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K Y BE R NE T IK A — VO L UM E 4 6 ( 2 0 1 0 ) , NU MB E R 6 , P AGE S 1 0 7 8 – 1 0 9 7

T -EXTENSION AS A METHOD OF CONSTRUCTION

OF A GENERALIZED AGGREGATION OPERATOR

Julija Lebedinska

Generalized aggregation operators are the tool for aggregation of fuzzy sets. The ap-
paratus was introduced by Takači in [11]. T -extension is a construction method of a gen-
eralized aggregation operator and we study it in the paper. We observe the behavior of a
T -extension with respect to different order relations and we investigate properties of the
construction.
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1. INTRODUCTION

This paper is a contribution to the theory of generalized aggregation operators
(shortly gagops) introduced by Takači in [11]. The term generalized refers to the
inputs of an aggregation operator (shortly agop), they are a special type of fuzzy
sets. In the sequel we study a method of construction of a gagop by means of an
arbitrary continuous t-norm, called T -extension. Another construction method and
namely pointwise extension of an agop was previously studied in [6].

For more convenient reading the basic knowledge of the theory of fuzzy sets and
the theory of agops is required. For the information on the first topic the reader can
refer e. g. to [2, 5, 10]. Basic knowledge on the theory of agops is provided in the
sequel, but for the deeper understanding sources [1, 3] can be advised.

The paper is organized as follows: Section 2 contains basic notions related to
the theory of agops; Section 3 contains results on a continuous t-norm, these results
play an important role in many proofs provided in the contribution. We recall the
definition of a gagop in Section 4; Section 5 is the main part of the contribution and
it is structured in the following way: first we recall the definition of a T -extension,
after that we study possible sets of input of a T -extension, then we study T -extension
w.r.t. different order relations, we conclude the section by some properties of a T -
extension; and we conclude the paper by Section 6.
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2. PRELIMINARIES

Aggregation of several input values into a single output value is an indispensable
tool not only of mathematics or physics, but also when studying different problems
in engineering, economics and other fields of science. The problem of aggregation is
very broad in general, we generalize agops defined on the unit interval and having
the finite number of input values. In the sequel we give the definition, examples and
the main properties of agops which are needed for our work. For more information
an interested reader can refer e. g. to [1, 3].

Definition 2.1. A mapping A : ∪n∈N[0, 1]n → [0, 1] is an agop on the unit interval
if for every n ∈ N the following conditions hold:

(A1) A(0, . . . , 0) = 0

(A2) A(1, . . . , 1) = 1

(A3) (∀i = 1, n) (xi ≤ yi) ⇒ A(x1, x2, . . . , xn) ≤ A(y1, y2, . . . , yn).

Conditions (A1) and (A2) are called boundary conditions, and they ensure that
aggregation of completely bad (good) results will give the completely bad (good)
output. Condition (A3) resembles the monotonicity property of A.

In general, the number of the input values to be aggregated is unknown, and
therefore an agop can be presented as a family A = (A(n))n∈N, where A(n) = A|[0,1]n .
Operators A(n) and A(m) for different n and m need not be related.

A specific case is the aggregation of a singleton, i. e., the unary operator A(1) :
[0, 1] → [0, 1]. Throughout the work we will follow the convention A(1)(x) = x, x ∈
[0, 1].

Definition 2.2. An element x ∈ [0; 1] is called A-idempotent element whenever
A(n)(x, . . . , x) = x, ∀n ∈ N. A is called an idempotent agop if each x ∈ [0; 1] is an
idempotent element of A.

0 and 1 are trivial A-idempotent elements for an arbitrary agop.

Definition 2.3. An agop A is called a symmetric agop if
∀n ∈ N, ∀x1, . . . , xn ∈ [0; 1] : A(x1, . . . , xn) = A(xπ(1), . . . , xπ(n)) for all permuta-
tions π = (π(1), . . . , π(n)) of (1, . . . , n).

A weighted mean W (x1, . . . , xn) =
∑n

i=1 w
(n)
i xi, with w

(n)
i ≥ 0 and such that

∑n
i=1 w

(n)
i = 1 for all n ∈ N is an example of nonsymmetric agop.

Definition 2.4. An agop A is associative if ∀n, m ∈ N, ∀x1, . . . , xn, y1, . . . , ym ∈
[0; 1] : A(x1, . . . , xn, y1, . . . , ym) = A(A(x1, . . . , xn), A(y1, . . . , yn)).

The associativity of an agop allows to aggregate first some subsystems of all inputs,
and then the partial outputs. For practical purposes we can start with aggregation
procedure before knowing all inputs to be aggregated.

Definition 2.5. An agop A is bisymmetric if ∀n, m ∈ N, ∀x11, . . . , xmn ∈ [0; 1] :
A(mn)(x11, . . . , xmn) = A(m)(A(n)(x11, . . . , x1n), . . . , A(n)(xm1, . . . , xmn)) =
= A(n)(A(m)(x11, . . . , xm1), . . . , A(m)(x1n, . . . , xmn)).
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The bisymmetry allows to aggregate first rows and then partial outputs or first
columns and then partial outputs if information is stored in the form of the matrix.
Bisymmetry is implied by associativity and symmetry.

Definition 2.6. An element e ∈ [0; 1] is called a neutral element of A if ∀n ∈
N, ∀x1, . . . , xn,∈ [0; 1] if xi = e for some i ∈ {1, . . . , n} then

A(x1, . . . , xn) = A(x1, . . . , xi−1, xi+1, . . . , xn).

So, the neutral element can be omitted from aggregation inputs without influencing
the final output.

Typical examples are the following:

Π(x1, . . . , xn) = Πn
i=1xi with e = 1,

min(x1, . . . , xn) = min(x1, . . . , xn) with e = 1,

max(x1, . . . , xn) = max(x1, . . . , xn) with e = 0.

Agops

M(x1, . . . , xn) =
1

n

n
∑

i=1

xi,

∀n ≥ 2, (x1, . . . , xn) 6= (1, . . . , 1) : Aw(x1, . . . , xn) = 0,

∀n ≥ 2, (x1, . . . , xn) 6= (0, . . . , 0) : As(x1, . . . , xn) = 1,

G(x1, . . . , xn) = (Πn
i=1xi)

1/n

do not have neutral elements.
The existence of the neutral element is not related to the previous properties such

as continuity, symmetry, associativity or bisymmetry.

