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Abstract. In this paper we use a generalized version of absolute continuity defined by
J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type in-
tegrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this
generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis
integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-
Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-
Pettis integral of functions defined on m-dimensional compact intervals of Rm and taking
values in a Banach space. Then, we extend this theorem to complete locally convex topo-
logical vector spaces.

Keywords: Henstock-Kurzweil-Pettis integral, controlled convergence theorem, complete
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1. Introduction

We define the Henstock-Kurzweil-Pettis integral of functions defined on a non-

degenerate compact interval S of Rm, m > 1 and taking values in a complete locally

convex space, Definition 2.4. The Henstock-Kurzweil-Pettis integral is the gener-

alization of the Pettis integral of a function, obtained by replacing the Lebesgue

integrability of scalar functions by the Henstock-Kurzweil integrability. We refer to

[10], [11] and [12] for information about Pettis integrability. For the case of Ba-

nach valued function and m = 1, Definition 2.4 is the same of Definition 3 in [2] or

Definition 2.2 in [7].

We firstly present a controlled convergence theorem for the Henstock-Kurzweil-

Pettis integral of functions defined on S and taking values in a Banach space, The-
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orem 3.3. Then, we extend Theorem 3.3 to complete locally convex spaces, The-

orem 4.2. The convergence theorems for the Henstock-Kurzweil-Pettis integral of

functions defined on one-dimensional compact intervals and taking values in a Ba-

nach space have been shown in [1], [2], [3], and [6]; the best of them is Theorem 5

in [2].

2. Basic definitions

Throughout this paper, X denotes a real Banach space with its norm ‖.‖ and X∗

its dual. By B(X∗) the closed unit ball in X∗ is denoted.

For simplicity, the letters HK and HKP stand for Henstock-Kurzweil and Henst-

ock-Kurzweil-Pettis, respectively.

By N the set of all positive integers is denoted. The set of all real numbers is

denoted R, and the ambient space of this paper is Rm, where m is a fixed positive

integer. In Rm we use the metric induced by the maximum norm. A compact interval

I in R
m refers to a rectangle in R

m, that is

I = {(x1, x2, . . . , xm) : ai 6 xi 6 bi for i = 1, 2, . . . , m}.

Let S be a fixed compact non-degenerate interval in R
m. We denote by S the

family of all closed non-degenerate subintervals of S and by Lm the collection of all

λm-measurable subsets of S, where λm stands for the Lebesgue measure in R
m.

A function F : S → X is said to be an interval function. The interval function

F is said to be additive if F (I ∪ J) = F (I) + F (J) for each nonoverlapping intervals

I, J ∈ S with I ∪ J ∈ S . We say that intervals I and J are nonoverlapping if

int(I) ∩ int(J) = ∅, where int(I) denotes the interior of I.

A pair (I, s) of an interval I ∈ S and a point s ∈ I is called tagged interval, s is

the tag of I. An HK-partition π in S is a finite collection of tagged intervals (I, s)

whose corresponding intervals are non overlapping. A function δ : A → (0, +∞) is

said to be a gauge on A, where A is a subset of S. We say that an HK-partition π

in S is

⊲ an HK-partition of S if
⋃

(I,s)∈π

I = S,

⊲ A-tagged if for all (I, s) ∈ π we have s ∈ A,

⊲ δ-fine, if for every tagged interval (I, s) ∈ π we have I ⊂ B(s, δ(s)), where

B(s, δ(s)) is the ball in R
m centered at s with radius δ(s).

Definition 2.1. A function f : S → X is called HK-integrable on S if there

exists a vector wf ∈ X satisfying the following property: for every ε > 0 there exists

244



a gauge δ on S such that for every δ-fine HK-partition π of S, we have

∥∥∥∥
∑

(I,s)∈π

f(s)λm(I) − wf

∥∥∥∥ < ε.

We write (HK)
∫

S
f = wf and call wf HK-integral of f over S.

The function f is said to be HK-integrable on a subset A ⊂ S if the function

f · χA : S → X is HK-integrable on S, where χA denotes the characteristic function

of A. We write (HK)
∫

S
f · χA = (HK)

∫
A

f for HK-integral of f on A.

If f is HK-integrable on S, then by Theorem 3.3.4 in [14], the function

F : S → X, F (I) = (HK)

∫

I

f, I ∈ S

is well defined and it is called the HK-primitive of the function f on S; by Theo-

rem 3.3.5 in [14], F is additive.

