Acta Universitatis Carolinae. Mathematica et Physica

Tomas Kepka
Commutative distributive groupoids
Acta Universitatis Carolinae. Mathematica et Physica, Vol. 19 (1978), No. 2, 45--58

Persistent URL: http://dml.cz/dmlcz/142420

Terms of use:

© Univerzita Karlova v Praze, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/142420
http://project.dml.cz

1978 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 19, NO. 2, Pag. 45-58

Commutative Distributive Groupoids

T. KEPKA
Department of Mathematics, Charles University, Prague*)

Received 10 March 1977

A groupoid is called distributive if it satisfies the identities x.yz = xy.xz and yz.x =
= yx . zx. The main purpose of the paper is to show that every finitely generated distributive
groupoid has only a finite number of ideals.

T'pymmoug Ha3bIBaeTCsA AUCTPUOYTHBHBIM, €CIIM B HEM BBINIOJHEHBI TOXKIECTBA X.YZ = XY.XZ
M YyZ.X = yX.ZX. B cTaTee [OKa3sbIBaeTCA, YTO JIEOOOH KOHEYHO IOPOKAEHHBIM KOMMYTaTHBHbIH
IUCTPUOYTHBHBIN TPYIIION] UMEET TOJIBKO KOHEYHOE MHO)KECTBO HAEAJIOB.

Grupoid se nazyva distributivni jestliZe splfiuje identity x . yz = xy.x2 a yz.x = yx . 2x
Cilem ¢lanku je dokazat, Ze kazdy koneéné generovany komutativni distributivni grupoid ma jen
konetné mnoho ideslu.

In the present paper, some properties and classes of commutative distributive
groupoids are studied. A special emphasis is laid on finitely generated and subdirectly
irreducible groupoids.

I. Preliminaries

Let G be a groupoid and a € G. We define two mappings RS and LS of G into G
by RS(b) = ba and LE(b) = ab for every b e G. We shall say that G is a cancellation
(division) groupoid if these mappings are injective (surjective) for every a € G. Further,
G is called a quasigroup if it is both a cancellation and division groupoid. A congruence
r of G is said to be normal if the corresponding factorgroupoid G/r is a cancellation
groupoid. As it is easy to see, the diagonal congruence d¢ of G is normal iff G is a can-
cellation groupoid. On the other hand, there exist quasigroups which have non-normal
congruences.

Let G be a groupoid. A non-empty subset I < G is called an ideal if ab, ba € G,
whenever a € I and b € G. The following lemma is obvious.
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1.1. Lemma. Let K, j€¥ be a non-empty set of ideals of a groupoid G and
A =\J Kj, B=) Kj. Then 4 is an ideal and B is an ideal, provided B is non-empty.
Moreover, if ¥ is finite then B is an ideal.

From 1.1 we see that the set I(G) of all ideals of G is a distributive lattice containing
the greatest element. If I(G) contains only one element then we shall say that G is an
i-simple groupoid. Clearly, i-simple groupoids are closed under homomorphic images.
The following lemma is easy.

1.2. Lemma. Let r be a congruence of a groupoid G such that every class of r is
either a one-element set or an z'-simﬁle subgroupoid of G. Then G is i-simple iff the
factorgroupoid Gir is.

Itis easy to seethat every division groupoid is z-simple. The following lemmais clear.

1.3. Lemma. Let I be an ideal of a groupoid G. Define r by arb iff either a,be I
or a = b. Then r is a congruence of G.

An element z of a groupoid G is called a zero if az = z = za for every a€G.
Clearly, z is a zero iff the one-element subset {2} is an ideal of G. It is evident that every
groupoid contains at most one zero.

Let G be a groupoid and 2 be an element such that z ¢ G. We shall define a groupoid
G{z} as follows:

G{z} = G | {2}, G is a subgroupoid of G{z} and z is the zero.

The following two lemmas are evident.

1.4. Lemma. The following conditions are equivalent for a groupoid variety ¥ :
(i) 7 contains all commutative idempotent semigroups.

(ii) The two-element groupoid {0,1} with multiplication 0.0 =0.1=1.0=0,

1.1 =1is contained in ¥".

(iii) If Ge 7 and 2 ¢ G then G{z} €¥".
(iv) 7 can be determined by a set of identities z; = s; such that for every j, the two
terms t; and s; contain the same variables.

1.5. Lemma. Let G be an ¢-simple groupoid and z ¢ G. Then G{z} is subdirectly
irreducible iff G is.

2. Distributive Groupoids
A groupoid G is called
distributive if it satisfies the identities x . yz = xy . xz and yz . x = yx . 2x,
commutative if it satisfies the identity xy = yx,
idempotent if it satisfies the identity xx = x,
medial if satisfies the identity xy . uv = xu.yv,
- a B-groupoid if it satisfies the identity x . yz2 = uv . w.
The variety of all distributive (resp. commutative, idempotent, medial) groupoids will
be denoted by Z (resp. €, 2, .#). Further, we denote by # the variety of all B-groupoids.
The following lemma is trivial.