Definition 2.7. An element a ∈ [0; 1] is called an absorbing element of A if

∀n ∈ N, ∀x1, . . . , xn,∈ [0; 1] : a ∈ {x1, . . . , xn} ⇒ A(x1, . . . , xn) = a.

3. RESULTS FOR CONTINUOUS T-NORM

In this section we provide results related to continuous t-norms. Basics and impor-
tant results on t-norms can be found e. g. in [4]. For the sake of brevity we skip
proof of theorem 3.3, it follows from theorem 3.1, and it can be also found in the
author’s thesis [7].

Below provided results appear in literature with different combinations of t-norm
and properties of fuzzy sets. Combination of continuous t-norm and upper semicon-
tinuous fuzzy sets with bounded α-cuts ∀α > 0 is important for us, thus we prove
these results for this case.

Theorem 3.1. If ∗ : R × R → R is a continuous operation, T is a continuous t-
norm and P, Q ∈ F (R) are upper semicontinuous fuzzy sets with bounded α-cuts
∀α > 0 then for all z ∈ R, z = x ∗ y ∃x0, y0 ∈ R such that z = x0 ∗ y0 and
(P ∗ Q)T (z) = T (P (x0), Q(y0)).
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P r o o f . According to the extension principle

(P ∗ Q)T (z) = sup
x∗y=z

T (P (x), Q(y)).

The case when (P ∗Q)T (z) = 0 is evident. Therefore we assume that (P ∗Q)T (z) =
α > 0 and

T (P (x), Q(y)) < α = sup
x,y∈R:x∗y=z

T (P (x), Q(y))

for all x, y : x ∗ y = z.
According to the definition of supremum there exists a sequence (αn): αn → α

from below and moreover we can construct sequences (xn), (yn) : ∀n xn ∗yn = z and
T (P (xn), Q(yn)) ≥ αn.

P, Q are upper semicontinuous fuzzy sets with bounded α-cuts Pα, Qα ∀α > 0,
this implies that ∀α > 0 α-cuts are closed and bounded intervals and as a result
sequences (xn), (yn) are bounded. It is a known fact that a bounded sequence has a
convergent subsequence, therefore ∃(xnk

) ⊆ (xn) which converges to some point x0.
Further we consider (ynk

) a subsequence of (yn) with corresponding to (xnk
)

numbers. Again (ynk
) is a bounded sequence in compact sets Qαn and we can

extract (ynkl
):

(ynkl
) ⊆ (ynk

) and ynkl
→ y0 when l → ∞.

We go back to (xnk
) and extract subsequence (xnkl

) with corresponding to (ynkl
)

numbers. xnkl
→ x0 (as a subsequence of the convergent sequence). The continuity

of ∗ and constructions of (xn), (yn) allow us to state that x0 ∗ y0 = z.
Further we assume that

P (xnkl
) = βnkl

Q(ynkl
) = γnkl

.

As (βnkl
), (γnkl

) are bounded sequences, then we can extract convergent subse-
quences (similar reasoning like above allows us to extract subsequences with the
same index numbers):

(βm) ⊆ (βnkl
) and βm → β when m → ∞

(γm) ⊆ (γnkl
) and γm → γ when m → ∞.

By construction of (βm), (γm) we have:

T (βm, γm) ≥ αm.

By construction of the sequence (αm) αm → α from below.
By continuity of ∗:

x0 ∗ y0 = z,

by continuity of T :
T (β, γ) ≥ α.

Since P (xm) ≥ βm, ∀m this implies that P (x0) ≥ βm, ∀m and as a result P (x0) ≥ β,
and similarly Q(y0) ≥ γ.
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Using monotonicity of T we can write:

T (P (x0), Q(y0)) ≥ T (β, γ) ≥ α,

thus we have obtained that T (P (x0), Q(y0)) ≥ α, but α is the supremum, so only
the equality is possible. �

We use the following definition of fuzzy quantity in the paper:

Definition 3.2. A convex, upper semicontinuous fuzzy set M : R → [0, 1] with
bounded α-cuts for all α > 0 is called a fuzzy quantity.

Theorem 3.3. If ∗ : R × R → R is continuous operation, T is an arbitrary contin-
uous t-norm and P, Q are fuzzy quantities then (P ∗ Q)T is a fuzzy quantity.

4. GENERALIZED AGGREGATION

The problem of aggregation can be generalized if we use fuzzy subsets as input infor-
mation. This approach is initiated in [11] by Takači. Other interesting, conceptually
different approaches of generalization can be found in the literature, e. g. in [8, 9, 12]
and others.

Let F (X) be the set of all fuzzy subsets of the universe X , ≤ be some order
relation defined on F (X). Element 0̃ ∈ F (X) is the minimal and 1̃ ∈ F (X) is the
maximal element w.r.t. ≤.

Definition 4.1. (Takači [11]) A mapping Ã : ∪n∈NF (X)n → F (X) is called a
generalized aggregation operator w.r.t. the order relation ≤, if for every n ∈ N the
following conditions hold:

(Ã1) Ã(0̃, . . . , 0̃) = 0̃

(Ã2) Ã(1̃, . . . , 1̃) = 1̃

(Ã3) (∀i = 1, n) (Pi ≤ Qi) ⇒ Ã(P1, . . . , Pn) ≤ Ã(Q1, . . . , Qn),
where P1, . . . , Pn, Q1, . . . , Qn ∈ F (X).

A gagop can be presented as a family Ã = (Ã(n))n∈N, usually we consider an arbi-
trary n-ary restriction of this family.

We use convention Ã(1)(P (x)) = P (x) ∀P (x) ∈ F (X).
We use the concept of definition 4.1, but we vary properties of relation ≤ (is should

not necessarily be a partial ordering with properties of reflexivity, antisymmetry and
transitivity); we also consider different modification of 0̃ and 1̃; and we change sets
of input and output values.

