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ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 25. NO. t 

On a Class of Near-Rings Sum of Near-Fields 

SILVIA P E L L E G R I N I MANARA* ) 
Institute of Mathematics, University of Parma**) 

Received 30 March, 1983 

We study the near-rings whose proper subnear-rings are near-fields and we call them 
s-near-fields. In this work we show that these structures are at most E2-generated and we charac­
terize the general case, the zero-symmetric E2-generated and the constant E2-generated cases, 
near-rings are in fact a sum of near-fields. We shall deal with the remaining cases in other studies. 

Studujeme skorookruhy, jejichž vlastní podskorookruhy jsou skorotělesy a nazýváme j e 
s-skorotělesy. V této práci ukážeme, že tyto struktury jsou nejvýše E2-generovány a dáváme 
charakteristiku v obecném případě a ve dvou speciálních případech. Tyto skorookruhy jsou sumy 
skorotěles. 

Mbl H3VHaeM nOHTH-KOJIbHa, HCTHHHbie IIOflnO-ITH-KOJIbHa KOTOpbIX HBJIHIOTCH nOHTH-
nojiflMH, OHH Ha3biBaK>TCH s-noHTH-nojiflMH. B 3TOH pa6oTe MM noKaaceM, HTO 3TH CTpyKTypbi no 
KpajíHeň Mepe E2-nojio»c(aeHbi H #aeM xapaKTepH3aunK) B o6meM H B ABVX nacTHbix cjiynaflx. 3 T H 
noHTH-Konbua HBJIHIOTCJI cyMMaMH noHTH-nojieií. 

1. Introduct ion 

The near-fields have been studied in detail and even for their relations with various 
geometrical matters. We study in this work, the near-rings whose proper subnear-
rings are near-fields: such structures will be called s-near-fields. This study can be also 
interpreted as dual of the one dealt with in [8]. We shall limit ourselves to the alge­
braic study of the s-near-fields that result as a sum of near-fields, dealing with the 
algebraic considerations of other cases and geometrical considerations as in [1], in 
other studies. Particularly we show that a near-ring N = N0 + Nc is an s-near-field 
if and only if it is generated by each element a 4- h with 0 4= a e Nc, 0 =]= h e N0 

and it is the sum of a near-field isomorphic to MC(Z2) and of N0, near-field with 
characteristic p, whose subnear-rings are near-fields. Moreover if char(N0) = 2, 
N+ is an elementary abelian 2-group and Nc is a left ideal of N; if char (N0) = p 4= 2, 
N0 is an ideal of N and N+ is either a generalized dihedral group, or the direct sum 
of N0 and of Z + with N+ elementary abelian p-group. As far as the zero-symmetric 

*) Work carried out on behalf of G N S A G A - C N . R . 
**) Instituto di Matematica, Universita, 43100 Parma, Italy. 
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case is concerned, we show that if N is a zero-symmetric F2-generated s-near-field, 
without zero-divisors, its additive group is an elementary abelian p-group and N is 
generated by the sum of two fields isomorphic to Zp. Some examples prove that pre­
vious cases exist. We also recall that in the zero-symmetric integer, E2-generated case, 
the s-near-fields are near-rings of (p) type (see [6]) already studied by Ligh. Finally 
we characterize completely, in the £2-generated case, the constant s-near-fields, the 
non-integer zero-symmetric s-near-fields and, the s-fields. 

2. Preliminaries 

We indicate with N a left near-ring; for the definitions and the fundamental 
notations we refer to [9] without express recall. 

Definition A. We call s-nearfield a near-ring whose proper subnear-rings are near-
fields. 

Later on, we will say a near-ring N is n-generated if it can be generated by n 
elements; we will call a near-ring exactly n-generated (and we will write £w-generated) 
if it has a system of n generators, but it cannot be generated by a system of n — 1 
elements. Moreover, for M c N we will indicate with <M> the subnear-ring of N 
generated by M. 

Proposition 1. An 5-near-field is at most E2-generated. 