21. Lemma. A N2 9, B D\ A.

In the sequel, we shall use also the notation .o/ =% (V2 (\ A and £=€¢ \ 2 () 2.
If G is a groupoid then Id G denotes the set of all idempotents of G.
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2.2. Proposition. Let G be a distributive groupoid. Then:
(i) Id Gis an ideal of G and a . bc,ab.celd G for all a, b, c€G.
(i) aa.a =aa.aa = a. aa for every a €G.
(iii) The mapping f, defined by f(x) = x . xx, is a homomorphism of G onto Id G.

Proof. See [1], Proposition 1.2.

2.3. Proposition. The following conditions are equivalent for every groupoid G:
(1) G is distributive and Id G contains exactly one element.

(i) G is a semigroup with zero z and a. bc = z for all @, b, c € G.
(iii) G is a B-groupoid.

Proof. See [1], Proposition 1.3.

2.4. Proposition. Let G be a distributive groupoid and r be ‘the congruence corre-
sponding to Id G in the sense of 1.3 Put B(G) = G/r. Then B(G) is a» B-groupoid and
Id G is an idempotent distributive groupoid. Moreover, G is isomorphic to a subdirect
product of B(G) and Id G.

Proof. See [1], Proposition 1.5.

2.5. Proposition. Let 7 and s be two groupoid terms such that both z and s have
length at least three and the identity ¢ = s is valid in every idempotent distributive
groupoid. Then every distributive groupoid satisfies ¢ = s.

Proof. The result is an easy consequence of 2.4 and 2.3.

2.6. Lemma. Let G be a distributive groupoid and I be an ideal of Id G. Then I
is an ideal of G.

Proof. Let beland a€G. Then ab = (ab. ab)ab = (aa .a)b I, since aa.a €
€ Id G. The rest is similar.

2.7. Proposition. Let G be a distributive groupoid. The lattice I(G) is isomorphic
to a subdirect product of the lattices I(Id G) and I(B(G)).

Proof. Let g be the canonical homomorphism of G onto B(G) and I, K € I(G).
It is clear that N IdG)YK NG =TUYUK)N1dG, gdYK)=¢gIT) gK),
INIAGYNKNIAG)=INK)NdGand gINK) < gI)NgK). Letael,beK
and g(a) = g(b). Then either a =beI () K or a,beId G. In the second case, g(a) =
= g(b) = g(c), where ce I () K Id G is arbitrary, and we see that g(I N K) = g(I) N
N &(K) (theset I () K () Id G is non-empty by 1.1). Hence the mapping I - < I IdG,
g(I)> is a homomorphism of the lattice I(G) into the cartesian product of the lattices
I(Id G) and I(B(G)). Now we prove that this homomorphism is injective. For, let
INIdAG =K IdG and g(I) = g(K). Then clearly every non-idempotent element
from I is contained in K and conversely, and consequently I = K. Further, if L is an
ideal of B(G) and I is the inverse image of L then I is an ideal of G and g(I) = L. The
rest is clear from 2.6. .

2.8. Lemma. Let f be a homomorphism of a distributive groupoid G into a distri-
butive groupoid H. Then f induces in a natural way two homomorphisms g and % of
Id G into Id H and of B(G) into B(H), respectively. Moreover, if f is injective (surjective)
then both g and 4 have the same property.

Proof. Easy.
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2.9. Lemma. Let G be a commutative distributive groupoid and a, b € G be such
that the set K(a, b) = {c € G | ac = bc} is not empty. Then K(a, b) is an ideal.

Proof. Let ceK(a,b) and deG. Then a.ac =a.bc =ab.ac =ba.bc =
=b.ac=b.bcanda.dc=ad.ac=(a.ac)d.ac) = (b.bc)d.bc) =bd.bc =b.dc.

2.10. Corollary. Let G be an i-simple commutative distributive groupoid. Then
G is an idempotent cancellation groupoid and every congruence of G is normal.

Proof. It is enough to prove that G is a cancellation groupoid (G is idempotent
by 2.2). For, let a,b,c € G and ca = ¢b. Then ¢ € K(a, b) and K(a, b) = G, since it is
an ideal. Hence a = aa = ab = ba = bb = b.

3. Distributive Cancellation Groupoids

3.1. Lemma. Let G be an idempotent distributive groupoid and a € G be such
that LG (RS) is injective. Then there exists an idempotent distributive groupoid H with
the following properties:

(i) G is a subgroupoid in H.
(ii) If b e G then ac = b (ca = b) for some ¢ € H.
(iii) The mapping L (R¥) is an isomorphism of H onto G.

Proof. The mapping ¢ = L¢ is an injective homomorphism of G into G. We can
identify H with G and G with g(G). The rest is clear.

