 and n4 = 1.

Thus, Q(G) contains B =
(

3 0

0 3

)

as its principal submatrix. By Lemma 2.1, µ2(G) >

̺2(B) = 3, which contradicts Lemma 4.3.

If c = 1, k = 3 and n = 9, then G is a unicyclic graph with n1 = 5, n3 = 3 and

n4 = 1. Thus, Q(G) contains B =
(

4 0

0 3

)

or B =
(

3 0

0 3

)

as its principal submatrix.

By Lemma 2.1, µ2(G) > ̺2(B) = 3, which contradicts Lemma 4.3.

If c = 2, k = 1 and n = 7, then G is a bicyclic graph with n1 = 3, n3 = 3 and

n4 = 1. It is easily checked with the aid of a computer, a contradiction that G and

S(n, c, k) are not Q-cospectral.

By combining the above arguments we complete the proof of this result. �

Theorem 4.1. If k > 1, then S(n, c, k) is determined by its signless Laplacian

spectrum for c > 1, and there exists no other tree T such that T and S(n, 0, k) are

Q-cospectral.
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P r o o f. If n 6 4, it is easily checked that the result holds. Thus, we may

suppose n > 5 in the sequel. Now suppose that there exists a graph G such that

SQ(G) = SQ(S(n, c, k)). By Lemmas 4.3–4.7, we can conclude that G is a connected

graph with d1(G) = n − k − 1 and d2(G) 6 4.

Case 1. d2(G) = d1(G). If n−k−1 = d1(G) = d2(G) 6 3, then 2c+1+2(n−4) 6

2c+1+2k 6 n. If c > 1, then n = 5 and k = c = 1. By Lemma 3.6, we have n3 = 1,

a contradiction. If c = 0, since d2(G) = d1(G), by Lemma 3.6 we can conclude that

n = 5, k = 2, and G ∼= S(5, 0, 2) = P5.

If n − k − 1 = d1(G) = d2(G) = 4, then n = k + 5. By Lemma 3.6, it follows that

(4.2)











n1 + n2 + n3 + n4 = n,

n1 + 2n2 + 3n3 + 4n4 = 2(n + c − 1),

n1 + 4n2 + 9n3 + 16n4 = 4n + 6c.

By equalities (4.2), we have n3 + 3n4 = 3, a contradiction to n4 > 2.

Case 2. d2(G) < d1(G). Then d2(G) 6 3 by Lemma 4.4. By Lemma 3.6, it follows

that

(4.3)











n1 + n2 + n3 = n − 1,

n1 + 2n2 + 3n3 = n + 2c + k − 1,

n1 + 4n2 + 9n3 = n + 6c + 3k − 1.

By equalities (4.3) we have n1 = n − 2c − k − 1, n2 = 2c + k, and nn−k−1 = 1, i.e.,

G is a connected graph with the same degree sequence as S(n, c, k).

By Lemma 3.6, G has exactly c triangles. Let R(n, c, k) be the set of connected

bundle graphs obtained by attaching n − 2c − k − 1 paths to v0, where v0 is the

unique common vertex of c cycles. Since n − k − 1 > 3, G is a graph of R(n, c, k).

By Lemma 4.1, S(n, c, k) is the unique graph with the maximum signless Laplacian

spectral radius in R(n, c, k). Thus, G ∼= S(n, c, k) because µ1(G) = µ1(S(n, c, k)).

�

5. S(n, c, k) is determined by its Laplacian spectrum

In [21], it was proved that S(n, c, k) and its complement graph are determined by

their Laplacian spectra for k = 0 and c > 0. In this section, we shall show that

S(n, c, k) and its complement graph are also determined by their Laplacian spectra

for k > 1 and c > 0.
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Lemma 5.1. Let G be a graph with n vertices, m edges and t triangles. Then
n
∑

i=1

λi =
n
∑

i=1

di = 2m,
n
∑

i=1

λ2
i = 2m +

n
∑

i=1

d2
i and

n
∑

i=1

λ3
i =

n
∑

i=1

d3
i + 3

n
∑

i=1

d2
i − 6t.