Proof. We suppose that N is at least K3-generated; in this case, for a, b e N the 
subnear-rings <«>, <b>, <{D, b}> are proper subnear-rings and then are near-fields. 
It follows that the identity of <a> coincides with the identity of <b>, Va, b b e N 
and N has identity. Furthermore, each non-zero element of N, belonging to near-
field generated by it, has inverse: in this way N results as a near-field, contrary to the 
assumed. 

Proposition 2. The N-subgroups and the left ideals of an s-near-field are maximal. 

Proof: Let A, B with A 2 B two proper N-subgroups of N and therefore near-fields. 
Of course BA is contained in B and if u is the identity of B, (and then of A) we have 
that uA = A and therefore A c B. It follows A = B and consequently the thesis. 
The same for the left ideals. 

The Prop. 2 allows us to extend the results of [4, 5] to our case. Moreover: 

Proposition 3. A constant s-near-field is abelian. 

Proof. The subnear-rings of a constant s-near-field are constant near-fields and so 
isomorphic to MC(Z2) *); furthermore N is at most £2-generated. If N is 1-generated, 

*) We recall that MC(Z2) = {/: Z2 -> Z2\f constant} (see [9] 1.4.a). 
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it is obviously abelian because N+ coincides with the cyclic group generated by the 
generator of N. If N is E2-generated, let {a, b) a system of generators. The subnear-
rings <a>, <b> and <a + b> are isomorphic to MC(Z2), therefore 0 = 2a = 2b = 
= 2(a + b). From 2(a + b) = 0 it follows a + b = b + a and therefore N is 
abelian. 

Corollary 1. The subnear-rings of a constant s-near-field are ideals of N. 

Proof. Easy. 

3. General case 

We start with the study of the s-near-fields which are the sum of their constant 
part Nc and of their zero-symmetric part N0 (see [9], prop. 1.13). 

Theorem 1. A near-ring N = N0 + Nc is an s-near-field if and only if it is generated 
by each element a + h, with 0 4= a e Nc and 0 4= h e N0 and it is the sum of a con­
stant near-field and of a zero-symmetric near-field with characteristic p (prime), 
whose subnear-rings are near-fields. 

Proof: If N = Nc + N0 is an s-near-field, the element g = a + h with 0 4= a e Nc 

and 0 4= h EN0 generates N because if it generated a proper subnear-ring of N, this 
would be a near-field containing both zero-symmetric elements (Og + g = h), and 
constant elements (Og = a) and this is absurd (see [9], prop. 8.1). Moreover, Nc is 
a proper invariant subnear-ring of N (see [9], prop. 1.32b) and therefore is a constant 
near-field that is isomorphic to MC(Z2), N0 is a right ideal of N (see [9], prop. 1.32a) 
hence a near-field (and therefore abelian) whose subnear-rings are near-fields; lastly, 
the identity of N0 generates a near-field and therefore isomorphic to Zp. Then 
char(N0) = p. To prove the other part of the theorem we suppose that N is generated 
by each element a + h with 0 4= a e MC(Z2) and 0 4= h e N0, then N has the proper 
subnear-rings contained in N0, that is, in a near-field whose subnear-rings are near-
fields and consequently N is an s-near-field. 

In order to characterize the additive group N+ of the s-near-field N = N0 + Nc, 
we shall first show the following: 

Lemma 1. If N = N0 + Nc is a non abelian s-near-field, the centralizer of each 
element of N0 coincides with N0. 