3.2. Proposition. Let G be a distributive cancellation groupoid. Then G is idem-
potent and G is a subgroupoid of a distributive quasigroup Q such that Q generates
the same groupoid variety as G.

Proof. This result is an easy consequence of 3.1.

3.3. Proposition. Let G be a subgroupoid of a distributive quasigroup Q such that
G is contained in no proper subquasigroup of Q. Then every normal congruence of G
can be extended to exactly one normal congruence of Q.

Proof. See [1], Proposition 1.7.

Let G be a distributive cancellation groupoid. A distributive quasigroup Q is called
the g-envelope of G and denoted by E(G) if G is a subgroupoid of Q and generates Q
as a quasigroup. It follows from 3.2 and 3.3 that E(G) exists and is determined up to
G-isomorphism. Moreover G and E(G) generate the same groupoid variety. Hence
E(G) is commutative (medial), provided G has the same property.

3.4. Proposition. Let P be a subquasigroup of a medial quasigroup Q. Then there
exists a normal congruence r of Q such that P is one of the classes of r.

Proof. See [2], Theorem 43.

3.5. Corollary. Let P be a subquasigroup of a medial idempotent cancellation
groupoid G. Then there exists a normal congruence r of G such that P is one of its
classes.

Let G be a subdirectly irreducible groupoid. Then we denote by z¢ the least non-
trivial congruence of G. If G is trivial then we put z¢ = dg.

3.6. Lemma. Let G be a subdirectly irreducible idempotent distributive groupoid
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and ¢, d € G be such that ¢ 2 d and c t¢ d. Let a € G be such that LS (RE) is injective
and H be the groupoid constructed in 3.1. Then H is subdirectly irreducible and ¢ zxd.

Proof. By 3.1, the mapping g = L% is an isomporphism of H onto G. Hence H
is subdirectly irreducible and g-1(c) ¢t g-1(d). Conesequently c=a . g-1(c) ty a. g~ Y(d)=d.

3.7. Remark. Let & be a limit ordinal and G;, ¢ < &, be a chain of subgroupoids
of a groupoid G such that G = |) G;. Suppose that each G; is subdirectly irreducible
and there exist different elements ¢, d € Go such that ¢ ¢¢, d for every i < k. Let r be
a congruence of G such that ¢ r d is not true. Assume that 7 dg. Then r | Gy, for some
i < k, is different from d¢,, and so ¢ r | Gy d. Thus c r d, a contradiction. Now we see
that G is subdirectly irreducible and c z¢ d.

3.8. Corollary. Let G be a subdirectly irreducible distributive cancellation grou-
poid. Then E(G) is subdirectly irreducible as a groupoid.

Proof. It suffices to take into account 3.6, 3.7 and the proof of 3.2.

4. Distributive Quasigroups

The following proposition is proved in [3].

4.1. Proposition. Let Q be a distributive quasigroup and ab . cd = ac . bd for some
a, b, ¢, d € Q. Then the subquasigroup generated by these four alements is medial.

4.2. Corollary. Every distributive quasigroup generated by at most three elements
is medial.

The following lemma is easy and well-known.

4.3. Lemma. Let a normal congruence r and a congruence s of a quasigroup Q
have a common class. Then r = s.

4.4. Proposition. Let Q be a distributive quasigroup and r be a congruence of Q
such that at least one of the classes of r is a subquasigroup in Q. Then r is normal con-
gruence.

Proof. (i) Let P be a subquasigroup of Q and P be a class of r. Consider some ele-

ments a, b, ¢ € Q with ab, ac € P. We show that & r ¢. For, let H be the subquasigroup
of Q generated by a,b,c and G = P (| H. Then H is a medial quasigroup and G is
a subquasigroup in H (G is non-empty, since ab, ac € G). By 3.4, there is a congruence s
of H such that s is normal and G is one of its classes. However G is a class of r | H, and
therefore s = r | H. Thus b r ¢, since s is normal. Similarly we show that b r ¢, whenever
a, b, c € Q and ba, ca P.
(ii) There is a class A of r such that 4 is a subquasigroup of Q. Let B be an arbitrary
class of . We show that B is a subquasigroup of Q. If a, b € B then there is ¢ € Q with
ace A. We have acrbc, and hence ac,bc€ A. Then bc = ac.dc = ad . ¢ for some
d € Q with dc € A. From this we get b = ad and d € B (since ac, dc € A, a r d by (i)).
Similarly b = ea for some ¢ € B and we have proved that B is a subquasigroup of Q.
(iii) Let a, b, c € Q and ab r ac. Then ab, ac € B for a class B of r. According to (ii), B
is a subquasigroup in Q and & r ¢ by (i). Similarly if ba  ca.