5. T -EXTENSION OF AN AGOP A

Definition 4.1 provides the concept a gagop. We need to specify a construction
method to be able investigate it in more details. Different methods are summarized
in [11]. We recall definition of T -extension.

Let T be an arbitrary t-norm, A be an arbitrary agop defined on the subset of
X , then:
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Definition 5.1. (Takači [11]) A mapping Ã : ∪n∈NF (X)n → F (X) defined in the
following way

Ã(P1, . . . , Pn)(x) = sup{T (P1(x1), . . . , Pn(xn))|

(x1, . . . , xn) ∈ Xn : A(x1, . . . , xn) = x}, (1)

is called a T -extension of an agop A.

We put the following restriction on T -extension studied in the paper:

1. number of input values is finite

2. t-norm T is continuous

3. agop A is continuous agop defined on the unit interval

4. input values are upper semicontinuous fuzzy sets with bounded α-cuts for every
α > 0 defined on the unit interval and taking values from the unit interval.

Formulating results further in the paper we by default assume that conditions 1. – 3.

are fulfilled. If it is not required we specify it separately.
In the paper F ∗([0, 1]) = {P |P : [0, 1] → [0, 1]} denotes the set of upper semicon-

tinuous fuzzy sets with bounded α-cuts for every α > 0.
We also use sets FQ([0, 1]), FI([0, 1]), FN([0, 1]) (correspondingly the set of all

fuzzy quantities, fuzzy intervals and fuzzy numbers defined on the unit interval) in
the role of the set of input and output values. When we restrict the set of inputs we
require that output values belong to the same set.

We give definitions of fuzzy interval and fuzzy number used in the paper (defini-
tion of fuzzy quantity is specified before, see definition 3.2):

Definition 5.2. A fuzzy quantity P is called a fuzzy interval if ∃I = [a, b] ⊆
(−∞, +∞) : P (x) = 1 ⇔ x ∈ I. Interval I is called the core of P .

Definition 5.3. Fuzzy quantity P is called a fuzzy number if ∃!x ∈ R : P (x) = 1.
Point x is called the core of P .

5.1. The set of inputs of a T -extension

Provided restrictions 1, 2 and 3 we ensure that aggregated result belongs to F ∗([0, 1])
when input values are taken from the same set.

Consider FQ([0, 1]) in the role of the set of inputs of Ã.

As a corollary from theorem 3.3 we get the following result:

Corollary 5.4. If Ã is a T -extension of an agop A given by (1) and P1, . . . , Pn ∈
FQ([0, 1]) then

Ã(P1, . . . , Pn) ∈ FQ([0, 1]).

The proposition formulated below indicates case when the result of aggregation of
fuzzy intervals is a fuzzy interval (as a corollary we get the same result for fuzzy
numbers).
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Proposition 5.5. If Ã is a T -extension of an agop A given by (1), P1, . . . , Pn ∈
FI([0, 1]) and I1, . . . , In are their corresponding cores then Ã(P1, . . . , Pn) ∈ FI([0, 1])
and its core is I = {A(x1, . . . , xn)|(x1, . . . , xn) : xi ∈ Ii, i = 1, . . . , n}.

P r o o f . The class of fuzzy intervals is a subclass of fuzzy quantities, therefore
according to the results of corollary 5.4 Ã(P1, . . . , Pn) will be a fuzzy quantity at
least, when P1, . . . , Pn ∈ FI([0, 1]). This implies, that if Ã(P1, . . . , Pn) has a core,
then it is in the form of continuous interval, otherwise Ã(P1, . . . , Pn) will not be
convex.

Now we show that Ã(P1, . . . , Pn)(x)=1 iff x ∈ I.
Assume x ∈ I this implies that ∃(x∗

1, . . . , x
∗

n) : x∗

i ∈ Ii, i = 1, . . . , n and A(x∗

1, . . .
. . . , x∗

n) = x.
Consider

Ã(P1, . . . , Pn)(x) = sup{T (P1(x1), . . . , Pn(xn))|xi ∈ [0, 1] : A(x1, . . . , xn) = x}

≥ T (P1(x
∗

1), . . . , Pn(x∗

n)) = 1

and hence Ã(P1, . . . , Pn)(x) = 1.
Assume Ã(P1, . . . , Pn)(x) = 1, according to theorem 3.1

∃x∗

1, . . . , x
∗

n : A(x∗

1 , . . . , x
∗

n) = x and Ã(P1, . . . , Pn)(x) = T (P1(x
∗

1), . . . , Pn(x∗

n)).
Since Ã(P1, . . . , Pn)(x) = 1 by neutrality of t-norm versus 1 we have Pi(x

∗

i ) = 1,
i = 1, . . . , n, thus x∗

i ∈ Ii and by definition of I we have x ∈ I. �

5.2. T -extension w.r.t. vertical order relations

We introduce the class of order relations (together with the minimal and the maximal
element) and explore behavior of T -extension w.r.t. it, namely we study properties

(Ã1), ˜(A2) and ˜(A3) from definition 4.1.
We introduce order relation ⊆α

F1.

Definition 5.6. Let α ∈ [0, 1], P, Q ∈ F ([0, 1])

P ⊆α
F1 Q ⇔ (∀x ∈ [0, 1])(P (x) ≥ α ⇒ P (x) ≤ Q(x)).

Let denote =α
F1 the following relation:

P =α
F1 Q ⇔ P ⊆α

F1 Q and Q ⊆α
F1 P.

Relation =α
F1 is equivalence relation on the set F ([0, 1]) and ⊆α

F1 is reflexive, anti-
symmetric and transitive order relation w.r.t. it.

The maximal element w.r.t. ⊆α
F1 is defined in the following way:

1̃(x) = 1, ∀x ∈ [0, 1]. (2)

Let
Θ = {0̃(x)|0̃(x) ≤ α, ∀x ∈ [0, 1]}.

Θ is the class of minimal elements.
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We consider all elements of Θ to be equivalent and we say that boundary condition
(Ã1) in definition 4.1 amounts to

Ã(n)(0̃1, . . . , 0̃n) ∈ Θ (3)

for all n ∈ N and for all 0̃1, . . . , 0̃n ∈ Θ.
Now we formulate result, which shows that T -extension is a gagop (in the sense

of definition 4.1) w.r.t. ⊆α
F1.

