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Quasitrivial Semimodules I 

KHALDOUN AL-ZOUBI, TOMÁŠ KEPKA and PETR NĚMEC 

Praha 

Received 4th October 2007 

In the paper, quasitrivial (i.e., every element has just one scalar multiple) semimodules 
and semirings are investigated. In particular, minimal (i.e., every proper subsemimodule 
has just one element) and congruence-simple quasitrivial semimodules are characterized. 

1. Prel iminaries (A) 

Let S be a semigroup (whose operation is denoted multiplicatively). Put 
A = {ae S | \Sa\ = 1} and B = {ae S | Sa = {a}}(obviously B ^ A). 

1.1 Lemma. Assume that A ^ 0. Then: 
(i) A is an ideal (and hence a subsemigroup) of the semigroup S. 

(ii) There is an endomorphism f of the semigroup A such that f2=f and 

xa = f(a)for all ae A and xe S. 
(iii) B = f(A), B is an ideal of S and B is just the set of right absorbing 

elements of the semigroup S. 
(iv) f = id,4 (or, equivalently, A = B), provided that f is an infective or 

projective transformation of A. 
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Proof. First, we have a2 = f(a) and xf(a) = xa2 = xa- a = f(a) for all a e A 
and xe S. Consequently, f2(a) = f(a)e A and A is a left ideal of S. Moreover, 
xay = f(a)y for all a e A, x, y e S, and we see that ay e A. Thus A is an ideal of 
the semigroup S. The remaining assertions are easy. • 

1.2 Lemma, (i) A = S if and only if the semigroup S satisfies the equation 
xz = yz. 

(ii) (A =)B = S if and only if S satisfies the equation xy = y (i.e., S is 
a semigroup of right absorbing (left neutral, resp.) elements). 

(iii) A = S and \B\ = 1 if and only if \SS\ = 1 (i.e., S a semigroup with 
constant multiplication) or if and only if S satisfies xy = zx (or xy = uv). 

Proof. It is easy. • 

1.3 Lemma. Assume that S is ideal-simple and A / 0. Then either B = S (see 
1.2(H)), or \S\ = 2 and \SS\ = 1, or A = B and \A\ = 1. 

Proof. By 1.1 (i), (iii), both sets A and B are ideals of S. If \A\ = 1 then A = B. 
On the other hand, if \A\ > 2 then A = S, since S is ideal-simple. Now, either 
|B| = 1 or B = S and the rest is clear from 1.2. • 

1.4 Lemma. Assume that S is congruence-simple and A ^ 0. Then either 
\S\ = 2 and B = S, or \S\ = 2 and \SS\ = 1, or A = B and \A\ = 1. 

Proof S is ideal-simple and 1.3 applies. • 

2. Preliminaries (B) 

Let M be a left semimodule over a non-trivial semiring S. 

2.1 Lemma. The set s<x) = {mx,sx,mx + sx | m > 1, s e S} is the subsemi-
module generated by the one-element set {x},x £ M. 

Proof. It is easy. • 

2.2 Lemma. Let xe M. Then: 
(i) Sx is a subsemimodule of SM. 

(ii) Sx c s<x>. 
(iii) Sx = s<x> if and only if x = sx for some s e S. 
(iv) The mapping s \—• sx is a homomorphism of the semimodule SS into SM. 
(v) If SS is a congruence-simple semimodule then either s i—• sx is injective 

(and then SS ~ sSx) or \Sx\ = I. 

Proof. It is easy. • 

2.3 Lemma. If S(-) is a monoid with neutral element ls and SM is unitary then 
Sx = s<x>for every xe M. 



Proof. Use 2.2(iii). D 

2.4 Lemma. The following conditions are equivalent for x e M: 
(i) The one-element set {x}is a subsemimodule of SM. 

(ii) s<x> = {x}. 
(iii) Sx = {x}= {2x}. 
(iv) Sx = \x}. 

Proof. If Sx = x then x + x = sx + sx = (s + 5) x = x. The rest is clear. 
D 

Put P(SM) = {xe M I Sx = {x}}(see 2.4) and Q(SM) = {xe M \ \Sx\ = 1}. 

2.5 Lemma, (i) P(M) = Q(M). 
(ii) Either P (M) = 0 or P (M) is a subsemimodule of SM. 

(iii) Either Q(M) = 0 or Q(M) is a subsemimodule of SM. 

