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NATURAL EXTENSION OF A CONGRUENCE OF A LATTICE
TO ITS LATTICE OF CONVEX SUBLATTICES

S. Parameshwara Bhatta and H. S. Ramananda∗

Abstract. Let L be a lattice. In this paper, corresponding to a given
congruence relation Θ of L, a congruence relation ΨΘ on CS(L) is defined
and it is proved that

1. CS(L/Θ) is isomorphic to CS(L)/ΨΘ;
2. L/Θ and CS(L)/ΨΘ are in the same equational class;
3. if Θ is representable in L, then so is ΨΘ in CS(L).

1. Introduction

Let L be a lattice and CS(L) be the set of all convex sublattices of L. It is
proved in [3] that, there exists a partial order on CS(L) with respect to which
CS(L) is a lattice such that both L and CS(L) are in the same equational class. A
natural question that arises is the following:

If Θ is a congruence relation of L, does there exists a natural extension ΨΘ of Θ
to CS(L) such that L/Θ and CS(L)/ΨΘ are in the same equational class?

This paper gives an affirmative answer to this question. Further, it is proved
that, if Θ is representable in L, then so is ΨΘ in CS(L).

2. Notation and definitions

Let L be a lattice and CS(L) be the set of all convex sublattices of L. Define an
ordering ≤ on CS(L) by, for A, B ∈ CS(L), A ≤ B if and only if for each a ∈ A
there exists b ∈ B such that a ≤ b and for each b ∈ B there exists a ∈ A such that
b ≥ a. Then (CS(L);≤) is a lattice called the lattice of convex sublattices of L (see
[3]), denoted by CS(L) in this paper.

Let L be a lattice and A and B be convex sublattices of L. Then in CS(L),

A ∧B := {z ∈ L | a1 ∧ b1 ≤ z ≤ a2 ∧ b2 for some a1, a2 ∈ A, b1, b2 ∈ B} ;
A ∨B := {z ∈ L| a1 ∨ b1 ≤ z ≤ a2 ∨ b2 for some a1, a2 ∈ A, b1, b2 ∈ B}

(see [3]).
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Let L be a lattice and X be a sublattice of L. Then the convex sublattice
generated by X in L, denoted by 〈X〉, is given by

〈X〉 = {z ∈ L| a1 ≤ z ≤ a2 for some a1, a2 ∈ X}

(see [1]).
Let L be a lattice and Θ be a congruence relation of L. Then L/Θ denotes the

quotient lattice of L modulo Θ and for a ∈ L, a/Θ denotes the congruence class
containing a (see [2]).

A congruence relation Θ of a lattice L is said to be representable if there is a
sublattice L1 of L such that the map f : L1 → L/Θ defined by f(a) = a/Θ is an
isomorphism (see [1]).

3. Extending a congruence relation of L to CS(L)

The following lemma is often used in the paper.

Lemma 3.1. Let L be a lattice, Θ be a congruence relation of L and A be a convex
sublattice of L. Suppose that the elements x1, x, x2 of L satisfy the following
conditions:

(1) x1 ≤ x ≤ x2;
(2) x1 ≡ a1(Θ) for some a1 ∈ A;
(3) x2 ≡ a2(Θ) for some a2 ∈ A.

Then there exists y ∈ A such that x ≡ y(Θ).

Proof. From (1) and (2), we get

(3.1) x = x ∨ x1 ≡ x ∨ a1(Θ)

and from (1) and (3), we get

(3.2) x = x ∧ x2 ≡ x ∧ a2(Θ).

Take y = (a1 ∧ a2) ∨ (a2 ∧ x). Then

(3.3) a1 ∧ a2 ≤ y ≤ a2
and

(3.4) a2 ∧ x ≤ y ≤ a1 ∨ x .

Now from (3.1), (3.2) and (3.4), x ≡ y(Θ) and from (3.3), y ∈ A. �

In the following lemma a congruence relation on CS(L) corresponding to a
congruence relation of a lattice L is constructed. Note that, in [4], a similar
congruence relation is defined on I(L) of a trellis L, and it is used for proving some
results.

