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Ridgelet transform on tempered distributions

R. ROOPKUMAR

Abstract. We prove that ridgelet transform R : .#(R?) — .#(Y) and adjoint
ridgelet transform R* : 7(Y) — .#(R?) are continuous, where Y = Rt x R x
[0, 27r]. We also define the ridgelet transform R on the space .#/(R?) of tempered
distributions on R?, adjoint ridgelet transform R* on .#/(Y) and establish that
they are linear, continuous with respect to the weak*-topology, consistent with
R, R* respectively, and they satisfy the identity (R* o R)(u) = u, u € .#'(R?).
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1. Introduction

The ridgelet transform was introduced by Candes [1] in 1999 as a refinement of
the wavelet transform in image processing. It is known that R : Z?(R?) — Z?(Y)
and it satisfies the Parsevel’s identity. For more details we refer the reader to
], 18]

On the other hand, after the invention of the Dirac’s distribution, various ge-
neralized function spaces have been constructed and various integral transforms
have been extended to them, like Fourier transform, Laplace transform, Hilbert
transform, Radon transform, Mellin transform, Lambert transform, Poisson trans-
form, etc. From this point of view, the wavelet transform has also been extended
to some suitable distributional spaces (cf. [4], [5]).

The ridgelet transform is extended to the space of square integrable Boehmian
space and studied in [6]. It is well known that the space of square integrable
Boehmians properly contains the space of square integrable functions and the
space of compactly supported distributions but neither it contains the space of
tempered distributions nor it is contained in the space of tempered distributions.

In this paper, we extend the ridgelet transform to the space of tempered dis-
tributions as a continuous linear bijection with respect to the weak*-convergence.
It is also interesting to note that the space of tempered distributions contains the
compactly supported distributions, all .#?-spaces and all Z',,-spaces.

This work is supported by SERC Fast Track Scheme for Young Scientists from Department
of Science and Technology, India. Ref. No. SR/FTP/MS-13/2006.
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2. Preliminaries

Let ¢ € Z(R) be a real valued function satisfying the admissibility condition

/ TP /eP de = 1.

For each (a,b,0) € Y = RT x R x [0, 27|, the bi-variate ridgelet is defined by

x1co80 + x2sinf — b

a

Vo (X) = tapo(a1,23) = ( ) | (w1,2) € RE.

The ridgelet transform [1], [8] of a square integrable function f on R? is defined
by

) (RI)ab.0) = [ FGunox)dx, (a.b.0) ¥

Recall that the Fourier and the Radon transforms are defined, respectively by
@ AW = o= [ Fe0e T ax w = () € R,

(3)  (Rad f)(0,t) = . S(x-e” —t)f(x)dx, 6 €[0,2n] and t € R,

where 0 is the Dirac distribution. The ridgelet transform and the Radon transform
are related by

o0

@) (Bf)(a.b.6) = [ (Rad 1)(6.00% (¢ - b)fa) de

— 00

By using the inversion theorem for 1-dimensional Fourier transforms, the con-
volution theorem for Fourier transforms and the projection-slice formula [3], the
ridgelet transform becomes

o0

(Rf)(a,b.0) = ¢ {fb [ /

— 00

(Rad £)(6, 1) ((t — b)) dt,e} ,—b}
Fe [ [(Rad £(0,1),€] -

Fi[Y(—t/a),&], —0b]
—/ €€ f(660) i (at) de

The adjoint ridgelet transform of a suitable function on Y is defined by

(6) /// F(a,b,0)vs0(x) " dbap

and it is proved in [1] that (R* o R)(f) = f for all f € £*(R?).

(5)
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We recall that . (R?) is a Fréchet space, equipped with the following sequence
of semi-norms [7],

Py(f) = sup sup (1+ |z)M[(DRf)(z)], N € No.
[n|<N x€eR?

We introduced a new space consisting of smooth functions on Y, with

Qk,a;l,ﬁ;m(F) = sup |aklengBngF(aab’ 9)' < o, kaaalaﬂam S NO-
(a,b,0)€Y

To facilitate the reader, we recall the multi-variate Faa di Bruno formula
[2], which will be applied in the proof of the following theorem. Let h(x) =
flon(x), g2(x)], x = (z1,22), n = (n1,n2) and we write j < k if |j| < |k| or
|J| = |k|7 J1 < ky or |j| = |k|, J1 = k1, j2 < ko. Then

T o (&

1<[q|<[n] p(n,q) j=1
where p(n,q) = {(k1,...,Kp;11,...,1jy) : for some 1 < s < |n|, k; = 0 and
l;=0for1 <i<|n|—s; |k >0for n|-s+1<7<|nf;and 0 < Ljy—gq1 <
. =< 1y are such that Sl = q, SR k|, = 0