Proof. Easy to check. D 

2.6 Lemma. P(M) = SQ(M). 

Proof. If r ,se S and xeQ(M) then r(sx) = (rs)x = sx. D 

The semimodule M is said to be minimal if it is non-trivial and every proper 
subsemimodule of SM contains just one element. If, moreover, SM has no 
one-element subsemimodules then M is called strictly minimal. 

2.7 Lemma. Let M be minimal. Then: 
(i) Sx = Mfor every x e M\Q(M). 

(ii) Either Q(M) = M, or \Q(M)\ = 1, or Q(M) = 0. 
(iii) Either Q (M) = M or SM is a homomorphic image of the semimodule SS. 

Proof, (i) Since x $ Q(M), we have \Sx\ > 2. But Sx is a subsemimodule and 
M is minimal. Consequently, Sx = M. 
(ii) If Q (M) ^ 0 then Q (M) is a subsemimodule of M. 

(iii) Combine (i) and 2.2(iv). D 

2.8 Lemma. Let M be strictly minimal. Then: 
(i) Q{M) = 0. 

(ii) Sx = M for every xeM. 
(iii) SM is a homomorphic image of SS. 

Proof. Follows immediately from 2.7. D 

2.9 Lemma. Assume that M is minimal and Q (M) 7-= 0. Then just one of the 
following three cases takes place: 

(1) (Q(M) =) P(M) = M (then sx = x for all seS and x e M); 
(2) Q(M) = M and \P(M)\ = 1 (then \SM\ = 1); 
(3) Q(M) = P(M) and \Q(M)\ = 1, 



Proof. It is easy (use 2.7). • 

2.10 Proposition. The following conditions are equivalent: 
(i) Q(M) = M. 

(ii) rx = sx for all r,se S and xeM. 
(iii) There is a (uniquely determined) endomorphism fM of M( + ) such that 

/M = /M = 2/M and sx = fM(x) for all seS and xeM. 
If these conditions are satisfied then P(M) = fM(M) and fM is an endomorphism 
ofsM. 

Proof. Obviously, (i) is equivalent to (ii) and (iii) implies (ii). 
(ii) implies (iii). Put fM = {(x,sx) | s e S, x e M}. Then fM is a correctly defined 
endomorphism of M( + ) and fM (sx) = f^(x) = sfM (x) = s (sx) = s2x = fM (x), 
fM (x) + /M (x) = sx + sx = (s + s)x = fM (x) for all x e M, s e S. • 

If the equivalent conditions of 2.10 are satisfied then the semimodule SM is called 
quasitrivial. If, moreover, fM = idM (i.e., sx = x for all se S and x e M) then 

SM is called id-quasistrivial. If fM is constant (i.e., |SM| = 1) then M is called 
cs-quasitrivial. The semiring S is called left (id-, cs-)quasitrivial if so is the (left) 
semimodule SS. 

2.11 Lemma. The following conditions are equivalent: 
(i) M is id-quasitrivial. 

(ii) sx = x for all se S and xeM. 
(iii) P(M) = M. 
(iv) M is quasitrivial and fM is injective. 
(v) M is quasitrivial and fM is projective. 

Moreover, if these conditions are satisfied then: 
(1) M( + ) is idempotent (i.e., M( + ) is a semilattice). 
(2) Every subsemigroup of M ( + ) is a subsemimodule of SM. 
(3) Every congruence of M ( + ) is a congruence of SM. 

Proof. Obvious ((1) follows from 2.10(iii)). • 

2.12 Lemma. The following conditions are equivalent: 
(i) M is cs-quasitrivial. 

(ii) sx = ry for all r,se S and x,yeM. 
(iii) Q(M) = M and \P(M)\ = 1. 

Moreover, if these conditions are satisfied then: 
(1) There is w e M such that SM = [w}and 2w = w. 
(2) Every subsemigroup of M( + ) containing w is a subsemimodule of SM. 
(3) Every congruence of M( + ) is a congruence of SM. 

Proof. It is easy. • 



2.13 Lemma. Let M be a quasitrivial semimodule such that \N\ = 1 whenever 
N is a cs-quasitrivial subsemimodule of M. Then M is id-quasitrivial. 

Proof. For every aeM, Na= {xe M | / M (x ) = / M ( a ) } is a cs-quasitrivial 
subsemimodule of M, a e Na and fM (a) e Na. • 

2.14 Lemma. Let Q be a congruence of a minimal semimodule M, 
Q ?-: M x M. Then the factorsemimodule M/Q is minimal. 

Proof Easy to see. • 

2.15 Lemma. Let Q be a congruence of the (left) semimodule SS such that SS/Q 
is quasitrivial. Then Q is a congruence of the semiring S. 