Lemma 3.2. Let L be a lattice and Θ be a congruence relation of L. Then the
binary relation Ψ on CS(L) defined by “X ≡ Y (Ψ) if and only if for each x ∈ X
there exists y ∈ Y such that x ≡ y(Θ) and for each y ∈ Y there exists x ∈ X such
that x ≡ y(Θ)”, is a congruence relation on CS(L).
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Proof. Clearly Ψ is an equivalence relation on CS(L). To show that Ψ satisfies
the substitution property, consider A, B, C ∈ CS(L) with A ≡ C(Ψ). It is enough
to prove that

A ∧B ≡ C ∧B(Ψ);

A ∨B ≡ C ∨B(Ψ).
Let x ∈ A ∧ B. Then, by the definition of A ∧ B in CS(L), there exist a1, a2

∈ A and b1, b2 ∈ B such that a1 ∧ b1 ≤ x ≤ a2 ∧ b2. Since a1 ∈ A and A ≡ C(Ψ),
there exists c1 ∈ C such that a1 ≡ c1(Θ). But then a1 ∧ b1 ≡ c1 ∧ b1(Θ). Similarly,
a2 ∧ b2 ≡ c2 ∧ b2(Θ) for some c2 ∈ C. Note that c1 ∧ b1 and c2 ∧ b2 ∈ C ∧ B.
Applying Lemma 3.1 for a1 ∧ b1, x, a2 ∧ b2 in L, noting that C ∧B ∈ CS(L), there
exists y ∈ C ∧B such that x ≡ y(Θ).

Similarly, for each x ∈ C ∧B there exists y ∈ A ∧B such that x ≡ y(Θ). Hence
A ∧B ≡ C ∧B(Ψ).

By the dual argument it follows that A ∨B ≡ C ∨B(Ψ). �

Definition 3.3. For a given congruence relation Θ on L, the congruence relation
on CS(L) defined in Lemma 3.2 is denoted by ΨΘ.

One can easily verify the following lemma.

Lemma 3.4 ([3]). L/Θ is a suborder of CS(L) for any Θ ∈ ConL.

Theorem 3.5. Let L be a lattice and Θ be a congruence relation of L. Then
CS(L/Θ) is isomorphic to CS(L)/ΨΘ.

Proof. Define a map f : CS(L/Θ)→ CS(L)/ΨΘ by
f(X) = (∪X)/ΨΘ .

It is easy to see that ∪X is a convex sublattice of L and hence the map f is
well-defined.

To prove f is one to one, suppose that (∪X)/ΨΘ = (∪Y )/ΨΘ. We assert that
∪X = ∪Y which eventually proves X = Y . Let x ∈ ∪X. Since (∪X) ≡ (∪Y )(ΨΘ),
there is a y ∈ ∪Y such that x ≡ y(Θ). Now x/Θ = y/Θ ∈ Y so that x ∈ ∪Y . Hence
∪X ⊆ ∪Y . Similarly it follows that ∪Y ⊆ ∪X. Thus f is one to one.

To prove f is onto, we need some preliminary considerations.
Let A ∈ CS(L) and S =

⋃
{B ∈ CS(L) | B ≡ A(ΨΘ)}.

Claim 1: S is a convex sublattice of L.
Let x, y ∈ S. Then x ∈ A1 ≡ A(ΨΘ) and y ∈ A2 ≡ A(ΨΘ) for some A1,
A2 ∈ CS(L). Now A1 ∧

CS(L)
A2 ≡ A1 ∨

CS(L)
A2 ≡ A(ΨΘ). Note that x∧y ∈ A1 ∧

CS(L)
A2

and x ∨ y ∈ A1 ∨
CS(L)

A2. Hence x ∧ y and x ∨ y ∈ S.

Let a ≤ x ≤ b in L and a, b ∈ S. Then a ∈ A1 ≡ A(ΨΘ) and b ∈ A2 ≡ A(ΨΘ) for
some A1, A2 ∈ CS(L). We can assume w.l.g that A1 ≤

CS(L)
A2. Let C= [A1)∩ (A2],

where [A1) is the filter of L generated by A1 and (A2] is the ideal of L generated
by A2. Then C is a convex sublattice of L. Also A1 ≤

CS(L)
C ≤
CS(L)

A2 so that

A1 ≡ C ≡ A2(ΨΘ). Thus x ∈ C ⊆ S. Claim 1 holds.
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Claim 2: S ≡ A(ΨΘ).
Let x ∈ A. Since A ⊆ S, clearly x ∈ S and x ≡ x(Θ). On the other hand, let
y ∈ S. Then y ∈ B ≡ A(ΨΘ) for some B in CS(L), i.e. there exists x ∈ A such
that y ≡ x(Θ). Claim 2 holds.

Now set

X := {x/Θ ∈ L/Θ| x ∈ S}.

