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1. Introduction

The following Hadamard inequality for positive semidefinite matrices is well-known

(see e.g. [1]).

Theorem 1.1. Let A = (aij) be an n × n positive semidefinite matrix. Then

det A 6 a11a22 . . . ann

with equality if and only if A is diagonal or has a row of zeros.

The Hadamard product of two n × n matrices A = (aij) and B = (bij) is defined

by A ◦B ≡ (aijbij). The Hadamard product arises in a wide variety of ways. It was

perhaps the first significant result published about the Hadamard product that the

class of positive semidefinite matrices of a given size is closed under the Hadamard
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product. For more information, the authors may refer to [1], [3] and [4]. Oppenheim

in [7] proved the following:

Theorem 1.2. Let A = (aij) and B = (bij) be two n × n positive semidefinite

matrices. Then

det(A ◦ B) > detA

n
∏

i=1

bii.

Moreover, Schur (e.g. see [6] or [7]) proved the following

Theorem 1.3. Let A = (aij) and B = (bij) be two n × n positive semidefinite

matrices. Then

det(A ◦ B) > detA

n
∏

i=1

bii + det B

n
∏

i=1

aii − detAdetB.

It is of interest to know when equalities in Oppenheim’s and Schur’s inequalities

occur. Oppenheim in [7] gave partial answer to this question. He showed that

Theorem 1.4. Let A = (aij) and B = (bij) be two n×n positive definite matrices.

Then

(1) Equality in Oppenheim’s inequality occurs if and only if A is diagonal.

(2) Equality in Schur’s inequality occurs if and only if there exists a permutation

matrix P such that

PT AP =

(

A11 0

0 A22

)

, PT BP =

(

B11 0

0 B22

)

,

where A11 and B11 are 2 × 2 matrices; A22 and B22 are diagonal.

The main topic of this paper is to characterize when equalities in Oppenheim’s

and Schur’s inequalities hold. The main results are the following:

Theorem 1.5. Let A = (aij) and B = (bij) be two n × n positive semidefinite

matrices. Then equality in Oppenheim’s inequality occurs if and only if one of the

following holds

(1) A ◦ B is singular;

(2) There exists an n × n matrix T = diag(t11, . . . , tnn) with |tii| =
√

bii such that

A ◦ B = TAT .
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Theorem 1.6. Let A = (aij) and B = (bij) be two n × n positive semidefinite

matrices. Then equality in Schur’s inequality occurs if and only if one of the following

holds.

(1) A and B are nonsingular and there exists a permutation matrix P such that

PT AP =

(

A11 0

0 A22

)

, PT BP =

(

B11 0

0 B22

)

,

where A11 and B11 are 2 × 2 matrices; A22 and B22 are diagonal.

(2) A ◦ B is singular;

(3) B is singular and there exists an n × n matrix T = diag(t11, . . . , tnn) with

|tii| =
√

bii such that A ◦ B = TAT .

(4) A is singular and there exists an n × n matrix T = diag(t11, . . . , tnn) with

|tii| =
√

aii such that A ◦ B = TBT .

The rest of this paper is organized as follows: In Section 2, we present some prelim-

inary results. In Section 3, we investigate some conditions for the Hadamard product

of two positive semidefinite matrices to be singular. These results, in Section 4, are

applied to provide proofs of Theorems 1.5 and 1.6.

2. Preliminary results

First of all, recall the notion of majorization. Given a real vector x = (x1, . . . , xn)T ,

we rearrange its components as x[1] > x[2] > . . . > x[n]. Let x = (x1, . . . , xn)T ,

y = (y1, . . . , yn)T . We say x is majorized by y and denote by x � y, if
k
∑

i=1

x[i] 6
k
∑

i=1

y[i] for k = 1, 2, . . . , n − 1 and
n
∑

i=1

x[i] =
n
∑

i=1

y[i]. Moreover, if there

exists 1 6 t 6 n such that
t

∑

i=1

x[i] <
t

∑

i=1

y[i], we say that x is strictly majorized by y

and denote by x ≺ y. We first need the following Lemma (e.g., see [5]).

Lemma 2.1 ([5]). Let f(x) be a convex function on an open interval I. If

x = (x1, . . . , xn)T ≺ y = (y1, . . . , yn)T with xi, yi ∈ I, then
n
∑

i=1

f(xi) <
n
∑

i=1

f(yi).

We also need the following notions. A positive semidefinite matrix whose all diago-

nal entries are 1 is called correlation matrix. Let A be an n×n positive semidefinite

matrix with eigenvalues λ(A) = (λ1(A), . . . , λn(A)), where λ1(A) > . . . > λn(A).

From [2], we have
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Lemma 2.2 ([2]). Let A be an n × n positive semidefinite matrix and C be an

n × n correlation matrix. Then λ(A ◦ C) � λ(A).