Theorem 5.7. Let α ∈ [0, 1]. An arbitrary T -extension Ã : ∪n∈NF ∗([0, 1])n →
F ∗([0, 1]) of an arbitrary agop A given by (1) is a gagop w.r.t. the order relation
⊆α

F1.

P r o o f . If we consider an arbitrary vector (x1, . . . , xn) ∈ [0, 1]n then applying the
restriction from above of an arbitrary t-norm by TM we obtain:

T (0̃1(x1), . . . , 0̃n(xn)) ≤ TM (0̃1(x1), . . . , 0̃n(xn)). (4)

According to the definition of 0̃i, ∀xi ∈ [0, 1] 0̃i(xi) ≤ α thus the same is true for
the minimum, i. e.:

TM (0̃1(x1), . . . , 0̃1(xn)) ≤ α. (5)

Evidently using formulas (4), (5) for an arbitrary x ∈ [0, 1] we obtain modified ˜(A1)
(formula (3)).

According to the definition of 1̃ (formula (2)) for an arbitrary vector (x1, . . . , xn) ∈
[0, 1]n the following holds:

T (1̃(x1), . . . , 1̃(xn)) = T (1, . . . , 1) = 1 for an arbitrary x ∈ [0, 1]

and thus ˜(A2) is straightforward.
Consider the proof of (Ã3). We take an arbitrary x ∈ [0, 1] : Ã(P1, . . . , Pn)(x) ≥ α

and consider Ã(P1, . . . , Pn)(x) and Ã(Q1, . . . , Qn)(x):

according to theorem 3.1 ∃ (x∗

1, . . . , x
∗

n) :

A(x∗

1, . . . , x
∗

n) = x

and
Ã(P1, . . . , Pn)(x) = T (P1(x

∗

1), . . . , Pn(x∗

n)). (6)

Similarly ∃ (x
′

1, . . . , x
′

n) :
A(x′

1, . . . , x
′

n) = x

and
Ã(Q1, . . . , Qn)(x) = T (Q1(x

′

1), . . . , Qn(x′

n)).

We remind that
Ã(P1, . . . , Pn)(x) ≥ α (7)

and using ∀i Pi ⊆
α
F1

Qi, i. e.:

(Pi(x
∗

i ) ≥ α) ⇒ (Pi(x
∗

i ) ≤ Qi(x
∗

i ))
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and formula (6) we can write

α ≤ T (P1(x
∗

1), . . . , Pn(x∗

n)) ≤ Pi(x
∗

i ) ≤ Qi(x
∗

i ), ∀i.

Using the monotonicity of t-norm we can continue in the following way:

T (P1(x
∗

1), . . . , Pn(x∗

n)) ≤ T (Q1(x
∗

1), . . . , Qn(x∗

n)).

But according to the definition of vector (x′

1, . . . , x
′

n)

T (Q1(x
∗

1), . . . , Qn(x∗

n)) ≤ T (Q1(x
′

1), . . . , Qn(x′

n))

and thus
Ã(P1, . . . , Pn)(x) ≤ Ã(Q1, . . . , Qn)(x). (8)

Point x was chosen according to the formula (7) and we obtained inequality (8),
thus we have shown that (Ã3) holds. �

Order of fuzzy sets by inclusion is a special case of ⊆α
F1

when α = 0, thus the
above result holds also for this order relation.

5.3. T -extension w.r.t. horizontal order relations

In this subsection we study the behavior of a T -extension w.r.t. another class of
order relations.

Definition 5.8. Let α ∈ (0, 1], P, Q ∈ F ([0, 1])

P ⊆α
F2

Q ⇔ P
α
≤ Qα,

where

Pα = {x : P (x) ≥ α}, min Pα = Pα, max Pα = P
α
,

Qα = {x : Q(x) ≥ α}, min Qα = Qα, maxQα = Q
α
.

Let denote =α
F2 the following relation:

P =α
F2 Q ⇔ P ⊆α

F2 Q and Q ⊆α
F2 P.

Relation ⊆α
F2 is antisymmetric and transitive order relation w.r.t. =α

F2.
The classes

Θ = {0̃(x)|0̃(x) = 1, if x = 0 and 0̃(x) < α if x ∈ (0, 1]},

Σ = {1̃(x)|1̃(x) = 1, if x = 1 and 1̃(x) < α if x ∈ [0, 1)}

will be called correspondingly the class of minimal and maximal elements.
We consider that elements of the class of minimal elements Θ (respectively from

the class of maximal elements Σ) are equivalent. We say that the boundary condition
(Ã1) w.r.t. ⊆α

F2
is satisfied if (3) holds. The boundary condition (Ã2) in definition

4.1 amounts to
Ã(n)(1̃1, . . . , 1̃n) ∈ Σ

for all n ∈ N and for all 1̃1, . . . , 1̃n ∈ Σ.
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Theorem 5.9. Let α ∈ [0, 1]. An arbitrary T -extension Ã : ∪n∈NF ∗([0, 1])n →
F ∗([0, 1]) of an arbitrary agop A given by (1) is a gagop w.r.t. the order relation
⊆α

F2.

P r o o f . First we show that the modified border condition (Ã1) holds.
We consider Ã(n)(0̃1, . . . , 0̃n)(x) in an arbitrary point x ∈ [0, 1] and for arbitrary

n ∈ N. Two different cases x = 0 and x 6= 0 will be considered separately.

1st case x = 0:
since A(0, . . . , 0) = 0 by (A1) of definition 2.1, we have that

1 ≥ A(n)(0̃1, . . . , 0̃n)(0) ≥ T (0̃1(0), . . . , 0̃n(0)) = T (1, . . . , 1) = 1,

hence
A(n)(0̃1, . . . , 0̃n)(0) = 1.