A commutative idempotent groupoid G satisfying the identity x . xy = y is called
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a Steiner quasigroup. It is clear that G is a quasigroup, every congruence of G is normal
and every subgroupoid of G is a subquasigroup. Consider the following three-element
groupoid S:
S§={1,23},1.1=1,1.2=3=2.1,1.3=2=3.1,2.2=2,2.3=1=3.2,
3.3=3.

One can easily see that this groupoid is a medial distributive Steiner quasigroup.
Also the following lemma is easy.

4.5. Lemma. Any non-trivial Steiner quasigroup contains a subquasigroup iso-
morphic to the quasigroup S.

Let G be a groupoid. Then m¢ (or only m) denotes the least congruence of G with
G/mg € A . Further, if x € G then M(G, x) is the set of all y € G such that ab. xc =
= ay . bc for some a, b, c € G. It is clear that x € M(G, x).

4.6. Proposition. Let Q be a distributive quasigroup. Then:

(i) mis a normal congruence of Q and Q/m is a medial quasigroup.

(ii) Every class of m is a Steiner subquasigroup of Q.

(iii) If x € O then the class of m determined by x is just the subquasigroup of Q generated
by M(Q, x).

Proof. Let x € Q. Denote by Q. the subquasigroup generated by M(Q, x). It is
proved in [3] that there exists a congruence r; of Q satisfying the properties (i), (ii)
of this proposition such that Q is one of its classes. It is obvious that m < rz, and there-
fore every class of m is a subquasigroup. By 4.4 m is a normal congruence. Further, if
y € M(Q, x) then ab . xc = ay . bc for some a, b, ¢ € Q and we have ax . bc m ay . bc, since
Q/m is medial. However m is normal, and so x m y. We see that m and r, have a common
class, and hence m = r; by 4.3. The rest is clear.

Let R by the set of all rational numbers a/2%, where a, b are integers. It is easy to
see that R is a commutative and associative ring with unit. Moreover, R is a principal
ideal domain. An abelian group G(+) is a module over R iff the mapping x — x + x is
a permutation of G(+). The following proposition is easy and well-known.

4.7. Proposition. Let Q be a groupoid. Then Q is a commutative idempotent
medial quasigroup iff there is an R-module Q(+) such that ab = 1/2(a + b) for al
a, b € Q. In this case, Q is subdirectly irreducible iff Q(+) has the same pro-
perty.

Let p > 3 be a prime and » > 1 be a natural number. Then C(p*) (+) denotes
the cyclic group of order p». Further, C(p®) (+4) is the quasicyclic Priifer p-group.
By C(p”, 1/2) and C(p*, 1/2) we denote the corresponding commutative idempotent
medial quasigroups. The groups C(p*) (4+), C(p®) (+) are the only subdirectly irre
ducible non-zero R-modules and we can formulate the following proposition.

4.8. Proposition. The one-element quasigroup and the quasigroups C(p7", 1/2),
where p > 3 is a prime and 1 < 7 < oo are the only subdirectly irreducible commuta-
tive idempotent medial quasigroups. Moreover, C(p?, 1/2) is isomorphic to C(q/, 1/2)
iffp=gandi=j.

The following lemma is an easy consequence of 4.8.
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4.9. Lemma. The subdirectly irreducible commutative idempotent medial quasi-
groups are closed under subgroupoids and homomorphic images.

4.10. Proposition. Every congruence of a commutative distributive quasigroup
is normal. ’

Proof. Use 2.10.

5. Subdirectly Irreducible Commutative Idempotent Distributive Groupoids

5.1. Proposition. Let G be a subdirectly irreducible commutative idempotent

distributive groupoid. Then exactly one of the following conditions holds:

(i) . G is a cancellation groupoid.

(i) G contains a zero element z such that H = {a € G | a # 2} is a subgroupoid of
G, H is a cancellation groupoid and G = H{z}.

Proof. We can assume that G contains at least two elements. Then there are
a,be G such that a % b and a b, t = t¢. First let K = K(a, b) be non-empty. With
respect to 2.9, K is an ideal. If K contains at least two elements then r # dg, where r
is the congruence corresponding to K in the sense of 1.3. In that case we have ¢t < 7,
a,beK and a = b, a contradiction. Hence K = {2} is a one-element set. Since K is
an ideal, z is the zero. Let ¢ € G, ¢ 7 2. Then L. is an endomorphism of G and < s,
where s is the conqruence corresponding to L., provided L, is not injective. Conse-
quently a s b, ca = ¢b, c € K and ¢ = 2, a contradiction. Thus L. is injective and the
rest is clear as well as the case if K is empty.

Letp > 3 aprimeand 1 <7 < oo. Let 2z be an element not belonging to C(p*, 1/2).
Then we put C(p™, 1/2, 2) = C(p", 1/2) {z}. Further we denote by C(0) the one-element
groupoid and by C(0, 2) the groupoid C(0) {z}, where z ¢ C(0).