Proof: Let N be non abelian, x an element of N0 and Cx = {y e N : x + y = y + x] 
the centralizer of x. Obviously Cx ^ N0 as N0 is abelian being a near-field (see Th. 1); 
moreover, Cx is a normal subgroup of N+ because the derived group N+/ is contained 
in N0 and consequently in Cx. Hence Cx = N0 or Cx = N because |N+ /N 0 j = 2. 
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If an element xeN0 exists, such that Cx = N, then x belongs to the center of N+, 
Z(N+) and Z(N+) n N0 = K + {0}. Now K is obviously a normal subgroup of No 
and here it is also a left ideal of N0, in fact: VH0 e N0, Vz e K and Vn0 + a = heN 
is n0z + h = n0z + «0 + a. Since N0 is a near-field, we have n0N0 = N0 Vn0 e 
e N0 \ {0} and then 3n0 so that n0n0 = n0; moreover, the product n0a = a, Vn0 e N0 

because Nc ~ MC(Z2) is an invariant subnear-ring and if rc0a = 0, consequently 
0(noa) = 00 = 0 = (0n0) a = a, that is a = 0 and this is absurd. Then n0z + h = 
= n0z + n0n'0 + n0a = n0(z + n'0 + a) = n0(n0 + a + z) = h + n0z and N0K c 
= K. It follows that K is a left ideal of N0 but N0 is a near-field, hence K = N0 = 
= Z(N). This is also absurd because N should be abelian. Hence, the centralizer of 
each element z e N0 coincides with N0. 

Theorem 2. If N = N0 + Nc is an s-near-field with char(N0) = 2, it follows: 

1. N+ is an elementary abelian 2-group; 

2. Ncis a left ideal of N. 

Proof 1: We recall that generally it is N+ = N0 +gNc , where +g indicates a semi-
direct sum of No and of N+ (see [9], prop. 1.22a). Let cpa = g(a) an automorphism 
of No and let N+ be non abelian. By Lemma 1, the centralizer of each element of N0, 
coincides with N0, hence cpa is a fixed point-free automorphism*). On the other nnad, 
the element x = — y + (pa(y) ( y e N o \ { 0 } ) is a non-zero element and such that 
(Pa(

x) = ~ *; s i n c e char(N0) = 2, it follows that cpa(x) = x and hence this is absurd 
and N is abelian. According to Th. 1, N0 is an elementary abelian 2rgroup, moreover 
N+ is abelian and, as direct sum of N+ and of Z0 , is an elementary abelian 2-group. 

Proof 2: Easy because N is abelian and Nc is an invariant subnear-ring of N. 

Theorem 3. If N = N0 + Nc is an s-near-field with char(N0) = p + 2, then: 

1. No is an ideal of N; 

2. N+ = Dih(N0), where Dih(N0) is the generalized dihedral group determinated 
by No**), or N+ = N0 + Z+ with N+ elementary abelian p-group. 

Proof 1: We know, by Th. 1, that the elements of N0 have order p: if a + h with 
aeNc and heN0 is an element of order p, it must be p(a + h) = 0 and then 
0(p(a + h)) = 0, but 0(p(a + h)) = a for each p =t= 2 (prime) as it is odd, and this is 
absurd. We have shown that only the elements of N0 have order p\ hence N0 is a left 
ideal of N: in fact V«eJV and Vh eN0 is p(nh) = n(ph) = 0. So N0 is an ideal of N 
because it is always a right ideal. 

*) In fact if 3y e jV0 \ {o} such that (pa(y) = y, we have for ae Nc\ {O} <y, 0> + < / , a} = 
= O + y'> a) and <y', a> + <y, 0> = < / + ^a(y), a> = <y + y\ a) and the centralizer of 
<y, 0> is different from jY0-

**) For the definition of Dih (N0) see for instance [12] pag. 10. 
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Proof 2: If N+ is non abelian, it is again N+ = N+ +gN
+ (see proof of the previous 