2nd case x 6= 0:
according to theorem 3.1 and definition of T -extension ∃ (x′

1, . . . , x
′

n):
A(x′

1, . . . , x
′

n) = x and

Ã(n)(0̃1, . . . , 0̃n)(x) = T (0̃1(x
′

1), . . . , 0̃n(x′

n)). (9)

(x′

1, . . . , x
′

n) 6= (0, . . . , 0) otherwise A(x′

1, . . . , x
′

n) = A(0, . . . , 0) = 0. Thus among
x′

i, i = 1, . . . , n there exists at least one x′

k such that x′

k 6= 0 and according to
definition 5.8 0̃k(x′

k) < α. Evidently using t-norm neutrality versus 1 formula (9)
can be continued in the following way:

Ã(n)(0̃1, . . . , 0̃n)(x) = T (0̃1(x
′

1), . . . , 0̃n(x′

n)) ≤ 0̃k(x′

k) < α.

Thus we have obtained that

Ã(n)(0̃1, . . . , 0̃n)(x) =

{

1, if x = 0
αx < α, otherwise

and this means that modified (Ã1) holds. Similarly we show that modified (Ã2)
holds.
In order to prove the monotonicity (Ã3) we should show the following implication:

(∀i = 1, . . . , n, Pi ⊆
α
F2

Qi) ⇒ (Ã(P1, . . . , Pn) ⊆α
F2

Ã(Q1, . . . , Qn)). (10)

We denote Aα
P α-cut of Ã(P1, . . . , Pn), i. e.

Aα
P = {x : Ã(P1, . . . , Pn)(x) ≥ α}.

We take an arbitrary x ∈ Aα
P according to the definition of T -extension and theorem

3.1 ∃ (x∗

1, . . . , x
∗

n): A(x∗

1, . . . , x
∗

n) = x and

Ã(P1, . . . , Pn)(x) = T (P1(x
∗

1), . . . , Pn(x∗

n)) ≥ α. (11)
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Formula (11) gives us the following result:

Pi(x
∗

i ) ≥ α ∀i = 1, . . . , n

and this means, that x∗

i belongs to the α-cut of Pi for every i ∈ {1, . . . , n} .

Similarly Aα
Q denotes α-cut of Ã(Q1, . . . , Qn):

Aα
Q = {y : Ã(Q1, . . . , Qn)(y) ≥ α}

and for arbitrary y ∈ Aα
Q ∃ (y∗

1 , . . . , y∗

n): A(y∗

1 , . . . , y∗

n) = y and

Ã(Q1, . . . , Qn)(y) = T (Q1(y
∗

1), . . . , Qn(y∗

n)) ≥ α.

The same reasoning like above leads us to the following result:

y∗

i ∈ {y : Qi(y) ≥ α}.

If we translate the left part of the implication (10) into language of α-cuts we get:

P
α

i ≤ Qα

i
, (12)

where P
α

i = maxx{x : Pi(x) ≥ α} and Qα

i
= miny{y : Qi(y) ≥ α}. Given that,

and the fact that x∗

i belongs to the α-cut of Pi for every i ∈ {1, . . . , n} we refer to
formula (12) and get the following result:

x∗

i ≤ y∗

i ∀i = 1, . . . , n.

Applying the monotonicity of agop A we get:

A(x∗

1, . . . , x
∗

n) ≤ A(y∗

1 , . . . , y∗

n),

thus for an arbitrary x ∈ Aα
P and an arbitrary y ∈ Aα

Q we get inequality

x ≤ y

and as a result:
maxAα

P ≤ min Aα
Q.

�

5.4. Symmetry, associativity and bisymmetry of a T -extension

This and the subsequent subsections are devoted to the properties of a T -extension.
In the sequel we show that it is easy to obtain symmetric, associative or bisym-

metric Ã, and the corresponding properties are implied by the same properties of A.
More precisely the same property of a t-norm is essential, but any t-norm is symmet-
ric and associative (and as a result bisymmetric) by definition, therefore additional
conditions for the t-norm are not required.

Result on associativity of a gagop is provided with proof, all other results are
provided without proof as it can be performed in the similar manner (other proofs
can be found in [7]).
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Definition 5.10. [Symmetry] A gagop Ã : ∪n∈NF (X)n → F (X) is called a sym-
metric gagop if

∀n ∈ N, ∀P1, . . . , Pn ∈ F (X) : Ã(P1, . . . , Pn) = Ã(Pπ(1), . . . , Pπ(n))

for all permutations π = (π(1), . . . , π(n)) of (1, . . . , n)

Definition 5.11. [Associativity] A gagop Ã : ∪n∈NF (X)n → F (X) is associa-
tive if

∀n, m ∈ N, ∀P1, . . . , Pn, Q1, . . . , Qm ∈ F (X) :

Ã(P1, . . . , Pn, Q1, . . . , Qm) = Ã(Ã(P1, . . . , Pn), Ã(Q1, . . . , Qm))

Definition 5.12. [Bisymmetry] A gagop Ã : ∪n∈NF (X)n → F (X) is bisymmetric
if

∀n, m ∈ N, ∀P11, . . . , Pmn ∈ F (X) :

Ã(mn)(P11, . . . , Pmn) = Ã(m)(Ã(n)(P11, . . . , P1n), . . . , Ã(n)(Pm1, . . . , Pmn))

= Ã(n)(Ã(m)(P11, . . . , Pm1), . . . , Ã(m)(P1n, . . . , Pmn))

Proposition 5.13. Let A be a symmetric agop. An arbitrary T -extension Ã :
∪n∈NF ∗([0, 1])n → F ∗([0, 1]) of A given by (1) is a symmetric gagop.

Proposition 5.14. Let A be an associative agop. An arbitrary T -extension Ã :
∪n∈NF ∗([0, 1])n → F ∗([0, 1]) of A given by (1) is an associative gagop.

P r o o f . Consider Ã(P1, . . . , Pn, Q1, . . . , Qm)(z).
According to theorem 3.1 ∃ s∗1, . . . , s

∗

n, t∗1, . . . , t
∗

m:

A(s∗1, . . . , s
∗

n, t∗1, . . . , t
∗

m) = z

and

Ã(P1, . . . , Pn, Q1, . . . , Qm)(z) = T (P1(s
∗

1), . . . , Pn(s∗n), Q1(t
∗

1), . . . , Qm(t∗m)).