5.2. Lemma. Let G be a groupoid containing no zero element. Let 2¢ G and
suppose that H = G{z} is subdirectly irreducible. Then G is subdirectly irreducible.

Proof. Put t =ty and r = ¢ | G. It is clear that r < s for every congruence s of G
with s # dg. Put K = {a € G | a t 2} and suppose r = dg. If K is empty then ¢ = dy,
a contradiction, since H contains at least two elements. Thus K is non-empty and we
see that K is an ideal of G. Since G contains no zero element, K contains at least two
elements, a contradiction with r = dg.

5.3. Lemma. No proper ideal of a cancellation groupoid is finite.

Proof. Let I be a proper finite ideal of a cancellation groupoid G. Then I is a sub-
quasigroup of G. Takea € I and b € G, b ¢ I. Then ab € I and there is ¢ € I with ac = ab.
Hence b = ¢ €I, a contradiction.

5.4. Theorem. The only subdirectly irreducible commutative idempotent medial
groupoids (up to isomorphism) are the following: The one-element groupoid C(0), the
semigroup C(0, 2), the quasigroups C(p", 1/2) and the groupoids C(p™, 1/2, 2), where
p > 3isaprime and 1 < n <oo. These groupoids are pair-wise non-isomorphic.

Proof. The fact that these groupoids are subdirectly irreducible commutative
idempotent medial groupoids follows easily from 4.10, 4.8, 1.5 and 1.4. Conversely,
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let G be a subdirectly irreducible groupoid from .o7. According to 5.1, 5.3 and 5.2, we
can assume that G is a cancellation groupoid. The rest of the proof follows now from
3.8, 4.10 and 4.8.

5.5. Corollary. Subdirectly irreducible commutative idempotent medial grou-
poids are closed under subgroupoids and homomorphic images.

6. More About the Congruence me

We shall say that a groupoid G satisfies the condition (S) if every class of the con-
gruence mg is a Steiner subquasigroup of G. The following two lemmas are easy.

6.1. Lemma. The class of all groupoids satisfying (S) is closed under subgroupoids
and cartesian products.

6.2. Lemma. Let a groupoid G satisfy (S) and z ¢ G. Then G{z} satisfies (S).

6.3. Proposition. Every distributive cancellation groupoid satisfies (S).

Proof. Apply 4.6, 3.2 and 6.1.

6.4. Proposition. Every commutative idempotent distributive groupoid satisfies
the condition (S§).

Proof. Let G be a commutative idempotent distributive groupoid. With respect
to 6.1, we can assume that G is subdirectly irreducible. Then the result follows from
5.1, 6.3 and 6.2.

6.5. Theorem. Let G be a commutative distributive groupoid. Put m = m¢ and
r = mrq ¢. Then:

(i) Ifa,beGthenamb iff eithera =bora,becldGandarb.
(ii) Every class of m containing at least two elements is a Steiner subquasigroup of G.

Proof. Apply 2.1, 2.4 and 6.4.

6.6. Corollary. Let G be a commutative distributive groupoid such that G is
not medial. Then G contains a subquasigroup isomorphic to the three-element quasi-
group S.

Proof. The assertion is an immediate consequence of 6.5 and 4.5.

6.7. Corollary. Let G be a commutative distributive groupoid such that G/m
is an ¢-simple groupoid. Then G is i-simple.

Proof. Use 6.5 and 1.2.

The following lemma can easily be verified.

6.8. Lemma. Let r be a congruence of a groupoid G such that every class of r
is either a one-element set or an i-simple subgroupoid of G. Then the lattice I(G) is
canonically isomorphic to the lattice I(G/r).

6.9. Corollary. Let G be a commutative distributive groupoid. The lattice I(G)
is canonically isomorphic to the lattice I(G/m).

Proof. Apply 6.5 and 6.8.
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7. Closed Subgroupoids of Distributive Groupoids

A subgroupoid H of a groupoid G is said to be closed if ab € H (resp. ba € H)
implies b € H for all a € H and b € G. It is clear that the intersection of a set of closed
subgroupoids is either empty or a closed subgroupoid. If 4 = G is a subset then cl(4)
denotes the closed subgroupoid generated by 4. We shall say that G satisfies the condi-
tion (M) if cl(a, b, c,d) is a medial groupoid, whenever a,b,c,d€G and ab.cd =
= ac . bd. The following lemma is immediate.

~ 7.1. Lemma. The class of groupoids satisfying (M) is closed under subgroupoids
and cartesian products.

7.2. Lemma. Let a groupoid G satisfy (M) and z ¢ G. Then G{z} satisfies (M).

7.3. Corollary. Every commutative distributive groupoid satisfies (M).

Proof. With respect to 2.1, 2.4 and 7.1, we can assume that G is idempotent and
subdirectly irreducible. In this case, the satement is an easy consequence of 5.1, 7.2,
4.1 and 3.2

7.4. Theorem. Let G be a distributive groupoid. Then G satisfies (M), provided
at least one of the following conditions holds:

(i) Id G satisfies (M).