Th. 2). Let cpa = g(a) an automorphism of N+: by Lemma 1 it immediately follows 

that cpa is a fixed point-free automorphism. Now let cpa : N+ -> N+ the homomorphism 

thus defined: cpa(b) = — b + (pa(b). For ii of [10] pag. 278, if cpa is a fixed point-free 

automorphism of a group, cpa is a monomorphism. Let H+ = <~pa(N+); H+ is normal 

in N+ and moreover cpa(x) = -x Vx e H+. Then cpa(H+) = H+. For each x e H+, 

<pfl(x) = - 2 x and therefore cpa is an epimorphism of H+ because H+ has exponent p, 

with /? prime. The conditions of (viii) [10] pag. 279 hold. It follows that <pa induces 

in $l(H+)lH+ = N+JH+ (now 9l(H+) is the normalizer of H+ in N+) a fixed point-

free automorphism. This is obviously absurd if N+ 4= H+ *) and therefore (pa is an 

epimorphism. Hence cpa : N+ -> N+ is the automorphism defined by x H-• — .x Vx e N0, 

and N+ is the generalized dihedral group. Lastly, if N is abelian, N+ is direct sum of 

an elementary abelian p-group and of Z + . 

Examples: 

a) As additive group we consider Klein's 4-group and we define the product as 

it follows: 

0 a b c = a + b 

0 0 a 0 a 

a 0 a a 0 

b 0 a b c 

c 0 a c b 

It is a (non-direct) sum of Z 2 and MC(Z2) (see Th. 2). 

b) As additive group we consider 5 3 , dihedral group of the permutations on 

three elements and we define the product as it follows: 

0 a a + 2b a + b Ь 2b 

0 0 a a a 0 0 
a 0 a a a 0 0 

a + 2b 0 a a a 0 0 
a + b 0 a a a Ъ 0 

b 0 a a + 2b a + b b 2b 

2b 0 a a + b a + 2b 2b b 

It is a (non-direct) sum of Z 3 and MC(Z2) (see Th. 3). 

Я + ) 
*) In fact if q>a : jV+/H+ -> N+/H+ is induced by <pa we shall have for ye jV+, £a(y + 

P«O0 + H+ and it is £fl(y + H + ) = y + H+ because H+ = ^a(N+). 
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c) As additive group we consider Z + , and we define the following products: 

0 1 2 3 4 5 

0 0 3 0 3 0 3 
1 0 5 4 3 2 1 
2 0 5 4 3 2 1 
3 0 3 0 3 0 3 
4 0 1 2 3 4 5 
5 0 1 2 3 4 5 

0 1 2 3 4 5 

0 0 3 0 3 0 3 
1 0 3 0 3 0 3 
2 0 5 4 3 2 1 
3 0 3 0 3 0 3 
4 0 1 2 3 4 5 
5 0 3 0 3 0 3 

They are again examples concerning Th. 3. 

Proposition 4. 
elements. 

4, E2-generated s-near-fields 

A zero-symmetric F2-generated s-near-field is without nilpotent 

Proof: If N is E2-generated, each of its non-zero elements will generate a proper 
subnear-ring and therefore a near-field: N is hence without nilpotent elements. 

Proposition 5. A zero-symmetric s-near-field N, without zero divisors is: 

1. N-simple, strongly monogenic, faithful and 2-primitive; 
2. the semigroup (N, •) is a right group*). 

Proof 1: Let N be a zero-symmetric s-near-field without zero-divisors. If nN is a proper 
N-subgroup, it is a near-field. If u is the identity of nN, hence Vz e N, u(nz) = (nz) u, 
and z = zu; moreover, u(uz) = uz and uz = z (in fact N is an integer near-ring and 
so the left cancellation law holds (see prop. 1.HI a. of [9])). Then N has identity and 
uN = N ^ nN, that is nN = N. It follows that N is strongly monogenic (see [9], 
def. 3.1); moreover, N is without right ideals because it is zero-symmetric, then N 
is simple and subdirectly irreducible (see [9], cor. l.l). Lastly by the N-simplicity if 
follows that N is faithful and 2-primitive (see [9], def. 1.17 and 4.2). 

Proof 2: Easy by th. 4.3 of [11]. 

Particularly, we can observe that according to Prop. 5 the integer and zero-
symmetric s-near-fields are near-rings of type (p) already studied by Ligh [6]. In fact 
in this, Vx e N \ {0}, Ad(x) = {y e N | xy = 0} is zero (otherwise it should be a proper 
N-subgroup of N and it is absurd) and therefore it is an ideal of N. 