Consider Ã(Ã(P1, . . . , Pn), Ã(Q1, . . . , Qm))(z). Let’s assume that

Ã(P1, . . . , Pn) = P ∗

and
Ã(Q1, . . . , Qm) = Q∗,

where P ∗, Q∗ ∈ F ∗([0, 1])

Thus we consider Ã(P ∗, Q∗)(z) : according to theorem 3.1 ∃ x∗, y∗:

A(x∗, y∗) = z

and
Ã(P ∗, Q∗)(z) = T (P ∗(x∗), Q∗(y∗)). (13)
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Following the definition of P ∗, Q∗ and employing theorem 3.1 for an arbitrary
x∗, y∗ ∈ [0, 1] we can write:

P ∗(x∗) = T (P1(x
∗

1), . . . , Pn(x∗

n)), (14)

where x∗

1, . . . , x
∗

n : A(x∗

1 , . . . , x
∗

n) = x∗ and

Q∗(y∗) = T (Q1(y
∗

1), . . . , Qm(y∗

n)), (15)

where y∗

1 , . . . , y∗

m : A(y∗

1 , . . . , y∗

m) = y∗.
We put (14) and (15) into (13) and obtain:

Ã(P ∗, Q∗)(z) = T (T (P1(x
∗

1), . . . , Pn(x∗

n)), T (Q1(y
∗

1), . . . , Qm(y∗

n))), (16)

where
A(A(x∗

1 , . . . , x
∗

n), A(y∗

1 , . . . , y∗

m)) = z. (17)

Using associativity of T and A we continue (16) and (17) in the following way:

Ã(P ∗, Q∗)(z) = T (P1(x
∗

1), . . . , Pn(x∗

n), Q1(y
∗

1), . . . , Qm(y∗

n))

A(x∗

1, . . . , x
∗

n, y∗

1 , . . . , y∗

m) = z.

By definition of Ã, we immediately deduce that

Ã(P1, . . . , Pn, Q1, . . . , Qm)(z) ≥ Ã(Ã(P1, . . . , Pn), Ã(Q1, . . . , Qm))(z).

Further, by the associativity of T , we have that

Ã(P1, . . . , Pn, Q1, . . . , Qm)(z) = T (P1(s
∗

1), . . . , Pn(s∗n), Q1(t
∗

1), . . . , Qm(t∗m))

= T (T (P1(s
∗

1), . . . , Pn(s∗n)), T (Q1(t
∗

1), . . . , Qm(t∗m))).

If we set s := A(s∗1, . . . , s
∗

n) and t := A(t∗1, . . . , t
∗

m), we know that A(s, t) = z, hence,
by definition of Ã and the monotonicity of T , we derive that

T (T (P1(s
∗

1), . . . , Pn(s∗n)), T (Q1(t
∗

1), . . . , Qm(t∗m)))

≤ T (Ã(P1, . . . , Pn)(s), Ã(Q1, . . . Qm)(t)) ≤ Ã(P ∗, Q∗)(z).

�

Proposition 5.15. Let A be a bisymmetric agop. An arbitrary T -extension Ã :
∪n∈NF ∗([0, 1])n → F ∗([0, 1]) of A given by (1) is an bisymmetric gagop.

5.5. Idempotence of a T -extension

We consider the idempotence property of Ã in this subsection.

Definition 5.16. [Idempotence] An element P ∈ F (X) is called Ã-idempotent
element whenever Ã(n)(P, . . . , P ) = P, ∀n ∈ N. Ã is called an idempotent gagop if

each P ∈ F (X) is an idempotent element of Ã.
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In general, i. e., if we take an idempotent T and an idempotent A, the corresponding
extension is not idempotent. The convexity of input values is crucial here. Let’s
consider A(x1, x2) = x1+x2

2 and not convex set P such that P (x∗) = 0 and P (x) > 0
∀x ∈ [a, x∗) ∪ (x∗, b] ⊆ [0, 1]. It is intuitively clear that result of aggregation in the
point x∗ may have value greater than 0.

Proposition 5.17. Let A be an idempotent agop. TM -extension Ã : ∪n∈NFQ([0, 1])n

→ FQ([0, 1]) of A given by (1) is an idempotent gagop.

P r o o f . We consider an arbitrary P (x) ∈ FQ([0, 1]) and x∗ ∈ [0, 1], then according
to the definition of a T -extension and theorem 3.1 ∃ x∗

1, . . . , x
∗

n s.t.:

A(x∗

1, . . . , x
∗

n) = x∗

and
Ã(n)(P, . . . , P )(x∗) = TM (P (x∗

1), . . . , P (x∗

n)).

We denote S = {(x1, . . . , xn) : A(x1, . . . , xn) = x∗} and (x∗

1, . . . , x
∗

n) ∈ S.
A is an idempotent agop, therefore (x∗, . . . , x∗) ∈ S and TM (P (x∗), . . . , P (x∗)) =
P (x∗).
Idempotence and monotonicity of A imply compensation property, i.e. for an arbi-
trary (x1, . . . , xn) ∈ S the following hold:

mini=1,...,n xi ≤ A(x1, . . . , xn) ≤ maxi=1,...,n xi (18)

mini=1,...,n xi ≤ x∗ ≤ maxi=1,...,n xi. (19)

For an arbitrary (x1, . . . , xn) ∈ S s.t. (x1, . . . , xn) 6= (x∗, . . . , x∗) one of the following
properties holds:

(i) ∃ xi1 , . . . , xik
, 1 ≤ k ≤ n − 1: xij

< x∗ ∀j = 1, . . . , k and for the rest
xis

s /∈ {1, . . . , k}: xis
≥ x∗

(ii) ∃ xi1 , . . . , xik
, 1 ≤ k ≤ n − 1: xij

> x∗ ∀j = 1, . . . , k and for the rest
xis

s /∈ {1, . . . , k}: xis
≤ x∗.

If neither (i) no (ii) holds then (x1, . . . , xn) s.t.

xi < x∗ ∀i

or
xi > x∗ ∀i.

