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1. Description of the model 

Let us consider the following system. There are n areas represented by segments 
in the space, where it is possible to build a service station. Each service station 
built on such segment is accessible only by edges of this segment. 

These edges are determined by access points (Aj9 Bj). 
Then there are m customers in the space, where each customer is connected by 

a road with every access point of every service station in the system. 
Each road is evaluated by a nonnegative number, which represents the distance 

of customer's access to a service station (aij9 fey). Each segment has its recommen­
ded subsegment (hjHj), where is the most suitable place for building of the service 
station in this segment. (It could be caused for example by some ecological 
restrictions or prices of land, etc.) 

Building a service station somewhere else is penalized by a penalty function. 
The value of the penalty function is zero in the recommended subsegment and is 
linearly increasing with distance from the recommended subsegment. The penalty 
function for each segment is 

fj(xj) = max {hj - xf9 Xj - Hf9 0} V/ = 1,..., n 

where Xj e [0; dj]9 d} is the length of the segment AjBj9 and hj9 Hj are bounds of the 
recommended subsegment in [0; dj] 

*) Operation Research Department, Faculty of Mathematics and Physics, Charles University, 
Malostanské nám. 25, 118 00 Praha 1, Czech Republic 
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Fig. 1: Servicing distance of customer for the various cases of rt{x) 
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For each customer, there is a required servicing distance (i,) given. 
Define r,(x) as a servicing distance of the i-th customer, dependent on a position 

of the service stations (vector x). Then the requirement for customer C, is 
r{x) < K 

Our goal is to find such setting of the service stations which meets the distance 
requirements of every customer and value of a global penalty function of the 
system is minimal, where the global penalty function of the system is 

f(x) = max fj(xj) where fj(xj) = max {hj - x;; x, - Hf, 0} 
l<.j<n 

« to minimise the worst case. 

It means to find a solution of this problem: 

(P) f(x) -+ min 
s.t. M 
where 
f(x) = max f(xj) f{xj) = max {/j - x;; x; - #,; 0} 

l<j<.n 

M = {xe Rn\rt(x) < bt Vi = 1,..., m, 0 < Xj < dj V; = 1,..., n}. 

A sample of a system with two service stations and two customers is shown in 
the following figure: 
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Setting a servicing distance of customer at the system we can consider several 
possible strategies: 

Define r^Xj) as servicing distance of customer C, by the j-th service station. 
According the measure of quality of the system or the measure of optimism we 
have, we can choose two marginal possibilities. 

1. in optimistic one, we consider that a customer is served by the nearest service 
station, it means: 

rt(x) = min ri3{xj) Vi = 1,..., m 
\<j<n 

2. in pessimistic one, we, on the other way, consider that a customer is served by 
the service station which is the worst for him, it means: 

rt(x) = max r^Xj) Vi = 1,..., m 
\<j<n 

(for example because of short capacities of service stations, or temporary 
impossibility of using some roads.) 
Similarly way we can think of r^fa) servicing distance of i-th customer by j-th 

service station. 
In optimistic situation the shorter road will be used, so 

rtj{xj) = min fa + atj; d} - x,- + btJ) Vi = 1,..., m V/ = 1,..., n, 

in pessimistic situation the longer road will be used, so 

rtj{xj) = max fa + atj; dj - x} + fej Vi = 1,..., m V; = 1,..., n, 

According to this we can formulate four problems: 
Define as before: 

f(x) = max fj(xj) fj{xj) = max fa - x,-; x, - if,; 0}, 
1 <j<n 

M = {xe Un\rt{x) < b{ Vi = 1,..., m, 0 < x} < d} Vj = 1,..., n}. 