Proof. For all r, s, t e S, K (rt) = rK (t) = SK (t) = K (st), where K is the canonical 
projection of SS onto SS/Q, and hence (rt, st) e Q. • 

2.16 Corollary. Let S be a congruence-simple semiring. If Q is a congruence 
of the semimodule SS such that SS/Q is quasitrivial then either Q = ids (and S is 
left quasitrivial) or Q = S x S (and SS/Q is trivial). • 

2.17 Corollary. Let S be a congruence-simple semiring such that SS/Q is 
quasitrivial whenever Q is a congruence of SS and ids ^ Q 9-= S x S. Then the 
(left) semimodule SS is congruence-simple. • 

2.18 Corollary. Let S be a congruence-simple semiring. If f:sS->sM is 
a homomorphism of semimodules such that Im( / ) is quasitrivial (e.g., SM quasi-
trivial) then either | Im(/) | = 1 or f is injectivey SS ~ s Im( / ) and S is left 
quasitrivial. • 

2.19 Corollary. Let S be a congruence-simple semiring and SM be a semimo­
dule. If ae M is such that the subsemimodule Sa is quasitrivial then either 
\Sa\ = 1 and a e Q(M) or sSa -*-- SS and S is left quasitrivial. • 

2.20 Corollary. Let S be a congruence-simple semiring that is not left quasi-
trivial. If Q is a maximal congruence of the (left) semimodule SS (such a con­
gruence exists, provided that SS is finitely generated) then SS/Q is 
a non-quasitrivial congruence-simple semimodule. • 

3 . A few examples 

3.1 Let / be an endomorphism of a commutative semigroup M ( + ) such that 
f2=f=2f. Define an S-scalar multiplication on M by sx = f(x) for all s e S 
and x e M. 

3.1.1 Lemma. SM = M ( + , / S) is a quasitrivial left S-semimodule. 

Proof. Easy to check. • 

7 



3.1.2 Lemma, (i) P(M) = f(M) and f = fM. 
(ii) ker (f) is a congruence of SM. 

(iii) f is an endomorphism of SM. 
(iv) M i5 id-quasitrivial iff f = idM. 
(iv) M i5 cs-quasitrivial iff f is constant. 

Proof. Obvious. • 

3.1.3 Lemma. Let xe M be an arbitrary element. Then: 
(i) s<x> = {f(x\mx,mx + f(x) \ m > 1}. 

(ii) If 2x = x then s<x> = {/(x), x,x + f(x)} and |s<x>| < 3. 
(iii) If f(x) + x = f(x) then s<x> = {f(x), mx \ m > l}. 
(iv) Sx = {/•(*)}. 

Proof Easy to check. • 

3.2 Define an id-quasitrivial semimodule Qls in the following way: 
Qls( +) = {0,1}, 0 + 0 = 0 + 1 = 1 + 0 = 0, 1 + 1 = 1, is the 2-element se-
milattice and sO = 0, si = 1 for all se S. 

3.2.1 Lemma. The semimodule Qxs is a homomorphic image of the semimodule 
SS if and only if there are two non-empty subsets A,B ofS such that A u B = S, 
A n B = 0, (S + A) u SA £ A and (B + B) u SB £ B. 

Proof Let q>: SS -> Qus be a. projective homomorphism of semimodules. It is 
enough to put A = (p~\0) and B = cp~l(i). Conversely, setting Q = (A x A) u 
u (B x B), we get a congruence of SS such that sS/g ~ Qls. • 

3.3 Define a cs-quasitrivial semimodule Q2,s 1n the following way: Q2,s( + ) = 
= {0,1}, 0 + 0 = 0 + 1 = 1 + 0 = 0, 1 + 1 = 1, is the 2-element semilattice 
and sO = si = 0 for all se S. 

3.3.1 Lemma. The semimodule Q2,s is a homomorphic image of the semimodule 
SS if and only if there are two non-empty subsets A,B of S such that A u B = S, 
A n B = 0, (S + ,4) u SS £ A and B + B £ B. 

Proof. Similar to that of 3.2.1. • 

3.4 Define a cs-quasitrivial semimodule Q3S in the following way: 
Q3S( + ) = {0,1}, 0 + 0 = 0 + 1 = 1 + 0 = 0, 1 + 1 = 1, is the 2-element se­
milattice and sO = si = 1 for all s e S. 