But in the first case according to the compensation property ((18), (19)) we obtain

A(x1, . . . , xn) ≤ max(x1, . . . , xn) < x∗

in the second case we obtain

x∗ < min(x1, . . . , xn) ≤ A(x1, . . . , xn)

but then (x1, . . . , xn) /∈ S.
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Now we take an arbitrary (x1, . . . , xn) ∈ S and assume that (i) holds:
for an arbitrary xl < x∗ and arbitrary xk ≥ x∗ convexity of P implies that

P (x∗) ≥ TM (P (xl), P (xk)). (20)

If we add the rest coordinates of the vector we can only reduce the minimum thus
we can continue formula (20) in the following way:

P (x∗) ≥ TM (P (x1), . . . , P (xn)).

So, we have obtained that for an arbitrary vector (x1, . . . , xn) ∈ S

TM (P (x∗), . . . , P (x∗)) = P (x∗) ≥ TM (P (x1), . . . , P (xn)).

The assumption that (ii) holds will lead us to the same result.
and this means that

Ã(n)(P, . . . , P )(x∗) = TM (P (x∗), . . . , P (x∗)) = P (x∗).

�

Remark 5.18. Recall that TM is the only idempotent t-norm. Now we show that
only TM -extension ensures idempotence of Ã (given conditions of Proposition 5.17).
If we take an arbitrary t-norm T < TM then according to the proof of Proposi-
tion 5.17

∀(x1, . . . , xn) ∈ S, P (x∗) = TM (P (x∗), . . . , P (x∗))

= max{TM(P (x1), . . . , P (xn))|(x1, . . . , xn) ∈ S}. (21)

Now applying the upper bound of the class of t-norms we obtain

max{TM (P (x1), . . . , P (xn))|(x1, . . . , xn) ∈ S}

> max{T (P (x1), . . . , P (xn))|(x1, . . . , xn) ∈ S} = Ã(n)(P, . . . , P )(x∗). (22)

Combining the result of formulas (21) and (22) we obtain:

P (x∗) > Ã(n)(P, . . . , P )(x∗).

5.6. Neutral and absorbing elements

Now we study neutral and absorbing elements of a T -extension. First we provide
definitions and results on uniqueness of neutral and absorbing elements. After that
we provide constructions of the corresponding elements.

Definition 5.19. [Neutral element] An element E ∈ F (X) is called a neutral
element of Ã if ∀n ∈ N, ∀P1, . . . , Pn,∈ F (X) if Pi = E for some i ∈ {1, . . . , n} then

Ã(P1, . . . , Pn) = Ã(n−1)(P1, . . . , Pi−1, Pi+1, . . . , Pn).

The following result hold for the neutral element of a gagop:



T -extension 1093

Proposition 5.20. If Ã is a gagop w.r.t. ≤ and E ∈ F (X) is a neutral element of
Ã then it is unique.

P r o o f . Let’s assume that E and E∗ are neutral elements of Ã and E 6= E∗.
We consider an arbitrary n ∈ N and vector (P1, . . . , Pn) s.t.:

Pi =

{

E, if i ∈ I1

E∗, if i ∈ I2,

where I1 = {1, . . . , k}, I2 = {k + 1, . . . , n}.
Using neutrality of Ã versus E we obtain:

Ã(n)(P1, . . . , Pn) = Ã(n−1)(P2, . . . ., Pn) = . . . = Ã(n−k)(Pk+1, . . . , Pn)

= Ã(n−k)(E
∗, . . . , E∗) (23)

now we apply neutrality of E∗, convention Ã(1)(P ) = P and continue (23):

Ã(n−k)(E
∗, . . . , E∗) = Ã(n−k−1)(E

∗, . . . , E∗) = . . . = Ã(1)(E
∗) = E∗.

In the same way first employing neutrality of E∗ and then neutrality of E we obtain:

Ã(P1, . . . , Pn) = Ã(n−1)(P1, . . . , Pn−1) = . . . = Ã(k)(P1, . . . , Pk) = Ã(k)(E, . . . , E)

= Ã(k)(E, . . . , E) = Ã(k−1)(E, . . . , E) = . . . = Ã(1)(E) = E.

We have obtained contradiction. �

Definition 5.21. [Absorbing element] An element R ∈ F (X) is called an ab-
sorbing element of Ã if

∀n ∈ N, ∀P1, . . . , Pn,∈ F (X) : R ∈ {P1, . . . , Pn} ⇒ Ã(P1, . . . , Pn) = R.

Absorbing element like neutral element is unique if it exists:

Proposition 5.22. If Ã is a gagop w.r.t. ≤ and R ∈ F (X) is an absorbing element
of Ã then it is unique.

P r o o f . Let’s assume that R and R∗ are absorbing elements of Ã and R 6= R∗.
We consider an arbitrary n ∈ N and vector (P1, . . . , Pn) s.t. R, R∗ ∈ {P1, . . . , Pn}.

R is an absorbing element therefore according to definition 5.21

Ã(P1, . . . , Pn) = R.

R∗ as well is an absorbing element of Ã, therefore:

Ã(P1, . . . , Pn) = R∗

We have obtained contradiction, thus our assumption on existence of R∗ is incor-
rect. �

Further formulated results outline the nature of neutral and absorbing elements
of Ã.
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Proposition 5.23. Let A be an agop with neutral element e. An arbitrary T -
extension Ã : ∪n∈NF ∗([0, 1])n → F ∗([0, 1]) of A given by (1) has a neutral element
given by

E(x) =

{

1, if x = e
0, if x 6= e.

P r o o f . Consider vector (P1, . . . , Pn), such that Pi = E, and Ã(P1, . . . , Pn)(x).
According to theorem 3.1 ∃ x∗

1, . . . , x
∗

n :

A(x∗

1, . . . , x
∗

n) = x (24)

and
Ã(P1, . . . , Pn)(x) = T (P1(x

∗

1), . . . , Pn(x∗

n)). (25)

Let us assume that x∗

i = e in the formula (24), therefore applying neutrality of A
versus e we can continue (24):

A(x∗

1, . . . , x
∗

n) = A(x∗

1, . . . , x
∗

i−1, e, x
∗

i+1, . . . x
∗

n)

= A(n−1)(x
∗

1, . . . , x
∗

i−1, x
∗

i+1, . . . x
∗

n) = x.