Definition 2.2. A familyM of functions f : S → X is called HK-equiintegrable

if each f ∈ M is HK-integrable and for every ε > 0 there exists a gauge δ on S such

that for every δ-fine HK-partition π of S, we have

∥∥∥∥
∑

(I,s)∈π

f(s)λm(I) − (HK)

∫

S

f

∥∥∥∥ < ε,

for all f ∈ M.

If π1 and π2 are two HK-partition in S and

λm

( ⋃

(I,s)∈π1

I△
⋃

(J,t)∈π2

J

)
6 η

(the symbol △ denotes the symmetric difference of sets), then π1 and π2 are said to

be η-close.

We set

F (π) =
∑

(I,s)∈π

F (I)

for an additive interval function F : S → R and an HK-partition π in S.

Definition 2.3. Let A be a subset of S. An additive interval function F : S →

R is said to be
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⊲ AC▽(A) if for every ε > 0 there exists a gauge δ on A and η > 0 such that for

every δ-fine η-close A-tagged HK-partitions π1 and π2 in S, we have

|F (π1) − F (π2)| 6 ε.

⊲ ACG▽(A) if there exists a sequence (Ai) of sets Ai ⊂ S such that A =
∞⋃

i=1

Ai

and for every i ∈ N the function F is AC▽(Ai)

A sequence (Fn) of additive interval functions Fn : S → R is said to be

⊲ UAC▽(A) if δ and η in the definition of AC▽(A) with F replaced by Fn are

independent of n.

⊲ UACG▽(A) if there exists a sequence (Ai) of sets Ai ⊂ S such that A =
∞⋃

i=1

Ai

and for every i ∈ N the sequence (Fn) is UAC▽(Ai).

We denote by V a complete locally convex space with its topology τ and topological

dual V ′. ByP the family of all continuous semi-norms in V is denoted. Let p be an

element ofP. We denote by Ṽp the quotient vector space of the vector space V with

respect to the equivalence relation x ∼p y ⇔ p(x − y) = 0. The map ϕp : V → Ṽp

is the canonical quotient map. The quotient normed space (Ṽp, p̃) is said to be the

normed component of the space V with respect to p, where p̃(ϕp(x)) = p(x), for each

x ∈ V . The Banach space (V p, p̄), which is the completion of the space (Ṽp, p̃), is

said to be the Banach component of the space V with respect to p. We denote by

Ṽ ′

p and V
′

p the topological duals of (Ṽp, p̃) and (V p, p̄) respectively and by B(Ṽ ′

p) the

closed unit ball in Ṽ ′

p .

For every p, q ∈ P such that p 6 q, we denote by g̃pq the map defined as follows

g̃pq : Ṽq → Ṽp, g̃pq(wq) = wp, wq ∈ Ṽq,

where wp = ϕp(x), for some vector x ∈ wq. By gpq the continuous linear extension

of g̃pq to V q is denoted.

Definition 2.4. Let f : S → V be a function such that for each v′ ∈ V ′ the

function v′(f) is HK-integrable on S. If for each I ∈ S there exists a vector wI ∈ V

such that for each v′ ∈ V ′, we have

v′(wI) = (HK)

∫

I

v′(f),

then f is said to be HKP-integrable. The vector wI is called the HKP-integral of f

over the interval I and we set wI = (HKP)
∫

I
f. The function

F : S → V, F (I) = (HKP)

∫

I

f, I ∈ S
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is called the HKP-primitive of the function f on S. Note that if I, J ∈ S and

int(I) ∩ int(J) = ∅, then for every v′ ∈ V ′, we have

v′
(

(HKP)

∫

I∪J

f

)
= (HK)

∫

I∪J

v′(f) = (HK)

∫

I

v′(f) + (HK)

∫

J

v′(f)

= v′
(

(HKP)

∫

I

f

)
+ v′

(
(HKP)

∫

J

f

)

= v′
(

(HKP)

∫

I

f + (HKP)

∫

J

f

)
.

Since V is Hausdorff, the last equality yields that the HKP-primitive F of f is

additive.

3. The controlled convergence theorem for HKP-integrable

functions taking values in Banach spaces

In this section we present the controlled convergence theorem for theHKP-integral

of Banach valued functions, Theorem 3.3. Let us start with the following lemmas

which make it possible to present clearly Theorem 3.3.