We shall prove that X is a convex sublattice of L/Θ. Let a/Θ, b/Θ ∈ X. Then
a/Θ = x/Θ and b/Θ = y/Θ for some x, y ∈ S . Now, since S is a sublattice of
L, x ∧ y and x ∨ y ∈ S. Therefore x ∧ y/Θ = x/Θ ∧ y/Θ = a/Θ ∧ b/Θ ∈ X and
x ∨ y/Θ = x/Θ ∨ y/Θ = a/Θ ∨ b/Θ ∈ X.

Let a/Θ ≤
L/Θ
c/Θ ≤

L/Θ
b/Θ and a/Θ, b/Θ ∈ X. We can assume w.l.g that a,

b ∈ S. Using Lemma 3.4, there exist x ∈ c/Θ and b1 ∈ b/Θ such that a ≤ x ≤ b1.
Applying Lemma 3.1 for a ≤ x ≤ b1 in L and S ∈ CS(L), there exists y ∈ S such
that x ≡ y(Θ), i.e., y/Θ = x/Θ = c/Θ ∈ X. Hence X is a convex sublattice of
L/Θ.

It is easy to see that ∪X ≡ S(ΨΘ). Now X ∈ CS(L/Θ) and from claim 2,
∪X ≡ S ≡ A(ΨΘ), so that f is onto.

To prove that f is order preserving, let X ≤
CS(L/Θ)

Y . Consider any x ∈ ∪X.

Then x/Θ ∈ X ≤
CS(L/Θ)

Y and hence there exists y/Θ ∈ Y such that x/Θ ≤
L/Θ
y/Θ.

Now x/Θ ∨ y/Θ = (x ∨ y)/Θ = y/Θ ∈ Y . Hence x ∨ y ∈ ∪Y and also x ≤ x ∨ y.
Similarly for each y ∈ ∪Y we can find x ∈ ∪X such that x ≤ y. Thus ∪X ≤

CS(L)
∪Y .

Therefore (∪X)/ΨΘ ≤
CS(L)/ΨΘ

(∪Y )/ΨΘ, proving f is order preserving.

It remains to prove that f−1 is order preserving. First we observe the following
fact.
Claim 3: Let X ∈ CS(L/Θ) and S =∪{A ∈ CS(L)|A ≡ ∪X(ΨΘ)}. Then S = ∪X.
Since ∪X ∈ CS(L) and ∪X ≡ ∪X(ΨΘ), ∪X ⊆ S. On the other hand, if x ∈ S,
then x ∈ A ≡ ∪X(ΨΘ), for some A ∈ CS(L). Now there exists y ∈ ∪X such that
x ≡ y(Θ). But then, x/Θ = y/Θ ∈ X. Hence x ∈ ∪X. Claim 3 holds.

Let (∪X)/ΨΘ ≤
CS(L)/ΨΘ

(∪Y )/ΨΘ. We prove that ∪X ≤
CS(L)

∪Y which leads to

X ≤
CS(L/Θ)

Y . Using Claim 3, it can be assumed that ∪X = S1 and ∪Y = S2 where

S1 and S2 are as defined in Claim 3. It remains to show that S1 ≤
CS(L)

S2.

Let x ∈ S1. Then x ∈ A ≡ ∪X(ΨΘ), for some A ∈ CS(L).
Since S1/ΨΘ ≤

CS(L)/ΨΘ

S2/ΨΘ and A ∈ S1/ΨΘ ; by Lemma 3.4, there exists

B ∈ S2/ΨΘ such that A ≤
CS(L)

B. Since x ∈ A ≤
CS(L)

B, there exists y ∈ B such

that x ≤ y. Clearly B ⊆ S2, so that y ∈ S2. Similarly one can prove that for each
x ∈ S2 there exists y ∈ S1 such that y ≤ x. Thus S1 ≤

CS(L)
S2. �

With the aid of Theorem 3.5, we obtain the following result.
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Corollary 3.6. Let L be a lattice and Θ be a congruence relation of L. Then L/Θ
and CS(L)/ΨΘ are in the same equational class.

Proof. It is known that for a lattice L, L/Θ and CS(L/Θ) are in the same
equational class ( [3]). Now by Theorem 3.5, CS(L)/ΨΘ is also in the same
equational class. �

Next theorem shows that, the map Θ→ ΨΘ, preserves representability. But it
requires a lemma.

In the following lemma a sublattice of CS(L) corresponding to a sublattice of L
is constructed.