Since Pi = E and x∗

i = e we have Pi(x
∗

i ) = Pi(e) = E(e) = 1 thus applying
neutrality of t-norm T versus 1 we continue formula (25) in the following way:

Ã(P1, . . . , Pn)(x) = T (P1(x
∗

1), . . . , Pn(x∗

n))

= T (P1(x
∗

1), . . . , Pi−1(x
∗

i−1), 1, Pi+1(x
∗

i+1), . . . , Pn(x∗

n))

= T(n−1)(P1(x
∗

1), . . . , Pi−1(x
∗

i−1), Pi+1(x
∗

i+1), . . . , Pn(x∗

n)). (26)

Now we consider Ãn−1(P1, . . . , Pi−1, Pi+1, . . . , Pn)(x).
according to theorem 3.1 ∃ y∗

1 , . . . , y∗

i−1, y
∗

i+1, . . . , y
∗

n−1 :

A(y∗

1 , . . . , y∗

i−1, y
∗

i+1, . . . , y
∗

n−1) = x

and

Ãn−1(P1, . . . , Pi−1, Pi+1, . . . , Pn)(x)

= T (P1(y
∗

1), . . . , Pi−1(y
∗

i−1), Pi+1(y
∗

i+1), . . . , Pn(y∗

n−1)). (27)

If we assume that Ã(P1, . . . , Pn)(x) > Ãn−1(P1, . . . , Pi−1, Pi+1, . . . , Pn)(x) then ac-
cording to formulas (26) and (27) we can take vector (x∗

1, . . . , x
∗

n), x∗

i = e instead of
(y∗

1 , . . . , y∗

i−1, y
∗

i+1, . . . , y
∗

n−1) and we obtain higher value of Ãn−1(P1, . . . , Pi−1, Pi+1,
. . . , Pn)(x) than obtained previously, but this contradicts definition of vector (y∗

1 , . . .
. . . , y∗

i−1, y
∗

i+1, . . . , y
∗

n−1).
To the similar contradiction will lead us the assumption

Ã(P1, . . . , Pn)(x) < Ãn−1(P1, . . . , Pi−1, Pi+1, . . . , Pn)(x).

�
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According to Proposition 5.20 E(x) is the unique neutral element.

Since FN([0, 1]) ⊂ FI([0, 1]) ⊂ FQ([0, 1]) and E(x) ∈ FN([0, 1]) then defining
T -extension on the classes FN([0, 1]), F I([0, 1]) or FQ([0, 1]) we obtain a gagop with
the neutral element given in Proposition 5.23.

Now we consider an absorbing element of an arbitrary T -extension.

Proposition 5.24. Let A be an agop. An arbitrary T -extension Ã : ∪n∈NF ∗([0, 1])n

→ F ∗([0, 1]) of A given by (1) has an absorbing element given by

R(x) = 0 ∀x ∈ [0, 1].

P r o o f . Vector (P1, . . . , Pn) such that Pi = R is given, consider Ã(P1, . . . , Pn)(x).

According to theorem 3.1 ∃ x∗

1, . . . , x
∗

n s.t.:

A(x∗

1, . . . , x
∗

n) = x

and

Ã(P1, . . . , Pn)(x) = T (P1(x
∗

1), . . . , R(x∗

i ), . . . , Pn(x∗

n)). (28)

For an arbitrary x∗

i ∈ [0, 1] R(x∗

i ) = 0 using this fact and applying absorbing prop-
erty of 0 for an arbitrary t-norm T we continue (28):

Ã(P1, . . . , Pn)(x) = 0.

We have shown that for an arbitrary x ∈ [0, 1] Ã(P1, . . . , Pn)(x) = 0 and thus the
assertion holds. �

There is no other absorbing elements as the uniqueness of R(x) is ensured by
Proposition 5.22.

The question how to interpret R(x) arises. On the one hand element R belongs
to the class F ∗([0, 1]), but on the other hand it does not have any real value, i.e. any
point is possible with value 0. Thus question on nature of R is rather philosophical.
We skip the philosophical part of this question and consider that absorbing element
of T -extension exists, it is from the class F ∗([0, 1]) and it is given in Proposition 5.24.

Since R(x) ∈ FQ([0, 1]) T -extension defined on the class FQ([0, 1]) has the same
absorbing element.

R(x) /∈ FI([0, 1]) and there is no other absorbing element in FI([0, 1]). If we
assume that there exists R∗(x) ∈ FI([0, 1]) and it differs from R(x) then R∗(x) ∈
F ∗([0, 1]), but this contradicts result of Proposition 5.22. Thus defining a T -extension
on the class FI([0, 1]) or FN([0, 1]) we deal with a gagop without the absorbing el-
ement.

The interesting fact should be noticed here: T -extension of an agop without an
absorbing element can result in a gagop with absorbing element.



1096 J. LEBEDINSKA

6. CONCLUDING REMARKS

Properties of a T -extension are tightly related to properties of the corresponding
t-norm and sometimes we can manage to obtain a desired property by choosing an
appropriate t-norm, but not always it is possible. For an example in the case of
absorbing element, the form of absorbing element can not be changed, because 0 is
the only absorbing element of any t-norm. Thus such cases can not be managed by
changing t-norm. But substituting t-norm in the definition of a T -extension by e. g.
a nullnorm ([4]) N we obtain an N -extension:

Ã(P1, . . . , Pn)(x) = sup{N(P1(x1), . . . , Pn(xn)|(A(x1, . . . , xn) = x)}.

Performing U -extension, i.e. extension via a uninorm U ([4]) we can obtain a neutral
element with different properties and also we can use compensation property of
uninorms.

The definition of a T -extension can be generalized via an arbitrary agop A∗ (with
desired properties):

Ã(P1, . . . , Pn)(x) = sup{A∗(P1(x1), . . . , Pn(xn)|A(x1, . . . , xn) = x}.

Extension (via a t-norm, an u-norm or other function) is a flexible construction
method as far as it relates to properties of a gagop. The research of properties of a
gagop constructed in this way is a direction of further study.
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Māc̄ıbu grāmata, R̄ıga 2003.
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