3.4.1 Lemma. The semimodule Q3S is a homomorphic image of the semimodule 
SS if and only if there are two non-empty subsets A,B of S such that A u B = S, 
A n B = 0, S + A £ A and (B + B) u SS £ B. 

Proof Similar to that of 3.2.1. • 



3.5 Define a cs-quasitrivial semimodule Q4S in the following way: Q4,s( + ) = 
= {0,1},0 + 0 = 0 + 1 = 1 + 0 = 1 + 1 = 0, and sO = si = 0 for all se S. 

3.5.1 Lemma. The semimodule Q4S is a homomorphic image of the semimodule 
SS if and only if there are two non-empty subsets A,B of S such that A u B = S, 
A n B = 0 and (S + S) u SS .= A (equivalent^ (S + S) u SS ^ S). 

Proof. Similar to that of 3.2.1. • 

3.6 Let p > 2 be a prime integer. Define a cs-quasitrivial semimodule ZpS in 
the following way: ZpS( + ) = Zp( + ) is the cyclic group of integers modulo p and 
sx = 0 for all se S. 

4. Minimal and congruence-simple quasitrivial semimodules 

4.1 Proposition. The following conditions are equivalent for a quasitrivial 
semimodule SM: 

(i) M is minimal. 
(ii) M is congruence-simple. 

(iii) At least (and then just) one of the following five cases takes place: 
(1) M - Q{S; 
(2) M ~ Q1S; 
(3) M - Q3,s; 
(4) M ~ Q4,s; 
(5) M ~ Zp s f?r a prime integer p > 2. 

Proof, (i) implies (iii). Assume first that M is id-quasitrivial. It follows from 
2.H(iv),(v) that M( + ) is a minimal semilattice. But then \M\ = 2 and SM ~ Qxs. 

Next, assume that M is not id-quasitrivial. Then P(M) ^ M and, since M is 
minimal, we have |P(M)| = 1. Consequently, M is cs-quasitrivial by 2.12 and 
there is we M with SM = {w} = {w + w}. Put IV = w + M. Then IV is a sub-
semimodule of M, and hence either IV = {w} or IV = M. 

Now, assume IV = {w}, so that w is that w is the absorbing element of M( + ). 
If v + v = w for some v e M\{w} then K = {w,v} is a two-element subsemimo-
dule of M, and therefore K = M and M ^ Q4S. Consequently, assume that 
x + x ^ w for every X G M \ { W } . NOW, take ueM\{w} and put L = 
= {mu \m > 1}. If w e L then there is n > 3 with nu = w and (n — 1) u ^ w, and 
consequently 2(n — l)w = w, a contradiction. Thus w$L. The set L is a sub-
semigroup of M( + ). If L is infinite then L( + ) is a copy of the additive semigroup 
of positive integers, L + L ^ L and (L + L) u {w} is a proper non-trivial subse-
mimodule of M, a contradiction. It follows that L is a finite cyclic semigroup. Then 
it contains at least one idempotent element, say z. Now, J = {w,z} is 
a two-element subsemimodule of M, J = M and we see that SM ^ Q2yS. 



Assume, finally, that N = M. Since 2w = w, it is easy to see that w = 0 is the 
neutral element of M( + ). Put I = {xe M \0e M + x}. Then Oel and I is 
a subsemimodule of M. If I = 0 then G = M\{0}is a subsemigroup of M( + ). 
Proceeding similarly as above, we conclude that G( + ) contains an idempotent 
element z. Again, {0,z} is a two-element subsemimodule of M,M = {0,z}. and 
SM ~ Q3S. On the other hand, if I = M then M (+) is a group, M is a module 
and every subgroup of M( + ) is a submodule of M. Since M is minimal, we get 
M( + ) ~ Z P ( + ) and s M ~ Z p , s . 
(ii) implies (iii). By 2.10, we have SM = M( + ,fM,S), where fM(x) = sx for all 
se S and x e M , ker(fM) is a congruence of SM, and hence either ker(fM) = idM 

or ker(fM) = M x M. 
First, assume that ker(fM) = idM. Then fM is injective and 2.11 implies that 

M is id-quasitrivial. By 2.11(1),(3), M( + ) is a congruence-simple semilattice. 
Then \M\ = 2 and SM ~ Qxs. 