(P.I) f(x) -• min 
s.t. M 
where 
rt(x) = min r^Xj) 

l<j<n 

r^Xj) = max fa + atj; d} - x} + bv} 

(P.II) f(x) -> min 
s.t. M 
where 
rt(x) = min rtJ{xj) 

1 <j<n 

r^Xj) = min fa + atj; dj - x} + bi}) 
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(P.III) f(x) -> min 
s.t. M 

where 
r{x) = max r^Xj) 

\<,J<,n 

rtj{xj) = min {xj + atj; dj - Xj + by} 

(P.IV) f(x) -• min 
s.t. M 
where 
rt(x) = max r^x,) 

l<,j<,n 

r^Xj) = max {XJ + aц, dj - x} + Ь j 

2. Solvability of the problems 

(P.III) and (P.IV). At first, let us consider problems (P.III) and(P.IV). 
Both problems are quite easily solvable, which is caused by description of the 

set of feasible solutions. In both problems, it is possible to express the feasible set 
M in the following way. 

Define: I = {1,..., m}, J = {1,..., n}, 

M = {xenn\VjeJXjeWj}, 

where for (P.III) 

Wj = HI"0* bi ~ aii\ u ldJ + biJ ~ h dj] 
iel 

and for (P.IV): 

Wj = P| [max (0, dj + btj - b), min (dj, bt - atJ)] . 
iel 

(It is easy to calculate Wj from conditions of the problems.) 
Because function f is a partial linear function for each j , the optimal solution 

can be easily computed as 

XJ '• fkxi) = ™n./T{*1) v I e J-
xjeWj 

(P.I) and (P.II). Solvability of problems (P.I) and (P.II) is more difficult. In 
both cases only the problem of finding a feasible solution is NP-hard. 

For problem (P.I) define a set 

Vij = {XJ e R | max {0,dj + b{j — bt} < Xj < min {dj, bt — atj}}, 

which is the set of Xj e [0; dj\ which meets distance condition for the i-th customer. 
Then it is easily seen that we can formulate an equivalence: 
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M * 0 o (Vf lj(i) Vm * 0 & 0 vHo * 0 V/o = 1,.-, n). 

Finding a member of a set M means finding a number j(f) for each i where 

% + 0 & 0 ^ 0 * 0 Vj0= l,...,w. 

Because it need not be generally true that for any k, / e J and f e I one can have 
Vik n K/ 4= 0, so the condition 

(*) n *k*0vjo = i,...,* 
W)=A>} 

is not met trivially. 
Let's call (P.I.A) the problem of finding a feasible solution. We can transfer this 

problem to an equivalent problem (P.I.B) formulated as follows: 
(P.I.B) There is matrix T (mxn) and there are given "column conditions", saying 

which fields of the matrix could not be chosen at the same time. The goal is to 
choose in each row one field and meet the column conditions (i.e. assign to each 
i some j), where the column conditions for each column are given by the 
condition (*). 

It is easily seen from formulation of the problem (P.I.B), that if we find 
a solution of this problem we have at the same time a solution of problem (P.I.A), 
and vice versa. 

Theorem. The problem (P.I.B) is NP-hard. 

Proof. 
* For the proof of NP-hardness of the problem (P.I.B), we use the Coloring 

problem — colouring a general graph with K colors (K-COLOR), which is 
NP-hard. 

* Instantion of K-COLOR is given this way: We have a general graph G(£, V) 
and a number K. The goal is to color the points of the graph using K colors where 
each two points connected by an edge must be colored with different colors. 

* From an instance of a problem K-COLOR we form an instantion of problem 
(P.I.B) in the following way: 

(1) we form a matrix T of size \V\ x K — rows are given by points and 
columns are given by colors. 

(2) set of column conditions: in each column, it is not possible to choose fields 
(rows) which represent connected points in the graph G. 

* This form an instantion of a problem (P.I.B) and finding a solution of the 
problem (P.I.B) means to choose one column in each row (= to color each point 
of the graph G with some color), and to meet column conditions (= to color 
connected points with different colors). So finding a solution of the problem (P.I.B) 
is finding a solution of the (K-COLOR) at the same time. (The solution of the 
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(P.I.B) gives a solution of (K-COLOR). This means that the (P.I.B) is NP-hard too. 
Because we know that the problem (P.I.B) is equivalent to the problem (P.I.A), 

the problem (P.LA) is NP-hard too. 
(It is not possible to use the same reduction for the problem (P.II) NP-hardness 

proof because its column conditions give only a bipartional graph. But it is possible 
to use a reduction on SAT — what was in a more general approach done 
in [4].) 