Lemma 3.1. Let (fn) be a sequence of HK-integrable functions fn : S → R and

let f : S → R be a function. Assume that

(i) fn(s) → f(s) a.e. in S,

(ii) the sequence (Fn) is UACG▽(S), where Fn’s are HK-primitives of fn’s.

Then the function f is HK-integrable on S and for every I ∈ S we have

lim
n→∞

Fn(I) = F (I),

where F is the HK-primitive of f .

P r o o f. By hypothesis there exists Z ⊂ S with λm(Z) = 0 such that fn con-

verges pointwise in E = S \Z to f . Denote f (E) = f ·χE and f
(E)
n = fn ·χE , n ∈ N.

Then, the sequence (f
(E)
n ) converges pointwise in S to f (E), and by Theorem 3.3.7

in [14] we have also that each Fn is the HK-primitive of f
(E)
n . Therefore, by Corol-

lary 1.7 in [9], we have

lim
n→∞

Fn(I) = F (I),

for any I ∈ S . �
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Lemma 3.2. Let (fk,n) be a sequence of HK-integrable functions fk,n : S → R

and let (fk) be a sequence of functions fk : S → R. Assume that

(i) for every k ∈ N, we have fk,n(s) → fk(s) a.e. in S,

(ii) there exists a function f : S → R such that fk(s) → f(s) a.e. in S,

(iii) the sequence (Fk,n)k,n is UACG▽(S), where Fk,n’s are HK-primitives of fk,n’s.

Then f is HK-integrable on S and for every I ∈ S we have

lim
k→∞

lim
n→∞

Fk,n(I) = F (I),

where F is the HK-primitive of f .

P r o o f. Note that for every k ∈ N the sequence (fk,n)n satisfies the conditions

of Lemma 3.1. Therefore every fk is HK-integrable and for every I ∈ S we have

(3.1) lim
n→∞

Fk,n(I) = Fk(I),

where Fk’s are HK-primitives of fk’s.

We are going to show that (fk) satisfies the conditions of Lemma 3.1. Evidently

(fk) satisfies (i). It remains to show that (Fk) is UACG▽(S). Since (Fk,n) is

UACG▽(S), there exists a sequence (Ai) of sets Ai ⊂ S such that S =
∞⋃

i=1

Ai

and for every i ∈ N the sequence (Fk,n) is UAC▽(Ai). Fix an arbitrary Ai. Then,

for the given ε > 0 there exists a gauge δ on Ai and η > 0 such that for every δ-fine

η-close Ai-tagged HK-partitions π1, π2 in S and for all k, n ∈ N, we have

(3.2) |Fk,n(π1) − Fk,n(π2)| 6
ε

3
.

Assume that an arbitrary k ∈ N and two arbitrary δ-fine η-close Ai-tagged HK-

partial-partitions π1 and π2 in S are given. By (3.1) there exists n(k,π1,π2) ∈ N such

that

(3.3) |Fk(π1) − Fk,n(k,π1,π2)
(π1)| <

ε

3
and |Fk,n(k,π1 ,π2)

(π2) − Fk(π2)| <
ε

3
.

Note that

|Fk(π1) − Fk(π2)| 6 |Fk(π1) − Fk,n(k,π1,π2)
(π1)|

+ |Fk,n(k,π1,π2)
(π1) − Fk,n(k,π1 ,π2)

(π2)| + |Fk,n(k,π1 ,π2)
(π2) − Fk(π2)|.

Then, the last inequality together with (3.2) and (3.3) yields

|Fk(π1) − Fk(π2)| <
ε

3
+

ε

3
+

ε

3
= ε.
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By the arbitrariness of k, π1 and π2 we obtain that (Fk) is UAC▽(Ai), and by the

arbitrariness of Ai we infer that (Fk) is UACG▽(S).

Consequently we obtain by Lemma 3.1 that the function f is HK-integrable on S

and for every I ∈ S we have

lim
k→∞

Fk(I) = F (I),

where F is the HK-primitive of f . The last equality together with (3.1) yields that

for every I ∈ S we have

lim
k→∞

lim
n→∞

Fk,n(I) = F (I).

�

The proof of Theorem 3.3 is similar in spirit to the results in [2], [10] and [11].