Next, assume that ker (fM) = M x M. Then M is cs-quasitrivial and M (+) is 
a congruence-simple (commutative) semigroup by 2.12(3). If \M\ = 2 then M is 
minimal. If \M\ > 3 then M( + ) ~ Zp( + ) for a prime integer p > 2 and M is 
minimal, too. 
(iii) implies (i) and (ii). Easy. • 

5. Quasitrivial semirings 

5.1 Proposition. Let S be a left quasitrivial semiring. Then: 
(i) There is a (uniquely determined) endomorphism f of both the semiring S and 

the semimodule SS such that f2=f=2f and rs = f (s) for all r9se S. 
(ii) ker (f) is a congruence of both the semiring S and the semimodule SS. 

Proof. We have f(rs) = f2(s) = f(s) = f(r)f(s) for all r9seS. The rest 
follows from 2.10. • 

5.2 Let f be an endomorphism of a commutative semigroup S( + ) such that 
f2=f= 2f. Define a multiplication on S by rs = f(s) for all r9se S. 

5.2.1 Lemma. S = S (+ ,•) is a left quasitrivial semiring. 

Proof. Easy to check. • 

5.3 Define a left id-quasitrivial semiring Kx in the following way: C<i( + ) = 
= {0,1},0 + 0 = 0 + 1 = 1 + 0 = 0, 1 + 1 = 1, rs = s for all r9se K,. 

5.4 Define a (left) cs-quasitrivial semiring IK2 in the following way: K2( + ) = 
= {0,1}, 0 + 0 = 0 + 1 = 1 + 0 = 0, 1 + 1 = 1, rs = 0 for all r9s e K2. 

5.5 Define a (left) cs-quasitrivial semiring K3 in the following way: (K3( + ) = 
= {0,1}, 0 + 0 = 0 + 1 = 1 + 0 = 0, 1 + 1 = 1, rs = 1 for all, r9s e K3. 
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5.6 Define a (left) cs-quasitrivial semiring (K4 in the following way: IK4 (+) = 
= {0,1}, 0 + 0 = 0 + 1 = 1 + 0 = 1 + 1 = 0, rs = 0 for all r, s e K4. 

5.7 Proposition. The two-element semirings Kx, K2, K3, K4 and zero multipli­
cation rings of finite prime order are (up to isomorphism) the only con­
gruence-simple left quasitrivial semirings. These semirings are pair-wise 
non-isomorphic. 

Proof. Let S be a congruence-simple left quasitrivial semiring. By 5.1(H), 
ker(f) is a congruence of the semiring, and so either ker(f) = ids or ker(f) = 
= S x S. In the first case, S is id-quasitrivial, so that S is additively idempotent 
and rs = s for all r,se S and in the latter case, there is w e S with SS = w. Now, 
every congruence of S( + ) is a congruence of S and the rest is clear. • 

5.8 Proposition. Let S be a left quasitrivial semiring. Then: 
(i) SM <= Q (M) for every semimodule SM. 

(ii) Every minimal semimodule SM is quasitrivial. 

Proof. If seS and xeM then \Ss\ = 1, hence \Ssx\ = 1 and sxeQ(M). 
Consequently, SM c Q(M). Moreover, if \SM\ = 1 then M is apparently quasi-
trivial. On the other hand, if M is minimal and |SM| > 2 then SM = S, hence 
Q(M) = M and M is quaitrivial, too. • 

5.9 Proposition. A congruence-simple semiring S is finite, provided that there 
exists at least one non-quasitrivial finite (left) S-semimodule. 

Proof Let SM be finite and not quasitrivial. The endomorphism semiring E of 
the additive semigroup M (+) is finite and the mapping (p: S -* £, defined by 
(p (s) (x) = sx for all se S, xe M, is a homomorphism of semirings. If 
ker((p) = S x S then SM is quasitrivial, a contradiction. On the other hand, if 
ker((p) 7-= S x S then kcr(cp) = ids (since S is congruence-simple) and S is finite. 

• 
5.10 Proposition. Let S be a finite semiring. Then every minimal S-semimodule 

M is finite. 

Proof If M is quasitrivial then M is finite by 4.1. If M is not quasitrivial then 
M = Sa for some a e M and M is finite, too. • 

6. Further results 

In this section, we are going to generalize some results from [1], 

6.1 Lemma. Let SM be a semimodule such that SM = M.Ifgisa congruence 
of SM such that M/Q is cs-quasitrivial then Q = M x M. 
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Proof. Since M/Q is cs-quasitrivial, we have \SM/Q\ = 1, and so M = SM is 
contained in a block of Q. Then Q = M x M. • 

6.2 Lemma, (cf. [1, 3.12(i)]) Let SM be a minimal semimodule and let Q be 
a congruence ofsM such that SM/Q is quasitrivial. Then either Q = idM (and SM is 
quasitrivial) or Q = M x M (and M/Q is trivial). 