3 . A lgorithms for problem (P.I) 

It is possible to find an optimal solution of problem (P.I) by branch-and-bound 
algorithm, which uses a convexity of functions f and recursive processing of 
a matrix of a partial optimal solutions on intervals Vy. 

For two intervals VX]- and V2j for 1, 2 e /, j e J, where V1; n V2j =t= 0, the equality 

min fj(xj) = max {min f(xj); min ^(x^)} 
V\j ^ Vzj V\j V2j 

follows from the convexity of function f for every j e J. 
(Because function f is a partial linear function for ever j e J and Vy is an 

interval, the expression min^ f}{xj) is easily computable.) 
When we make a matrix T where T[i,j] = min̂ <fj{xj) Vi e I Vj e J, then 

finding an optimal solution of a problem (P.I.) means to choose in the matrix T one 
field in every row (having m chosen fields), and we want the maximal chosen field 
(chosen field with maximal value) to be minimal and all chosen fields to meet 
column conditions given by (*). 

The algorithms of finding an optimal solution can be then formulated in 
a following way. 

In every step of the algorithm we cross (not choose) or choose some field of the 
matrix T. Firstly we try to cross the maximal unprocessed (not chosen and not 
crossed) field of the matrix. In case that we will find solution in such modified 
matrix, this solution is sure to be better than a solution in which this field is chosen. 
(At the beginning of the algorithm all fields of the matrix T are unprocessed.) Then 
the algorithm recursively calls itself on a problem with such modified matrix 
T with decreased number of unprocessed fields. In the case, when after step of 
crossing the field there is only one uncrossed field in the row, we must choose this 
field, and according to column conditions for its column to cross fields which 
cannot be chosen at the same time with this chosen field. 

If there is a situation that in the matrix, there is a row whose all fields are 
crossed, it means a failure on this level and it is not possible to continue in this 
way, we go back on a higher level of the recursion (all changes made in the lower 
level are undone) and we change the crossed field on chosen field (if we choose 
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some field in a row, we have to cross all uncrossed fields in this row). Then we 
again recursively call the algorithm on such modified matrix T. 

The algorithm stops in the moment when every field in the matrix T is chosen 
or crossed (or with the state that there is no feasible solution). 

The solution gives j(i) for every i e I, and the maximal chosen field of matrix 
T[/,j] gives the value of the goal function. 

Then we get the solution as follows: 
Define sets S« = {i\j(i) = j}, JfW = f]^^ * 0. 
Then a vector x defined as 
f^Xj) = minx.GH(,)j;(x;) for SW * 0; 
gxj) = mino^.^.gxj) for S« = 0; 

is an optimal solution of the problem (P.I). 

Theorem. A solution found by the algorithm is feasible and optimal. 

Proof. 
1. From a construction of the algorithm we can see that the found solution (SI) 

is feasible. In every row there is one chosen field, it means for every customer 
there is a service station able to meet his distance servicing condition. 

2. Assume that there is a solution (S2) with a smaller value of the goal function. 
The solution (S2) gives a pre-processing of the matrix T and tells us which fields 

of the matrix are chosen and which are crossed. Because the solution (S2) has 
a smaller value of the goal function than the solution (SI) found by the algorithm, 
there is a row in the matrix T, where a value of a chosen field of (S2) is smaller 
than a value of chosen field of (SI), so it means that the algorithm tried at first to 
choose the field of (S2) but had no success, it means that solution (S2) is not 
feasible. 

It is clear, that time complexity of the algorithm could be in the worst case 
exponential in size of an input and finding of subclasses of the problems P.I and 
P.II where the time complexity is "more reasonable" is a subject of author's today 
investigation. This generally supposes finding of (from practical point of view 
interpretable) conditions imposed on the system. 
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