(i) G is a cancellation groupoid.

(ili) G is commutative.

(iv) G is a division groupoid.

(v) Every subgroupoid of G is closed.

Proof. (i)follows from 7.1, 2.1 and 2.4, (ii) follows from 7.1, 3.2 and 4.1, (iii)
follows from 7.3, (iv) is proved in [4] and (v) is proved in [5].

8. Epimorphisms in the Variety of Medial Groupoids

8.1. Lemma. Let G be a medial groupoid generated by two subgroupoids 4, B
and H be the cartesian product of 4 and B. Suppose that there is an elementae 4 \ B
such that aB = B and Aa = A. Then G is a homomorphic image of the groupoid H.

Proof. Define a mapping f of H into G by f({ x,¥)) = xy. Since G is medial,
fis a homomorphism. Let b € 4 be arbitrary. Then b = ca for some ¢ € 4, and so
b = f({c,a)). We have proved that 4 = Imf. Similarly B < Imf, and consequently
Imf=G.

8.2. Lemma. Let Q be a quasigroup such that every congruence of the cartesian
power Q X Q is normal and let £, g be two homomorphismus of Q into a medial groupoid
Q. Suppose that f| P = g | P for a subgroupoid P of Q such that Q is generated by P
as a quasigroup. Then f =g.

Proof. We can assume that G is generated by f(Q) (J g(Q). It is evident that
f(Q), g(Q) are division groupoids and f(Q) N g(Q) is non-empty. By the hypothesis
and 8.1, G is a quasigroup. Then both f and g are quasigroup homomorphisms and
J = & since they coincide on a generator set.

8.3. Corollary. Let Q be a medial quasigroup such that every congruence of
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Q x Q is normal and P = Q be a subgroupoid such that Q is generated by P as quasi-
group. Then the inclusion P < Q is an epimorphism in the variety .#.

8.4. Corollary. Let Q be a commutative idempotent medial quasigroup and P
its subgroupoid which generates Q. Then the inclusion P < Q is an epimorphism in .#
(and hence in .# | 2, &, etc.).

Proof. Use 4.10 and 8.3.

Let ¥~ be a variety of groupoids. We shall say that ¥” satisfies the condition (C)
if G €7  is a cancellation groupoid, whenever G/m is a quasigroup.

8.5. Lemma. The variety of commutative distributive groupoids satisfies the
condition (C).

Proof. Apply 6.5, 1.2 and 2.10.

8.6. Proposition. Let ¥~ be a variety satisfying (C) and Q €#” be a quasigroup
such that every congruence of Q X Q/m is normal. Suppose that Q is generated as
a quasigroup by a subgroupoid G. Then the inclusion G < Q is an epimorphism in 7.

Proof. Let f,g be two homomorphism of Q into He¥ suchthat f|G =¢|G.
We can assume that H is generated by Im f|) Img. Similarly as in the proof of 8.2,
we can show that H/m is a quasigroup. Then H is a cancellation groupoid and f, g are
quasigroup homomorphisms. The rest is clear.

8.7. Corollary. Let G be a commutative distributive cancellation groupoid. Then
the inclusion G < E(G) is an epimorphism in the variety € (| 2.

Proof. Apply 8.5, 8.6 and 4.10.

8.8. Corollary. The following varieties have non-surjective epimorphisms:

My MNND, MN2 MNEC, A, C(\D,E, M NC 2.

Proof. With respect to 8.4, 8.7 and 3.2, it is enough to find a commutative idem-
potent medial cancellation groupoid G such that G is not a quasigroup. However, it
is very easy. For example, consider the groupoid G(o) consisting of all positive rational
numbers with the operation x o y = (x + y)/2.

9. Free Distributive Groupoids

9.1. Proposition. Let G be a free distributive groupoid freely generated by a set X.
Let f:G—1dG and g : G — B(G) be the canonical homomorphisms. Then Id G
(resp. B (G)) is a free groupoid in 2 () 2 (%) and it is freely generated by f(X) (g(X)).
Moreover, f(x) 7 f(¥) and g(x) # (), whenever x,y €X and x #y. Hence G, Id G
and B(G) have the same rank.

Proof. Let x, y € G, x # y and f(x) = f(¥). Then x . xx = y . yy and every distri-
butive groupoid satisfies the identity x . xx =y .yy. Consequently every idempotent
distributive groupoid has only one element, a contradiction. Let g(x) = g(y). Then
x,y €Id G and every distributive groupoid is idempotent, a contradiction. The rest
is clear from 2.8.