Theorem 3.1. Let (fn) be a sequence of HKP-integrable functions fn : S → X

and let f : S → X be a function. Assume that

(i) for every x∗ ∈ X∗, we have x∗(fn(s)) → x∗(f(s)) a.e. in S,

(ii) for every sequence (x∗

k) ⊂ B(X∗), the sequence (x∗

k(Fn))k,n is UACG▽(S),

where Fn’s are HKP-primitives of fn’s.

Then f is HKP-integrable and for every I ∈ S , we have

lim
n→∞

Fn(I) = F (I)

in the weak topology σ(X, X∗), where F is the HKP-primitive of f .

P r o o f. Since for every x∗ ∈ X∗ the sequence (x∗(Fn)) is UACG▽(S) and

x∗(Fn)’s are HK-primitives of x∗(fn)’s, Lemma 3.1 yields that the function x∗(f) is

HK-integrable on S and for every I ∈ S we have

(3.4) lim
n→∞

x∗

(
(HKP)

∫

I

fn

)
= (HK)

∫

I

x∗(f).

Fix an arbitrary I ∈ S . By C the weak closure in X of the set {(HKP)
∫

I
fn : n ∈

N} is denoted.

Now we are going to prove that the set C is weakly compact in X . Assume, by con-

tradiction, that the set C is not weakly compact. Since the sequence ((HKP)
∫

I
fn)

is weakly Cauchy in X , the set C is bounded weakly closed subset of X . There-

fore, by Theorem 1, [8], there exists θ > 0, a sequence (xn) ⊂ C and a sequence

(x∗

n) ⊂ B(X∗) such that x∗

n(xm) = 0 for n > m, x∗

n(xm) > θ for m > n. Since the
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set C \ {(HKP)
∫

I
fn : n ∈ N} contains at most one point, we can take subsequences

(gn) ⊂ (fn), (y∗

n) ⊂ (x∗

n) with the following properties

(a) y∗

n(Gm(I)) = 0 for n > m,

(b) y∗

n(Gm(I)) > θ for m > n,

where Gm’s are HKP-primitives of gm’s.

Since the function f is weakly measurable and (S,Lm, λm) is a finite perfect

measure space, we obtain by Theorem 2F in [4] that there exists a subsequence

(y∗

nk
) ⊂ (y∗

n) such that (y∗

nk
(f)) is almost everywhere convergent on S. According to

Alaoglu Theorem there exists a weak∗ cluster point y∗

0 of the sequence (y∗

nk
). Hence

we infer

y∗

nk
(f(s)) → y∗

0(f(s))

almost everywhere in S. Thus, we have that for each k ∈ N the sequence (y∗

nk
(gm))m

converges pointwise almost everywhere to y∗

nk
(f) and the sequence (y∗

nk
(f))k con-

verges pointwise almost everywhere to y∗

0(f). We also have that (y∗

nk
(Gm))k,m satis-

fies the condition (iii) of Lemma 3.2. Therefore the function y∗

0(f) is HK-integrable

on S and

(3.5) lim
k→∞

lim
m→∞

y∗

nk
(Gm(I)) =

∫

I

y∗

0(f).

Hence by (b), we get

(3.6) (HK)

∫

I

y∗

0(f) > θ.

On the other hand, since y∗

0 is a weak
∗ cluster point of the sequence (y∗

nk
), there

exists a subnet (y∗

t ) of (y∗

nk
) which is weak∗ convergent to y∗

0 . Then by (a), for each

m ∈ N we obtain

y∗

0(Gm(I)) = lim
t

y∗

t (Gm(I)) = 0,

and therefore by (3.5) we get

∫

I

y∗

0(f) = lim
m→∞

y∗

0(Gm(I)) = 0.

The last equality contradicts (3.6). Consequently, the set C is weakly compact in

X and therefore C is weakly complete. Then, since the sequence ((HKP)
∫

I
fn) is

weakly Cauchy in X , there exists wI ∈ X such that for every x∗ ∈ X∗, we have

lim
n→∞

x∗

(
(HKP)

∫

I

fn

)
= x∗(wI).
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The last equality together with (3.4) yields that for each x∗ ∈ X∗, we have

x∗(wI) = (HK)

∫

I

x∗(f).