Lemma 2.3. Let C = (cij) be an n × n correlation matrix with n > 3. If

|ci1,i2 | = |ci2,i3 | = 1 with i1 6= i2 6= i3, then ci1,i3 = ci1,i2ci2,i3 and |ci1,i3 | = 1.

P r o o f. Without loss of generality, we assume that i1 = 1, i2 = 2, i3 = 3. Then

the 3 × 3 leading principal minor of C is equal to

det





1 c12 c13

c21 1 c23

c31 c32 1



 = 1 + 2c12c23c13 − c2
12 − c2

23 − c2
13 = −(c13 − c12c23)

2 > 0.

Hence c13 = c12c23 and |c13| = 1. �

We also need the following notions. Let A be an n × n real symmetric matrix.

We define a simple graph G(A) = (V, E) associated with A, where V = {v1, . . . , vn}
and {vi, vj} ∈ E if and only if aij 6= 0 for i 6= j. Let X = (xij) be an n × n matrix.

Denote by |X | = (|xij |) the nonnegative matrix whose entries are given by |xij |.

Lemma 2.4. Let G be a connected graph of order n. Then there exists a vertex

u such that G − u is still connected.

P r o o f. Let T be a spanning tree of G and u be a pendent vertex of T . Then

T − u is still connected. Since T − u is a spanning subgraph of G − u, G − u is

connected. �

Lemma 2.5. Let A = (aij) be an n × n symmetric matrix and C = (cij) be an

n × n correlation matrix. If |A ◦ C| = |A| and G(A) is connected, then there exists

an n column vector α such that |α| = e and C = ααT , where e is a column vector of

all ones.

P r o o f. We prove the assertion by induction on n. It is easy to see that the

assertion holds for n = 1, 2. Assume that the assertion holds for all positive integers

less than n. We proceed to show that the assertion holds for n. Since G(A) is

connected, by Lemma 2.4, we may assume that G − v1 is connected. Hence A can

be partitioned into the form

A =

(

a11 A12

A21 A22

)

C =

(

c11 C12

C21 C22

)

.

with G(A22) = G(A) − v1. Thus |A22 ◦ C22| = |A22| and G(A22) is connected. By

the induction hypothesis, there exists an n − 1 column vector α2 = (x2, . . . , xn)T
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such that |α2| = e and C22 = α2α
T
2 . Hence cij = xixj and |cij | = 1 for 2 6 i, j 6 n.

On the other hand, since G(A) is connected, without loss of generality, we assume

that a12 6= 0. By |A ◦ C| = |A|, we have |a12c12| = |a12| 6= 0 and |c12| = 1. Let

x1 = c12/x2. Thus |x1| = 1 and c12 = x1x2. For any 3 6 p 6 n, by Lemma 2.3,

we have c1p = c12c2p = x1x2x2xp = x1xp and |c1p| = 1. Let α = (x1, α
T
2 )T . Then

|α| = e and C = ααT . �

Corollary 2.6. Let A = (aij) be an n × n positive semidefinite matrix and

C = (cij) be an n × n correlation matrix. If |A ◦ C| = |A|, then there exists a
diagonal matrix T with |T | = I (the identity matrix) such that A ◦ C = TAT .

P r o o f. Let G1, . . . , Gk be the connected components ofG(A). Then there exists

a permutation matrix P such that PAPT = diag(A11, . . . , Akk), where Gi = G(Aii).

Let PCPT = (Cij). Thus P (A◦C)PT = diag(A11 ◦C11, . . . , Akk ◦Ckk). Hence |Aii ◦
Cii| = |Aii| for i = 1, . . . , k. It follows from Lemma 2.5 that there exists a diagonal

matrix Ti with |Ti| = I such that Aii ◦Cii = TiAiiTi. Let T = PT diag(T1, . . . , Tk)P .

Thus |T | = I and

P (A ◦ C)PT = diag(A11 ◦ C11, . . . , Akk ◦ Ckk)

= diag(T1A11T1, . . . , TkAkkTk) = PTATP T .

So A ◦ C = TAT . �

Now we can present the main result of this section.

Theorem 2.7. Let A be an n × n positive semifinite matrix and C be an n ×
n correlation matrix. If A ◦ C is nonsingular, then the following statements are

equivalent:

(1) det(A ◦ C) = detA;

(2) λ(A ◦ C) = λ(A);

(3) |A ◦ C| = |A|;
(4) There exists a diagonal matrix T with |T | = I such that A ◦ C = TAT .

P r o o f. We prove that (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1).

(1) =⇒ (2). By Lemma 2.2, λ(A ◦ C) � λ(A). Suppose that λ(A ◦ C) 6= λ(A).

Thus λ(A ◦ C) ≺ λ(A). Clearly f(x) = − lnx is a convex function on an open

interval (0,∞). Moreover, λi(A ◦ C) > 0 and λi(A) > 0 for i = 1, . . . , n, since

A ◦ C is nonsingular. By Lemma 2.1, we have
n
∑

i=1

f(λi(A ◦ C)) <
n
∑

i=1

f(λi(A)).