P r o o f. By
n
∑

i=1

λi = Tr(L) and
n
∑

i=1

λ2
i = Tr(L2) =

n
∑

i=1

di +
n
∑

i=1

d2
i , the first two

equalities hold. Since L = D−A, we have L3 = D3 −D2A−AD2 −DAD + A2D +

DA2 + ADA − A3. Note that Tr(D2A) = 0. Then

n
∑

i=1

λ3
i = Tr(L3) = Tr(D3) − 3 Tr(D2A) + 3 Tr(A2D) − Tr(A3)

=

n
∑

i=1

d3
i + 3

n
∑

i=1

d2
i − 6t.

Thus, the third equality holds. �

Lemma 5.2. For k > 1 and n > 4 we have λ2(S(n, c, k)) 6 3 and n − k <

λ1(S(n, c, k)) < n − k + 1.

P r o o f. By Theorem 2.2 and Lemmas 3.5 and 4.2, this can be proved similarly

to Lemma 4.3. �

Lemma 5.3. If n > 4, k > 1 and SL(G) = SL(S(n, c, k)), then G is connected

and d2(G) 6 3. Moreover, if c = 0, then d2(G) 6 2.

P r o o f. Since S(n, c, k) is connected, we have λn−1(G) = λn−1(S(n, c, k)) > 0

and hence G is connected. It is well known that d2(G) 6 λ2(G) for a connected

graph (see [16]). Thus, d2(G) 6 3 by Lemma 5.2. If c=0, by Lemma 3.2 we have

SL(G) = SL(S(n, 0, k)) = SQ(S(n, 0, k)). Thus, d2(G) 6 2 by Lemma 4.3. �

Lemma 5.4. If n > 4, k > 1 and SL(G) = SL(S(n, c, k)), then d1(G) = n−k−1.

P r o o f. Suppose SQ(G) = SQ(S(n, c, k)). By Lemmas 4.2 and 5.2, d1(G) 6

n − k − 1. Next we assume that d1(G) 6 n − k − 2. By Lemma 3.5, Lemma 4.2,

and Lemmas 5.2–5.3, we can conclude that G is connected with d2(G) = 3 and

d1(G) = n − k − 2, and hence c > 1. Moreover, by Lemma 4.2, Lemma 4.5 and

Lemmas 5.1–5.2, we can conclude that either n = 1 + 2c + 2k or n = 2 + 2c + 2k.

Case 1. n = 2 + 2c + 2k. If d1(G) = 3, since 2 + 2c + 2k = n = k + 5, we have

3 = 2c + k. Then, c = 1, k = 1 and n = 6. By Lemma 5.1, G is a unicyclic graph on

6 vertices with n1 = n3 = 3. It is easily checked with the aid of a computer that G

and S(6, 1, 1) are not L-cospectral, a contradiction.
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If d1(G) > 3, by Lemma 5.1 and n = 2c + 2k + 2 we have n1 = 2k + 2c − 1,

n2 = 3 − 2c− k and n3 = k + 2c− 1. Since 2c + k = n − k − 2 > 4, we have n2 < 0,

a contradiction.

Case 2. n = 1 + 2c + 2k. It can be proved similarly to Case 1 (or Lemma 4.7).

By combining the above arguments, we complete the proof of this result. �

Lemma 5.5 ([11]). Let v be a vertex of a connected graph G and suppose that

v1, . . . , vs are pendant vertices of G which are adjacent to v. Let G∗ be the graph

obtained from G by adding any b (1 6 b 6 1
2s(s−1)) edges between v1, . . . , vs. Then

λ(G) = λ(G∗).

Theorem 5.1. If k > 1, then S(n, c, k) is determined by its Laplacian spectrum

for c > 0.

P r o o f. If n 6 4, it is easily checked that the result holds. Thus, we may

suppose n > 5 in the sequel. Now suppose that there exists a graph G such that

SL(G) = SL(S(n, c, k)). By Lemmas 5.3–5.4, G is a connected graph with d1(G) =

n − k − 1 and d2(G) 6 3.