By arbitrariness of I, this means that f is HKP-integrable and

lim
n→∞

Fn(I) = F (I)

in the weak topology σ(X, X∗), where F is the HKP-primitive of f . �

The following lemma allows us to ignore sets of measure zero in the notion of

HK-equiintegrability. The “only if part” of the lemma is proven in [5], Exercise 13.9

(there it is proven for real valued functions, but it is enough to replace the absolute

value by the norm). The “if part” is straightforward.

Lemma 3.3. Let (fn) be a pointwise bounded sequence of functions fn : S → X

and let E be subset of S such that λm(S \ E) = 0. Then, the sequence (fn) is

HK-equiintegrable if and only if the sequence (fn · χE) is HK-equiintegrable.

By Lemma 3.4 and Main Theorem 1.6 in [9], Theorem 3.3 yields the following.

Theorem 3.2. Let (fn) be a pointwise bounded sequence of HKP-integrable

functions fn : S → X and let f : S → X be a function. Assume that

(i) for every x∗ ∈ X∗, we have x∗(fn(s)) → x∗(f(s)) a.e. in S,

(ii) for every sequence (x∗

k) ⊂ B(X∗), the sequence (x∗

k(fn))k,n is HK-equiint-

egrable.

Then f is HKP-integrable and for every I ∈ S , we have

lim
n→∞

Fn(I) = F (I)

in the weak topology σ(X, X∗), where F is the HKP-primitive of f .

For the case when m = 1, Theorem 3.5 has been proved in a different way in [2],

Theorem 5.
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4. The controlled convergence theorem for HKP-integrable

functions taking values in complete locally convex spaces

The main result of the paper is Theorem 4.2 in this section. The following lemma

is the key for the extension of Theorem 3.3 to Theorem 4.2.

Lemma 4.1. A function f : S → V is HKP integrable if and only if for each

p ∈ P the function ϕp ◦ f is HKP integrable. Moreover, the equality

ϕp

(
(HKP)

∫

I

f

)
= (HKP)

∫

I

ϕp ◦ f,

holds for every p ∈ P and every I ∈ S .

P r o o f. Assume that the function f is HKP-integrable. Then, the function

ṽ′p ◦ (ϕp ◦ f) = (ṽ′p ◦ ϕp) ◦ f = v′ ◦ f,

is HK-integrable, for each ṽ′p ∈ Ṽ ′

p and every p ∈ P.

Let p be any element of P. For the given I ∈ S , we have also

(ṽ′p ◦ ϕp)

(
(HKP)

∫

I

f

)
= (HK)

∫

I

(ṽ′p ◦ ϕp) ◦ f = (HK)

∫

I

ṽ′p ◦ (ϕp ◦ f),

for each ṽ′p ∈ Ṽ ′

p . Hence, the function ϕp ◦ f is HKP-integrable in the Banach

component (V p, p̄) and ϕp((HKP)
∫

I
f) = (HKP)

∫
I
ϕp ◦ f .

Conversely, assume that for every p ∈ P the function ϕp ◦ f is HKP-integrable

in the Banach component (V p, p̄). Let I be any element of S . We set

(4.1) w(I)
p = (HKP)

∫

I

ϕp ◦ f,

for every p ∈ P.

Firstly, we show that for every v′ ∈ V ′ the function v′ ◦ f is HK-integrable. Let

v′ be any element of V ′. Since

(4.2) V ′ = {ṽ′p ◦ ϕp : p ∈ P, ṽ′p ∈ Ṽ ′

p},

there exist p ∈ P and ṽ′p ∈ Ṽ ′

p such that v′ = ṽ′p ◦ ϕp. Hence, the function v′ ◦ f =

ṽ′p ◦ (ϕp ◦ f) is HK-integrable.
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Secondly, we show that there exists wI ∈ V such that v′(wI) = (HK)
∫

I
v′ ◦ f, for

every v′ ∈ V ′. Notice that for every p ∈ P and every v′p ∈ V
′

p, we have

v′p(w
(I)
p ) = (HK)

∫

I

v′p ◦ (ϕp ◦ f) = (HK)

∫

I

ṽ′p ◦ (ϕp ◦ f),

where ṽ′p is the restriction of v
′

p to Ṽp.

Suppose that two arbitrary continuous semi norms p and q such that p 6 q are

given. Since w
(I)
q ∈ V q, there exists a sequence (w

(q)
n ) ⊂ Ṽ q such that lim

n→∞

w
(q)
n =

w
(I)
q . Define the sequence (w

(p)
n ) of vectors w

(p)
n = g̃pq(w

(q)
n ). Therefore we get

lim
n→∞

w(p)
n = gpq(w

(I)
q ).