9.2. Remark. Let X be a non-empty set, 4 = X (J (X x X) and suppose that
the intersection X () (X X X) is empty. Let O be an element such that 0 ¢ 4 and put
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B = 4 | {0}. Define a multiplication on B as follows: Let a, b€ B. Then a . b = {a, b>
ifa,b € X and a . b = 0 otherwise. Then the groupoid B is a free groupoid in the variety
% and X is the unique set of free generators of B. Further, let ¥ be a set of the same
cardinality as X, f be a biunique mapping of X onto Y and G be a free idempotent
distributive groupoid freely generated by Y. We shall assume that the intersection
G \ 4 is empty. Define f(a) = a, f({x,¥)) = f(x) . f(y) for all a € G, x,y € X and put
F = G |J A. Then f is a mapping of F onto G and F is a partial groupoid. Let a, b € F.
Weputa.b =<a,b)ifa,beXand a.b = f(a).f(b) otherwise. It is easy to see that F
is a free distributive groupoid and X is its set of free generators.

9.3. Corollary. Let » > 1 and G be a B-groupoid which can be generated by
elements. Then G contains at most n2 + n + 1 different elements.

9.3. Lemma. Let a variety ¥~ of groupoids be generated by a class % of groupoids.
Suppose that every groupoid from % is a cancellation groupoid. Then every free grou-
poid of ¥ is a cancellation groupoid.

Proof. Let F €7 be free and v = uw for some u, v, w € F. Then every groupoid
from % satisfies the identity v = w, and therefore every groupoid from ¥~ satisfies the
identity. The rest is clear.

Let 2 be the class of all quasigroups. As it is well known, 2 is equivalent to a variety
of algebras with three binary operations. We shall sometimes identify & with this
variety. Let ¥ be a variety of groupoids. Then ¥", denotes the quasigroup variety
generated by ¥ () & . Further we shall say that ¥~ satisfies the condition (Q) if ¥7,
as a groupoid variety, is generated by ¥ () Z .

9.4. Lemma. Let a groupoid variety ¥ satisfy (Q) and F € ¥ be a free groupoid.
Then F is a subgroupoid of a quasigroup Qe 7" .

Proof. As it is easy to see, there exist a quasigroup Q € ¥", a subgroupoid G
of O and a homomorphism f of G onto F. Let X be a set of free generators of F
and g be a mapping of X into G such that fg(x) = x for each xe X . It is evident
that F is isomorphic to the subgroupoid generated by g(X) .

9.5. Proposition. Let a groupoid variety ¥~ satisfy (Q) and Q €77, be a free
quasigroup freely generated by a set X. Denote by F the subgroupoid of Q generated
by X. Then Fis free in 7" and X is a free basis of F.

Proof. Apply 9.4.

9.6. Theorem. The varieties .# () 2, & and &/ satisfy the condition (Q).

Proof. First we show that & satisfies (Q). Denote by ¥~ the variety generated by
all commutative distributive cancellation groupoids. It follows from 3.2 that ¥ satisfies
(Q). Further, let F be the set of all rational numbers a/2?, where 0 < a < 2%, and
I = {x € F| x # 0}. Define an operation o on F by xoy = (x4 ¥)/2. It is obvious
that F(o) € o/ and I is an ideal of F(o). The corresponding factorgroupoid belongs to ¥~
(since F(o) is a cancellation groupoid) and is isomorphic to the groupoid defined in 1.4.(ii).
According to 1.4 and 5.1, ¥~ contains every subdirectly irreducible commutative idem-
potent distributive groupoid, and hence ¥~ = &. Similarly we can prove that .o/ satisfies
(Q). For .# ) 2, the assertion follows from the main result of [6].
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Let R be the set of all rational numbers which are equal to 2-*a for some integer a
and natural number . Given a natural number 7 >> 1, the cartesian power R” is a commu-
tative idempotent medial quasigroup with respect to the operation o defined by ao b =
= (a + b)/2 (see 4.7). Denote by F, the set of all <aj,..., a,) € R* such that a; > 0,...,
an > 0and ay + ... 4+ an < 1. In [7] there is proved that F,(0) is free in the variety 2/
and the elements ¢ = <0,0,...,0), e} = <(1,0,...,0),..., &} = <0,...,0,1)> are its free
generators (see also 9.6 and 9.5). Put Fy 0 = {<a1,...,an) EFn a1+ ... + an =1}
and for { =1, 2,...,n, Fp 3 = {<a1,..., any € Fn | a; = 0}. Further, let Int F, be the
set of all ae Fy, such that a¢ Fp o (J Fu,1 U ... UFn,n. It is an easy exercise to show
that all these sets are subgroupoids of F(0). Moreover, Int Fj, is an ideal of F,(0).

9.7. Lemma. The groupoid Int F,(o) is i-simple.

Proof. See [1], Corollary 3.2.

9.8. Lemma. Let H be an i-simple subgroupoid and I be an ideal of a groupoid G.
Then H < I or the intersection H () I is empty. Moreover, if H is an ideal of G then
H < I, and so H is the intersection of all ideals of G.