Proof Put IV = M/Q. According to 2.14, IV is either trivial or minimal. If IV is 
trivial then Q = M x M, and hence we assume that Q ̂ M X M. Then IV is 
minimal and quasitrivial. Furthermore, if M is quasitrivial then Q = idM by 4.1. 
On the other hand, if M is not quasitrivial then |SX| > 2 for some xe M, and hence 
SM = M, since M is minimal. Then also SIV = IV and it follows from 4.1 that 
N — Qus 1s id-quasitrivial. Thus both blocks A, B of Q are subsemimodules. Since 
M is minimal, \A\ = 1 = |B|, and hence Q = idM. • 

6.3 Lemma. Let SM be a minimal semimodule that is not quasitrivial. Then 
there is at least one congruence Q of M such that the factor-semimodule SM/Q is 
minimal, congruence-simple and not quasitrivial. 

Proof. Since M is minimal and not quasitrivial, we have M = s<x) f°r any 
xe M\Q(M). Thus SM has at least one (proper) maximal congruence Q. NOW, 
SIV = SM/Q is congruence-simple and it is minimal by 2.14. According to 6.2, IV is 
not quasitrivial. • 

6.4 Lemma, (cf. [1,3.12(H)]) Let SM be a congruence-simple semimodule 
containing a non-trivial cs-quasitrivial subsemimodule IV. Then N = M and M is 
cs-quasitrivial and minimal. 

Proof. There is w e IV with SIV = {w}. Define a relation Q on M by (x,y) e Q 
iff (x + IV) n (y + IV) ^ 0. Since IV is a subsemimodule of M, it follows easily 
that Q is a congruence of SM. Moreover, if a, b e IV then a + b e (a + IV) n 
n (b + IV), and so IV is contained in a block of Q. Consequently, Q ?- idM and 
Q = M x M, since M is congruence-simple. Now, (x, w)e Q for every xe M and 
we get x + a = w + b for some a,b e N. Then sx + w = sx 4 sa = 
= sw + sb = w 4 w = w for every s e S, and so SM + w = w. Put 
A = {a + M | Sa = w}. Clearly, ,4 is a subsemimodule of M,Sa = w and 
IV ^ A. If x e M and a e A then S(x 4 a) = Sx 4 w = w, x + a e i and 
M + A ^ A. From this, it follows easily that n = (A x A) u idM is a congruence 
of SM. Then Y\ = M x M, A = M and M is cs-quasitrivial. By 4.1, M is 
minimal, and therefore IV = M. • 

6.5 Lemma. Let SM be a congruence-simple semimodule containing 
a non-trivial id-quasitrivial subsemimodule N. Then IV = P(M) ~ Qls. 

Proof. For every a e P(M), put Ia = a + M. Then (Ia + M) u SIa .= /a, and 
so xa = (Ifl x Ifl) u idM is a congruence of SM. If xa = idM then Ia = {a} and a is 
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the absorbing element of M (+). If xa = M x M then Ia = M and a is the neutral 
element of M( + ). We have shown that every element from P(M) is either 
absorbing or neutral in P(M). Consequently, |-°(M)| = 2 and 
TV = P(M) ~ Q1S. • 

6.6 Proposition. Lef SM e a congruence-simple semimodule such that M con­
tains a non-trivial quasitrivial subsemimodule, but M is not quasitrivial. Then 
P{M) = Q{M)^ Qls. 

Proof. According to the assumption, we have |Q(M)| > 2. Combining 6.4 and 
2.13, we conclude that Q{M) is id-quasitrivial and the rest follows from 6.5. • 

6.7 REMARK. Let SM be a congruence-simple semimodule as in 6.6. Then 
P(M) = Q{M) = {0,o}, where 0 is additively neutral, SO = 0, o is additively 
absorbing and So = o (see the proof of 6.5). 

(i) First, we show that M (+) is idempotent. 
Indeed, define a relation Q on M by (x, y)e Q iff 2lx = y + u and 
lxy = x + v for a non-negative integer i and some u,ve M. One checks 
easily that Q is a congruence of SM, (z,2z)e Q for every z e M and 
(0,o) £ g. Then £ = idM and M( + ) is a semilattice. 