3. Continuity of R and R* on function spaces
Theorem 3.1. The ridgelet transform R : . (R?) — #(Y) is continuous.
PROOF: Let k,l,m,a, 8 € Ny be arbitrary. By using (5), we get

kil pya B ym

‘a b D2 DY Dy (Rf)(a,b,&)‘

1

(7) o

1 oo . =
3 PDDR [ ) Dpiag) e

akJrllengﬁDgL / 1Ebf(§-610 df‘

— 00

Now we have, after differentiating under integral sign with respect to a and by
using integration by parts,

a" DS (af) = / h aF T (igy)* e vy (y) dy

= (i)"! / ) (iy) ™ (ia&)* e Vi (y) dy
(8) =
= (i) / (i) D v dy

— 00

=) D [ D (i) T do
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Using (8) in (7) and by using the same technique employed in (8) for the variable b,
we get

9) |a*%' D3 D} Dy (Rf)(a,b.6)|

1 > iéb [ L —k— > ifa o N
= 5 [P [ WD jene it [ dsnpgn (00) dyds\
1 > i&b £ 3 —k— > ifa a N
-5 |oF / Die™ f(ge?)getimht / e DI (42U ) dyds‘
1 <, A 1 —k— > ifa a N
= Dgn/ ¢i€h Dl |:f(§ele)§OL+ﬁ k 1/ e’y pht1 (y 1/1(31)) dy} df‘
1 0o l 1 l—r I r
_ = m i€b rp 0 - a+B—k—1—s
=5 |5 [me ;<T>D€f(§e )2_%( ] )A1§

XDZE—T—S/ eifayDlyc—i-l ( a,(/}( ydé-’

0 f a+B8—-k—1>0 and a+S—-k=s
(where Ay = a1 ' .
[[i=o(e=B—k—1-j) otherwise)

l—r

l
1 m > i ! rr i l—r at+fB—k—1—s
:% DO/ eEbZ(T)Dgf(gee)Z( ) )A1€ +8—k—1
oo r=0 s=0

x / (iay)l—"—seifayD’;H( @) dydg‘
1 & Ay
- _— |p™ o1 DLf - at+B—k—1—s
2 / Z< ) yg ( s )Alg

% / 6—(1—7'—5)yl—r—sDi—r—seiﬁayD];-i-l (yaw) dy df‘

l l—r
o] . l A i l—’r o —k—1—l4r
ng/ €z§b§ :(T)Dgf(é-e 9)2 ( ) )A1€ +B—k—1—I1+
- r=0 =0

2

v /_O; ei{ayD?lJfrfs [ylfrstlchrl @a@)} dy df‘

l l—r
1 [ l l—
- DmD 10 A a+pB—k—1—I+r
W/oo,;<r>| b 5 ge |§< > 1|§|

X /O:o ‘D,L*T*S |:yl7r75Dl];+1 (yam)” dy de.
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Now applying the multivariate Faa di Bruno formula, we get

(10)  |DyDE(f(€cost,Esind))|

| .
=| Y D(f(§cosb,Esind)) (ZUX%—XI%J]]

1<|q|<|n|

(where x = (€,0),n = (r,m), and g1(¢,0) = € cos6, (&, 0) = Esin )

|

s
< Z |DI(f (& cos, Esind))| Z H |§|+|1§|| PHEE

1<]q|<|n| p(n,q) j=1

since |[D¥ gi| =0or 1or |¢],i=1,2;and j =1,2,...|n|.
Using (10) in (9), we get

‘akHbZD;“DfD;"(Rf)(a, b, 9)‘

o 1 n| )k |
! / Z() |D(f (& cos,Esind))| Z H |§|+|§| lkk‘
o 1<|q|<|n| p(n,q) j=1
l—r
()

i I—r

Ay [g[o+Bh=1=ltr [ ‘: ’ D= [y =Dk (45 ())| ’ dy de

s=0
1 [ & (1
:%/ Z(r) Z |DI(f(&cos,Esind))| Z My o
T~ r=0 1<|q|<|n| p(n,q)
Inl |y s
Z |£|Zj:1 |kJH’H\kj\€Q ‘kJ‘ Z( , T)A101|£|a+ﬂkll+’l“ d€
Qe (S) s=0

(Where C; = fix’oo |Dé—r—s[yl—r—sDI;-i-l(yaw(y))]| dy, Mpq = H\jn\l m
and 2(9) is the power set of S = {|k;|:1<j < [n|})

L) S T (T rcena

1<|q|<|n|p(n,q) Qe (5) s=0

where Cy = foooo 1+|§|2 and N = |n|—i-zljn:|1 K|+ 11k, e IKjl+at+B—k=l+r. O
Definition 3.2. For F € .(Y), the adjoint ridgelet transform R* is defined by

(11) (R*F)(x) = /0 i /jo /000 F(a,b, 9)¢a7b79(x)% db%, (a,b,0) € Y.
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Theorem 3.3. The adjoint ridgelet transform R* : .7(Y) — (R x R) is con-
tinuous.