Theorem 4. If N is an integer zero-symmetric E2-generated s-near-field, then N+ is 
an elementary abelian p-group, each element of N generates a near-field and N is 
generated by the sum of two fields isomorphic to Zp. 

*) For the definition of right group see for instance [3]. 
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Proof: We start by showing that N is abelian. If N is £2-generated each element a e N 
generates a proper subnear-ring and therefore a near-field with a prime number 
characteristic. So the equation x + x = a has one and only one solution for each 
a e N. Let e be the identity of a subnear-field M of N with char M = p 4= 2. We 
suppose that such identity exists, because if it doesn't exist, N has characteristic 2 
and is abelian. We now define the map f : N -> N such thatf(x) = ( — e) x, Vx eJV. 
This map is an automorphism of N+ because it is obviously a homomorphism, 
moreover, it is a monomorphism because N is integer and so the left cancellation 
law holds; lastly it's an epimorphism because by the Prop. 5. nN = N Vn e N and 
then VzeN the equation ( — e) x = z has solution. We now show that such auto­
morphism is fixed point-free: if it is ( —e) x = x for some x, it is ( — e) xy = xy Vy e 
eN. The product xy, while y varies in N, describes N, so — e is a left identity. In 
particular ( — e) e = e but ( — e) e = —e because e is the identity of the near-field 
where — e belongs and this is to be excluded. In this way the hypotheses of theorem 
of [7] hold and N is abelian. We now can show that charN = p. In fact, if N has, 
together with elements of order p, elements of order a, with p =j= q, the near-ring 
generated by the sum of an element of order p and of an element of order q, is a near-
field with characteristic pq, and this is absurd (see [9], prop. 8.9c). We also prove 
that N can't have aperiodic elements, each of these having to generate a near-field M 
with char M a prime number. Nor, for the same reason, can elements of order p-
power be in N. Therefore, charN = p and N+ is an elementary abelian p-group. 
In N each element generates a near-field of characteristic p, moreover N is E2-
generated, therefore at least two proper subnear-rings whose identities generate two 
fields I and J both isomorphic to Zp, exist in N *). The near-ring generated by I + J, 
can't be a proper subnear-ring of N, because it should be a near-field, so it coincides 
with N. 

Example: 

As additive group we consider Z3 -j- Z3 and we define the following product: 

(0, 0) (0, 1) (1,1) (1, 0) (1, 2) (2, 1) (2, 0) (2, 2) (0, 2) 

(0,0) 
(0,1) 
(1,1) 
(1.0) 
(1.2) 
(2.1) 
(2,0) 
(2,2) 
(0,2) 

(0, 0) (0, 0) 
(0, 0) (0, 1) 
(0,0) (0,2) 
(0,0) (0,1) 
(0, 0) (0, 2) 
(0,0) (0,1) 
(0,0) (0,2) 
(0,0) (0,1) 
(0,0) (0,2) 

(0, 0) (0, 0) 
(1,1) (1,0) 
(2, 2) (2,0) 
(1,1) (1,0) 
(2, 2) (2,0) 

(1,1) (1,0) 
(2. 2) (2,0) 

(1.1) (1.0) 
(2, 2) (2,0) 

(0, 0) (0, 0) (0, 0) 
(1, 2) (2, 1) (2, 0) 
(2, 1) (1, 2) (1, 0) 
(1,2) (2,1) (2,0) 
(2, 1) (1, 2) (1, 0) 
(1,2) (2,1) (2,0) 
(2.1) (1,2) (1,0) 
(1.2) (2,1) (2,0) 
(2,1) (1,2) (1,0) 

(0, 0) (0, 0 
(2, 2) (0, 2 
(1, 1) (0,1 
(2, 2) (0, 2 
(1, 1) (0, 1 
(2, 2) (0, 2 
(1, 1) (0,1 
(2, 2) (0, 2 
(1, 1) (0,1 

*) We observe that the subnear-rings of jV can't intersect in the same Zpi because other­
wise jV should be a near-field. 