(ii) Next, we show that G + M ^ G, where G = M\{0}. 
Indeed, the set {a e M \ 0 e a + M} is the group of invertible elements of 
M (+) and, since M (+) is a semilattice, the group equals 0. 

(iii) Put J = {ae M | 0 £ Sa}. Then o e J, 0 £ J and (J + M) u SJ c J. 
Consequently, (J x J) u idM is a congruence of M, and therefore |J| = 1 
and J = {o}.Thus 0 e Sa for every ae H = M\{o}. 

(iv) We have Q{M) = {0,o}. Henceforth, if a e K = M\{0,o} then \Sa\ > 2. 
In particular, Sa ^ {0}and Sa ^ {o}. 

(v) Assume that o$ Sa for some a e G. By (iii) and (iv), 0 e Sa and |Sa| > 2. 
Moreover, Q (Sa) = {0} and Sa is not quasitrivial. Finally, if M is finite 
and |Sa| minimal then Sa is a minimal semimodule. 

(vi) Let ae M be such that Sa = {0,o}. Then ae K and S = .4 u B, where 
A = {seS\sa = o}, B = {re S \ ra = 0}, A # 0 # B, ,4 n B = 0, 
(4 + S) u SA c ,4 and (B + B) u SB c B. But then { = ( i4Xi4)u 
u (B x B) is a congruence of the semiring S and S/€ ^ K{ (see 5.3). In 
particular, if S is congruence-simple then \A\ = 1 = |B|,|S| = 2 and 
S - IKp 

(vii) Assume that IK! is not a homomorphic image of S. Then Sa 7-- {0,o} for 
every ae M. By (iii) and (iv), 0 e Sb and \Sb\ > 2 for every be K. 
Moreover, if o e Sb then \Sb\ > 3. 

(viii) Assume that M is finite and oe Sa for every a e K. If K = {ab..., am}, 
m > 1, and txax = 0, 1 = 1, ..., m, then tG = {0}, where f = tx + ... rm. 
Moreover, tM = {0,o}. 
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(ix) Assume that oeSa for every a e K and put L = {be K \ Sb ^ {0,o}}.ln 
view of (iii), {0,o} c Sb and \Sb\ > 3 for every beL. Moreover, by (vii), 
if IK! is not a homomorphic image of the semiring S then L= K. 

(x) Let IV be a subsemimodule of SM such that {0,o} c IV. 
First, let A be a congruence of SIV such that X ^ IV x IV and IV = sIV/i 
is quasitrivial. Then (0, o) $ X and, for every a e IV n K, the subsemimo­
dule Sa is contained in a block of A. According to (iii), 0 e Sa, and so Sa 
and 0 are contained in the same block of X. Thus |IV| = 2 and IV ~ Qls. 
Let o be a congruence of SIV maximal with respect to (0,6) $ o. Then o is 
a maximal congruence and sIV/cr is congruence-simple. 

(xi) Assume that M is finite with minimal |M| and that oe Sa for every a e K. 
If L = 0 then Sa = {0,o} and SM = {0,o}. Now, assume that L ^ 0 and 
take be L with minimal |Sb|. Consider a congruence cr of Sb maximal with 
respect to (0, o) $ o. Then ST= sSb/o is a congruence-simple semimodule. 
If sTis quasitrivial then S T ~ Q1S, and so IK, is a homomorphic image of 
S. On the other hand, if sTis not quasitrivial then \T\ = \M\ due to the 
minimality of \M\ (and the fact that |Q(ST)| > 2). That is, o = \Asb and 
Sb = M. Consequently, Sc = M for every c e L. 

(xii) If IKj is not a homomorphic image of S, M is finite with minimal \M\ and 
oe Sa for every ae X then Sa = M. 

6.8 REMARK. Let SM be a non-quasitrivial finite semimodule with minimal \M\ 
(of course, such a semimodule exists iff there is at least one finite non-quasitrivial 
semimodule). 

(i) Clearly, M is a minimal semimodule if and only if |Q(M)| < 1. 
(ii) We have Q (M) ?- M and every proper subsemimodule of SM is contained 

in Q(M). Consequently, M = s<x> for every .x e M\Q(M). 
(iii) If Q ¥" idM is a congruence of SM then SM/Q is quasitrivial. 
(iv) Assume that S is a congruence-simple semiring that is not left quasitrivial. 

If a e M is such that Sa c Q (M) then Sa is quasitrivial and it follows from 
2.16 that aeQ(M). In particular, Sb = M for every beM\Q(M) (use 
(ii)). Using this and (iii), we conclude easily that SM is congruence-simple 
semimodule. Consequently (see 6.6), if |Q(M)| > 2 then P(M) = 
= Q{M)* QIJS. 