ProOOF: Let N,m,n € Ng with N >4 and m +n < N. Now

(1+ [x2)" | g

27 1 —
/ / / (a,b,6)D7 D" ¢ (Jclcose—i—xgsmt? b) d—jdbd—e
a a 47

< (1 )”
2 1 —
/ / / ’ abeDman(leOSG—l—l'gSlne b) d—jdbd—e
a a 4m
= (1+|x- e’ )
2
/ / / a™ " F(a,b,0)] [+ 71’ da gy 20
at " Ar

/277/ / 2N —(mn) (g b9)|(1+|x ew_b+b|2)
gt <7b)‘d dbﬁ
/277/ / PR b9)|<1+|x et _ b|2+|b|2>
)<7b)‘d dbﬁ

a

N

Since the function x — 2” is convex on [0, o), we have

4 et _ |2 1+ (2 N
(1 et =g (B M )

2
S 2N—1 (|X . ei@ o b|2N + (1 + |b|2)N) )

Hence the last expression is dominated by

2m ) ) 0 2N
—1 / / / a2N—(7rL+n+4)|F(a’ b, 9)| (|X e — b|)
0 —o0 J0 a
it
,l/)(ern) (X € b>‘ da dbﬁ
2
/ | [ ira oo ey
0
RSN
a

X
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27 [e%s) [e%s)
do
< 2N_1P2N+m+n(¢) (/ / / a2N—(m+n+4)|F(a,b’ 9)| da db—
0 0

2m [e%s} [e%s} d9
+/ / / 2N =m0 (1 1 b2V F(a, b, 0)] db da—>
0 — JO 4m

< C ([Q0,00,0:0(F) + Qan—(mtn-+2),0:0,0:0F) + Qo,0:2,0:0(F)
+ Q2N —(m+n+2),0:2,0:0(F)] + [Q0,0,0,0:0(F) + Q2N — (m+n+2),0:0,0:0(F)

+Q0,0:2N+2,0:0(F) + Qan — (m-4n+2),02N8+2,0:0(F)]) »

N-2 2N —(mAn+4)
where C = 2 P2N+m+n fO 1+a2N T+ta2N—(m¥nt2) daf 00 1+|b\2 db.
Hence R* : .Z(Y) — . (R?) is continuous. O
4. Ridgelet transform on .7’/ (R?)
Definition 4.1. We define R on .%/(R?) by (Ru, F) = (u, R*F), F € /(Y).

By using the linearity of R* on .#(Y) and the linearity of u on .7 (R?), it
follows that Ru is linear on .#(R?). As a consequence of Theorem 3.3, we note
that R*F € .%(R?) and whenever F,, — 0 asn — oo in . (Y), we have (Ru, F,,) =
(u, R*F,,) — (u, R*0) = 0 as n — oo. Thus Ru € %' (R?).

Lemma 4.2. The Ridgelet transform R : ./ (R?) — /(YY) is consistent with
the Ridgelet transform on . (R?).

PROOF: Let g € y(RQ) then this can be considered, in a natural way, as a
member of ./ (R?) by (g, f) = [z f(X)9(x) dx, f € Y(RQ) Hence

(Rf, F) = (f,R"F)

/ /%/ / Va,b,0(X ab@)d db%

By applying the Fubini theorem, we get that

/ /QW/ / Ya,b,0(x ab@)z db%dx
- /0 [ [ vt & an
=[] [[wnene Lol

which is the identification of Rf in .#’(Y). Hence the distributional ridgelet
transform on .#’(R?) is consistent with the ridgelet transform on .7 (R?). O

Definition 4.3. We define R* : .7/(Y) — ./(R?) by (R*A, f) = (A, Rf), f €
7 (R?).
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Theorem 4.4. R : .'(R?) — ./(Y) is linear.
PROOF: Let ui,us € %/ (R?) and c1, ¢z € C be arbitrary. Then for F € . (R),

(R(ciug + cous), F) = {(c1u1 + couz), R*F)
= c¢1{u1, R"F) + ca2{uz, R*F)
= c¢1{Ruq, F) + co(Rus, F)
= ((1Ru1 + coRuz), F). O

Theorem 4.5. R : %' (R?) — #/(Y) is continuous with respect to weak*-
topology.
PROOF: Let u,, — u as n — oo in ./ (R?). Then for each fixed F € . (Y),

(Rup, Fy — (Ru, F)y = (R(up — u), F)
= {(up —u),R*F) -0 as n — oo,
since R*F € ./(R?) is fixed, and u,, —u — 0 as n — oo in .%/(R?). Hence R is
continuous on .#’(R?). O
Theorem 4.6. R* : .7/ (Y) — ./ (R?) is linear.
PROOF: Let Ay, A € /(YY) and ¢1,¢2 € C. Then
(R*(e1A1 + c2A2), f) = c1(A1, R*f) 4+ c2(A2, R* f)

=1 (RA1, f) 4 c2(RAs, f)
(1 RA1 + caRAs), f). O

Theorem 4.7. R* : ./ (Y) — '(R?) is continuous.
PROOF: If A,, — A as n — oo in .#’(Y), then for each fixed f € ./ (R?),

(R*Ans ) = (Ans RF) — (A, R*F) = (R*A, f) as n — o0,

since RF € Z(Y). O
Theorem 4.8. R* o R is the identity on .7’ (R?).
PrOOF: We know that R* o R is identity on .(R?). For u € .¥/(R?) and F €
7 (Y),
(R* o R)u, f) = (Ru, Rf)
= (u, (R o R)f)
= (u, f). 0

Thus R is a continuous linear bijection on .#/(IR?), with the inverse R*.
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