Case 1. d1(G) = d2(G). Since n − k − 1 = d1(G) = d2(G) 6 3, we have n − 7 6

2c + 1 + 2(n − 4) 6 2c + 1 + 2k 6 n. Thus, 5 6 n 6 7. It is easily checked that the

result follows by Lemma 5.1.

Case 2. d2(G) < d1(G). Since d2(G) < d1(G), by Lemma 5.1 we have n1 =

n − 2c − k − 1, n2 = 2c + k, and nn−k−1 = 1, i.e., G is a connected graph with the

same degree sequence as S(n, c, k). By Lemma 5.1, G has exactly c triangles. Then

G is a bundle graph of R(n, c, k). Let T(n, k) denote the set of trees on n vertices

obtained by attaching t paths to t pendant vertices of K1,n−k−1, where 1 6 t 6 k.

Let T be the tree obtained from G by deleting the c edges, the end vertices of

which are of degrees two, of c triangles. Then T ∈ T(n, k). By Lemmas 3.2 and 5.5,

λ(G) = λ(T ) = µ(T ).

Let T ∗ be the tree obtained from S(n, c, k) by deleting the c edges, the end vertices

of which are of degrees two, of c triangles. By Lemma 3.2, Lemma 4.1 and Lemma 5.5,

µ(T ) 6 µ(T ∗) = λ(T ∗) = λ(S(n, c, k)), where µ(T ) = µ(T ∗) if and only if T ∼= T ∗.

Thus, if λ(G) = λ(S(n, c, k)), then T ∼= T ∗, which implies that G ∼= S(n, c, k). �

Lemma 5.6 ([24]). Let G be a graph with n vertices. If λi(G), i = 1, 2, . . . , n

are the eigenvalues of L(G), then the eigenvalues of L(Gc) are n − λi(G), i =

1, 2, . . . , n − 1 and 0.

By Theorem 5.1 and Lemma 5.6, we have
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Corollary 5.1. If k > 1, then the complement graph of S(n, c, k) is determined

by its Laplacian spectrum for c > 0.
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[15] A. Ilić: Trees with minimal Laplacian coefficients. Comput. Math. Appl. 59 (2010),

2776–2783.
[16] J. S. Li, Y. L.Pan: A note on the second largest eigenvalue of the Laplacian matrix of

a graph. Linear Multilinear Algebra 48 (2000), 117–121.
[17] S.C. Li, M. J. Zhang: On the signless Laplacian index of cacti with a given number of

pendant vertices. Linear Algebra Appl. 436 (2012), 4400–4411.
[18] B.L. Liu: Combinatorial Matrix Theory. Science Press, Beijing, 2005. (In Chinese.)
[19] H.Q. Liu, M.Lu: A unified approach to extremal cacti for different indices. MATCH

Commun. Math. Comput. Chem. 58 (2007), 183–194.
[20] M.H.Liu, X. Z. Tan, B. L. Liu: The (signless) Laplacian spectral radius of unicyclic and

bicyclic graphs with n vertices and k pendant vertices. Czech. Math. J. 60 (2010),
849–867.

1133



[21] M.H.Liu, B. L. Liu, F. Y.Wei: Graphs determined by their (signless) Laplacian spectra.
Electron. J. Linear Algebra 22 (2011), 112–124.

[22] X.G. Liu, Y. P. Zhang, X.Q.Gui: The multi-fan graphs are determined by their Lapla-
cian spectra. Discrete Math. 308 (2008), 4267–4271.

[23] Z.Lotker: Note on deleting a vertex and weak interlacing of the Laplacian spectrum.
Electron. J. Linear Algebra. 16 (2007), 68–72.

[24] R.Merris: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197–198 (1994),
143–176.

[25] Y.L. Pan: Sharp upper bounds for the Laplacian graph eigenvalues. Linear Algebra
Appl. 355 (2002), 287–295.
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