7. A few consequences 

7.1 Proposition. Let S be a finite congruence-simple semiring that is not left 
quasitrivial. Consider a maximal congruence Q of the left semimodule SS and put 
SM = SS/Q. Then: 

(i) SM is a finite congruence-simple semimodule that is not quasitrivial. 
(ii) S/Q e Q (SM) if and only if Ss is contained in a block of Q. 
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(iii) \tM\ = 1 for every t e Q (Ss). 
(iv) IfQ(Ss)*Qthen\P(sM)\< 1. 

Proof. Easy (use 2.20). • 

7.2 Proposition. Assume that there exists at least one non-trivial finite semi-
module SM with \Q(SM)\ < 1. Then there exists at least one non-quasitrivial finite 
minimal semimodule. 

Proof. Take a e M\Q(M) with minimal \Sa\. Then sSa is our semimodule. • 

7.3 Proposition. Assume that there exists a non-quasitrivial finite con­
gruence-simple semimodule (cf. 6.8(iv)). Then at least one of the following two 
cases takes place: 

(1) There exists a non-quasitrivial finite minimal semimodule. 
(2) There exists a non-quasitrivial finite congruence-simple additively idempo-

tent semimodule SM such that Q (SM) = {0,o} and: 
(2a) o is the absorbing element of M (+) and So = o; 
(2b) 0 is the neutral element ofM (+) and SO = 0; 
(2c) for every a e M\{0,o}, either Sa = {0,o} or Sa = M; 
(2d) if K{ is not a homomorphism image of the semiring S then Sa = M 

for every a e M\ {0,o}. 

Proof Suppose that every finite minimal semimodule is quasitrivial and let 
SM be a non-quasitrivial finite congruence-simple semimodule. According to our 
assumption and 7.2, we have |Q(sM)| > 2. Now, by 6.6 and 6.7, P(SM) = 
= Q(SM) = {0,o}, where o is absorbing and 0 neutral in M( + ), and so So = o, 
SO = 0. By 6.7(i), M( + ) is idempotent. By 6.7(iii),(v), we have {0,o} c Sa for 
every a e M\ {0,o}. Furthermore, we can assume that \M\ is minimal. Then the rest 
follows from 6.7(xi),(xii). • 

7.4 Proposition. Let S be a semiring containing at least one left multiplicati-
vely absorbing element (equivalently, Q(SS) # 0) and such that there exists 
a non-quasitrivial finite congruence-simple semimodule. Then there exists 
a non-quasitrivial finite minimal semimodule. 

Proof. Let, on the contrary, SM be as in 7.3(2). Take a e M\{0,o} and consider 
a congruence Q of SS with Sa ~ SS/Q (see 2.2). Let t e S be left multiplicatively 
absorbing. For every s e S we have ts = t, and hence t- S/Q = ts/Q = tJQ. It 
follows that \tSa\ = 1, however to = o ^ 0 = t0, a contradiction. • 

7.5 Proposition. Let S be a finite congruence-simple semiring that is not left 
quasitrivial and contains at least one left multiplicatively absorbing element. Then 
there exists at least one non-quasitrivial finite minimal semimodule. 

Proof. Combine 7.1(i) and 7.4. • 
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7.6 REMARK. Consider the situation from 7.5. Let t e S be left multiplicatively 
absorbing and let SM be a finite minimal semimodule that is not quasitrivial. Then 
\Sa\ > 2 for some a e M and SM ~ SS/Q for a congruence Q of SS (see 2.2 and 
2.7). Consequently, \tM\ = 1 and there is w e M with tM = {w}.We have tw = w 
and w + w = fw + tw = t(w + w) = w. 

(i) If f is additively neutral (absorbing, resp.) in S then, by 2.7 (i), w is neutral 
(absorbing, resp.) in Af ( + ). 

(ii) If t is multiplicatively absorbing in S then Sw = w and w e P (SM). 

7.7 Corollary. ([1,3.10]) Let S be a finite congruence-simple semiring such 
that S contains an element 0S which is both additively neutral and multiplicatively 
absorbing. If rs ^ 0S for some r,se S (i.e., S is not left quasitrivial) then there 
exists a finite minimal congruence-simple semimodule SM such that SM is not 
quasitrivial and contains an additively neutral element 0M with S0M = 0M and 
0SM = oM. a 
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