Lemma 3.7. Let L1 be a sublattice of L. Let
Cvx(L1) := {〈X〉 ∈ CS(L)|X ∈ CS(L1)}.

Then Cvx(L1) is a sublattice of CS(L).

Proof. The result follows by noting that, for 〈X〉, 〈Y 〉 ∈ Cvx(L1),
〈X〉 ∧

CS(L)
〈Y 〉 =

〈
X ∧
CS(L1)

Y
〉

and

〈X〉 ∨
CS(L)

〈Y 〉 =
〈
X ∨
CS(L1)

Y
〉
. �

Theorem 3.8. If Θ is a representable congruence relation of L, then so is ΨΘ of
CS(L).

Proof. Let Θ be a representable congruence relation of L. Then there exists a
sublattice L1 of L such that the map L1 → L/Θ, a 7→ a/Θ, defines an isomorphism.
Let Cvx(L1) be the sublattice of CS(L) as defined in Lemma 3.7.

Define a map f : Cvx(L1)→ CS(L)/ΨΘ by
f(〈X〉) = 〈X〉 /ΨΘ ,

where X ∈ CS(L1). We shall prove that f is an isomorphism.
Clearly f is well defined and a homomorphism.
Let 〈X〉 ≡ 〈Y 〉 (ΨΘ). We claim that X = Y , which proves that f is one to one.

Let x ∈ X. Then there exists y ∈ 〈Y 〉 such that x ≡ y(Θ). Since y ∈ 〈Y 〉, there
exist y1, y2 ∈ Y such that y1 ≤ y ≤ y2. Then

y1 = y ∧ y1 ≡ x ∧ y1(Θ)(3.5)

and

y2 = y ∨ y2 ≡ x ∨ y2(Θ) .(3.6)
Since x, y1, y2 ∈ L1 and L1 has only one element in each congruence class, (3.5)
and (3.6) give y1 ≤ x ≤ y2. Now x ∈ Y by the convexity of Y in L1. Therefore
X ⊆ Y . Similarly, by interchanging X and Y , we get Y ⊆ X.

To prove that f is onto, let A ∈ CS(L). Set
X := {x ∈ L1|A ∩ (x/Θ) 6= ∅} .
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Then X is nonempty. In fact, A is nonempty therefore there exists an element
a ∈ A and

A = A ∩ L = A ∩ (
⋃
x∈L1

x/Θ) =
⋃
x∈L1

(
A ∩ (x/Θ)

)
so that a ∈ A ∩ (x/Θ) for some x ∈ L1. But then x ∈ X.

We prove that X is a convex sublattice of L1. Let a, b ∈ X. Since L1 is
a sublattice of L, a ∧ b and a ∨ b ∈ L1. Further, since A ∩ (a/Θ) 6= ∅ and
A∩ (b/Θ) 6= ∅, take x ∈ A∩ (a/Θ) and y ∈ A∩ (b/Θ). Then x∧ y ∈ A∩ ((a∧ b)/Θ)
and x ∨ y ∈ A ∩ ((a ∨ b)/Θ), proving A ∩ ((a ∧ b)/Θ) 6= ∅ and A ∩ ((a ∨ b)/Θ) 6= ∅.
Thus a ∧ b and a ∨ b ∈ X.

Let x1, x2 ∈ X and x1 ≤
L1

x ≤
L1

x2. Since A ∩ (x1/Θ) 6= ∅ and A ∩ (x2/Θ) 6= ∅,

take a ∈ A ∩ (x1/Θ) and b ∈ A ∩ (x2/Θ). By Lemma 3.1, there exists y ∈ A such
that x ≡ y(Θ). Therefore y ∈ A ∩ (x/Θ), so that A ∩ (x/Θ) 6= ∅. Thus x ∈ X.
Hence X is a convex sublattice of L1.

Now we prove that 〈X〉 ≡ A(ΨΘ).
Let x ∈ 〈X〉. Then there exist x1, x2 ∈ X such that x1 ≤ x ≤ x2. Since

A ∩ (x1/Θ) 6= ∅ and A ∩ (x2/Θ) 6= ∅, take b1 ∈ A ∩ (x1/Θ) and b2 ∈ A ∩ (x2/Θ).
Then again by Lemma 3.1, there is a y ∈ A such that x ≡ y(Θ).

On the other hand, if x ∈ A, then x ∈ A∩ (y/Θ) for some y ∈ L1. Clearly y ∈ X
and y ≡ x(Θ) holds. �
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