25 



Theorem 5. A zero-symmetric near-ring N with zero-divisors and without nilpotent 
elements, is an s-near-field if and only if it is the direct sum of two fields isomorphic 
to Zp and Zq with prime numbers p and q. 

Proof: In a zero-symmetric near-ring without nilpotent elements if ab = 0 then ba = 
= 0 (see lemma 1 of [2] and th. 3 of [8]). If y is a zero-divisor of N, A(y) = (x e 
e N | xy = yx = 0) is an ideal of N: we suppose ab absurdo that A(y) is the only 
ideal of N and let i e A(y) \ {0}; A(t) is again a proper ideal of N and so is A(t) = 
= A(y) that is i2 = 0 and this is to be excluded because N is without non-zero nil-
potent elements. Therefore N is zero-symmetric, without nilpotent elements, non 
integer, and its ideals are near-fields. By th. 3 of [8] N results a near-ring with exactly 
two ideals, and if we call them X and Y, N can be expressed as direct sum of X and Y, 
(see [4] too). If {ux} and <ŵ > are subnear-rings of X and Ygenerated by the respec­
tive identities ux and uy, they obviously are isomorphic to Zp and Zq, for some p, 
and q prime. The direct sum <wx> + <u^>, if it is a proper subnear-ring, is a near-
field and this is absurd. So X = (ux} and Y = {uy} and the theorem has been proved. 
The converse is trivial. 

Corollary 3. A zero-symmetric near-ring N with zero-divisors, is an E2-generated 
s-near-field if and only if it is the direct sum of two fields isomorphic to Zp. 

Proof. If N is a non integer, zero-symmetric, E2-generated s-near-field, by Prop. 4 
and Th. 5, N is the direct sum of two fields isomorphic to Zp and Zq. If p =4= q, the 
near-ring N is 1-generated, and generated by each element a + b with a =}= 0 =f= b, 
aeZp and b e Zq, and this is to be excluded. Therefore the theorem has been proved. 
The converse is trivial. 

Corollary 4. A zero-symmetric near-ring with zero-divisors, and without nilpotent 
elements, is a 1-generated s-near-field if and only if it is the direct sum of two fields 
isomorphic to Zp and Zq with p =f= q prime numbers. 

Proof: Easy by Th. 5 and Cor. 3. 

Proposition 6. A constant near-ring is an £2-generated s-near-field if and only if it is 
the direct sum of two constant near-fields. 

Proof. If N is a constant F2-generated s-near-field, each of its non-zero elements, 
generates a constant near-field which therefore is isomorphic to MC(Z2) and by Cor. 1 
ideal of N; therefore N is the direct sum of two of its ideals (see [4] and [8]). The 
converse is trivial. 

5. S-fields 

At last we consider the particular case of the rings. 

Definition B. We call s-field a ring whose proper subrings are fields. 
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Lemma 2. If A is an s-field, it is without nilpotent elements and has zero-divisors. 

Proof. An s-field A can't have nilpotent elements because a nilpotent element can't 
generate A which should be a zero-ring, neither can it generate a proper subring 
which, in our hypotheses, must be a field. Let's suppose that A is without zero-divisors. 
In this case A has identity because we know by the hypotheses that it has subfields. 
Moreover, A is simple because each ideal of A, as subfield, contains the identity of A. 
But a simple ring, without zero-divisors, is a field and this is to be excluded. 

Theorem 6. A ring A is an s-field if and only if A = Zp + Zq with p and q as prime 
numbers. 

Proof. By Lemma 2 it follows that an s-field is without nilpotent elements and has 
zero-divisors, then Th. 5 holds and so does the thesis. 

Corollary 5. An s-field A = Zp + Zq is 1-generated if and only if p + q. 

Proof. Easy. 
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