Hence, we obtain

(4.3) lim
n→∞

ṽ′p(w
p
n) = v′

p(gpq(wq(S
′))),

for every ṽ′p ∈ Ṽ ′

p , where v′

p is the extension of ṽ
′

p to V p. We have also

lim
n→∞

ṽ′p(w
p
n) = lim

n→∞

(ṽ′p ◦ g̃pq)(w
q
n) = (HK)

∫

I

(ṽ′p ◦ g̃pq) ◦ (ϕq ◦ f)

= (HK)

∫

I

ṽ′p ◦ (g̃pq ◦ ϕq) ◦ f = (HK)

∫

I

ṽ′p ◦ (ϕp ◦ f) = v′

p(w
(I)
p ),

for every ṽ′p ∈ Ṽ ′

p , where v′

p is the extension of ṽ
′

p to V p. The last equality together

with (4.3) yields v′p(gpq(w
(I)
q )) = v′

p(w
(I)
p ), for every v′

p ∈ V
′

p. Therefore we obtain

gpq(w
(I)
q ) = w(I)

p .

Hence, by arbitrariness of p and q, Theorem II.5.4, [13] implies that there exists

wI ∈ V such that for every p ∈ P, we have

ϕp(wI) = w(I)
p .

By (4.2), for any vector v′ ∈ V ′ there exists p ∈ P and ṽ′p ∈ Ṽ ′

p such that v
′ = ṽ′p◦ϕp.

Hence, we get

v′(wI) = ṽ′p(ϕp(wI)) = ṽ′p(w
(I)
p ) = (HK)

∫

I

ṽ′p ◦ (ϕp ◦ f)

= (HK)

∫

I

(ṽ′p ◦ ϕp) ◦ f = (HK)

∫

I

v′ ◦ f.
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Finally, the function f is HKP-integrable and (HKP)
∫

I
f = wI . The last equality

together with (4.1) yields

ϕp

(
(HKP)

∫

I

f

)
= (HKP)

∫

I

ϕp ◦ f

for every p ∈ P. �

Now, we are ready to prove the main theorem.

Theorem 4.1. Let (fn) be a sequence of HKP-integrable functions fn : S → V

and let f : S → V be a function such that

(i) for each v′ ∈ V
′

, we have v′(fn) → v′(f) a.e. in S,

(ii) for every sequence (v′k) ⊂ V ′, we have (v′k(Fn))k,n is UACG▽(S), where Fn’s

are HKP-primitives of fn’s.

Then, the function f is HKP-integrable and for every I ∈ S , we have

lim
n→∞

Fn(I) = F (I)

in the weak topology σ(V, V ′), where F is the HKP-primitive of f .

P r o o f. Let q be an arbitrary element of P. We have

⊲ (ϕq ◦ fn) is a sequence of HKP-integrable functions,

⊲ for each ṽ′q ∈ Ṽ ′

q , ṽ
′

q ◦ (ϕq ◦ fn) → ṽ′q ◦ (ϕq ◦ f) a.e. in S,

⊲ for each sequence (ṽ′k) ⊂ B(Ṽ ′

q ), (ṽ′k◦(ϕq◦Fn))k,n is UACG▽(S), where ϕq◦Fn’s

are HKP-primitives of ϕq ◦ fn’s.

Therefore, by arbitrariness of q, Theorem 3.3 implies

⊲ for every p ∈ P, (ϕp ◦ f) is HKP-integrable,

⊲ for each p ∈ P, I ∈ S and each ṽ′p ∈ Ṽ ′

p

lim
n→∞

ṽ′p

(
(HKP)

∫

I

ϕp ◦ fn

)
= ṽ′p((HKP)

∫

I

ϕp ◦ f).

Hence, by Lemma 4.1, we obtain

⊲ f is HKP-integrable,

⊲ for each I ∈ S and each ṽ′p ∈ Ṽ ′

p

lim
n→∞

(ṽ′p ◦ ϕp)(Fn(I)) = (ṽ′p ◦ ϕp)(F (I)).

Finally, the last equality together with (4.2) yields that for each I ∈ S , we have

lim
n→∞

Fn(I) = F (I),

in the weak topology σ(V, V ′). �
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