9.9. Corollary. Int Fj(o0) is the intersection of all ideals of F(0).

Proof. Apply 9.7. and 9.8.

If G is a groupoid then we put Int G = (\ I, 1€ I(G). It is clear that Int G is an
ideal of G, provided it is non-empty.

We denote by Fy the one-element subgroupoid of F; containing the element O.
Clearly, Fo is free of rank 1 in 7.

9.10. Proposition. Let # > 0. Then the lattice I(F,(0)) is finite.

Proof. We use induction on 7. If n = 0 then the assertion is obvious. Let n > 1
and I = Fy(o)beanideal. Then Int Fy, < ITand I = Int Fn \J U () Fn.4)si = 0,1,...,n.
The intersection I ) Fy ¢ is empty or it is an ideal of Fj,;. However, as it is easy to see,
all the groupoids F, ; are isomorphic to Fy-1(0). The rest is easy.

10. Finitely Generated Distributive Groupoids

10.1. Theorem. Let G be a finitely generated commutative distributive groupoid.
Then the lattice I(G) of ideals of G is finite.

Proof. With respect to 9.3 and 2.7, we can assume that G is idempotent. Further,
according to 6.9, we can restrict ourselves to the medial case. The rest is clear from 9.10.

A subgroupoid H of a groupoid G is called dense if c/(H) = G. The following lemma
is obvious.

10.2. Lemma. Let H be a subgroupoid of a groupoid G. Then H is dense in G,
provided at least one of the following conditions holds:
(i) H is a left (right) ideal of G.
(ii) G is a quasigroup and H generates G.

10.3. Proposition. Let H be a dense subgroupoid of a distributive groupoid G.
Then every normal congruence of H can be extended to uniquely determined normal
congruence of G.
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Proof. The proof is in fact the same as that of Proposition 1.7 [1].

104. Lemma. Let G be a commutative distributive groupoid and a € Int G,
b, c € G be such that ac = bc. Then a = ab.

Proof. With regard to 2.9, Int G < K (a, b). Hence aa = ab. However Int G <
€ Id G, and so aa = a.

10.5. Proposition. Let G be a commutative distributive groupoid such that In: G
is non-empty. Then:
(i) Int G is an ideal of G.
(ii) Int G is a cancellation groupoid.
(iii) Every normal congruence of Int G can be extended to a normal congruence of G.

Proof. Apply 10.2, 10.3 and 10.4.

10.6. Proposition. The following conditions are equivalent for a commutative
distributive groupoid G:
i) ImG=03G.
(i) G is i-simple.
(iii) Every congruence of G is normal.

Proof. See 2.10 and 1.3.

10.7. Lemma. Let f be a homomorphism of a groupoid G onto a groupoid H.
Then f(Int G) < Int H. Moreover, if Int G is not empty then f(Int G) == Int H.

Proof. Easy.

10.8. Lemma. Let G be a commutative distributive groupoid and f be the canon-
ical homomorphism of G onto G/m. Then f(Int G) = Int G|m.

Proof. Apply 6.9.

10.9. Lemma. Let G be a distributive groupoid. Then Int G = Int Id G.

Proof. Use 2.6.

10.10. Proposition. Let G be a commutative distributive groupoid such that Int G
is non-empty. Then Int G is an 7-simple groupoid.

Proof. With respect to 1.2, 6.5 and 10.8, we can assume that G is medial. Let r
be a congruence of Int G and ac r bc for some a, b, ¢ € Int G. If x € G then ax, bx € Int G
andweputK = {xe€ G |axrbx}. Letxe Kandy € G. Thena.yx =ay.axray .bx=
=by.axrby.bx =b.yx (since ay, by € Int G and G is commutative and medial). We
have proved that K is an ideal, and so Int K < K. Consequently aa r bb. However
Int G < Id G, and hence a r b. The rest is clear from 10.6.

10.11. Corollary. Let H be a subgroupoid of a commutative distributive groupoid
G such that Int G = H. Suppose that Int G is non-empty. Then Int H = Int G.

10.12. Theorem. Let G be a commutative distributive groupoid such that Int G
is non-empty. Then:
(1) Int G is an ideal of G.
(ii) Int G is an i-simple idempotent cancellation groupoid.
(iii) Every congruence of Int G is normal.
(iv) Every congruence of Int G can be extended to G.

Proof. See 10.5, 10.10, 2.10 and 10.3.
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10.13. Proposition. Let G be a finitely generated commutative distributive grou-
poid. Then Int G is non-empty.
Proof. According to 10.8 and 10.9, we can assume that G is medial and idempotent.
In this case, the result follows from 9.9 and 10.7.
10.14. Corollary. Let G be a finite commutative distributive groupoid. Then
Int G is a quasigroup.
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