Thus
n
∏

i=1

λi(A) <
n
∏

i=1

λi(A ◦ C). So detA < det(A ◦ C). This is a contradiction and

(2) holds.
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(2) =⇒ (3). Since λ(A ◦ C) = λ(A), the sum of minors of all 2 × 2 principal

submatrices of A ◦C is equal to the sum of minors of all 2× 2 principal submatrices

of A. On the other hand, the sum of minors of all 2 × 2 principal submatrices of

A ◦ C is equal to

∑

16i<j6n

(aiiajjciicjj − |aij |2|cij |2) =
∑

16i<j6n

(aiiajj − |aij |2|cij |2),

and the sum of minors of all 2 × 2 principal submatrices of A is equal to

∑

16i<j6n

(aiiajj − |aij |2).

Hence

∑

16i<j6n

(aiiajjciicjj − |aij |2|cij |2) =
∑

16i<j6n

(aiiajj − |aij |2|cij |2)

=
∑

16i<j6n

(aiiajj − |aij |2).

Thus
∑

16i<j6n

|aij |2(1 − |cij |2) = 0.

Because |cij | 6 1, |aij |2 = |aij |2|cij |2 for 1 6 i < j 6 n. Hence |aijcij | = |aij | for
1 6 i, j 6 n.

(3) =⇒ (4). This follows from Corollary 2.6.

(4) =⇒ (1). This is obvious. �

3. Singularity of Hadamard product of two

positive semidefinite matrices

In this section, we present some equivalent conditions for Hadamard product of

two positive semidefinite matrices being singular.

Lemma 3.1. Let A be an n×n positive semidefinite matrix and x be an n vector.

Then Ax = 0 if and only if xHAx = 0, where H stands for transpose conjugate.

P r o o f. Since A is positive semidefinite, there exists a positive semidefinite

matrix B such that A = BHB. Thus xHAx = (Bx)H(Bx). Hence Ax = 0 if and

only if xHAx = 0. �
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Lemma 3.2. Let {x1, . . . , xp} and {y1, . . . , yq} be orthogonal sets of eigenvec-
tors of n × n positive semidefinite matrices A and B corresponding to all nonzero

eigenvalues λ1 . . . λp of A and µ1, . . . , µq of B respectively (including multiplicities).

Then A ◦ B is singular if and only if the dimension of the subspace spanned by

{xi ◦ yj , i = 1, . . . , p, j = 1, . . . , q} is less than n.

P r o o f. Clearly, A =
p
∑

i=1

λixix
H
i and B =

q
∑

j=1

µjyjy
H
j . Thus

A ◦ B =

( p
∑

i=1

λixix
H
i

)

◦
( q

∑

j=1

µjyjy
H
j

)

=

p
∑

i=1

q
∑

j=1

λiµj(xi ◦ yj)(xi ◦ yj)
H .

By Lemma 3.1, A ◦ B is singular if and only if there exists a nonzero column vector

z such that zH(A ◦ B)z = 0, i.e.,

p
∑

i=1

q
∑

j=1

λiµjz
H(xi ◦ yj)(xi ◦ yj)

Hz = 0.

This happens if and only if each term of the above equation is zero, since λi > 0, µj >

0 for i = 1, . . . , p, j = 1, . . . , q, therefore, if and only if (xi◦yj)
Hz = 0 for i = 1, . . . , p,

j = 1, . . . , q. Thus

((x1 ◦ y1, . . . , xp ◦ yq))
H

z = 0.

Hence, if and only if the rank of the matrix ((x1 ◦ y1, . . . , xp ◦ yq))
H is less than n

and the dimension of the subspace spanned by {xi ◦ yj , i = 1, . . . , p, j = 1, . . . , q} is
less than n. �

Now we present some equivalent conditions for the Hadamard product of two

positive semidefinite matrices to be singular, which is, in essence, attributable to [4].

Theorem 3.3. Let A and B be two n × n positive semidefinite matrices. Thus

the following are equivalent:

(1) A ◦ B is singular, i.e., there exists an n nonzero vector z = (z1, . . . , zn)T such

that (A ◦ B)z = 0;

(2) zH(A ◦ B)z = 0;

(3) ADB = 0, where D = diag(z1, . . . , zn);

(4) DADB = 0;

(5) tr(DADB) = 0.

P r o o f. (1) ⇐⇒ (2) follows from Lemma 3.1.
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(2) =⇒ (3). Since B is positive semidefinite matrix, we write B =
k
∑

i=1

viv
H
i , where

rankB = k and vi = (yi1, . . . , yin)H for i = 1, . . . , k. Then

0 = zH(A ◦ B)z =
k

∑

i=1

(z1yi1, . . . , z1yin)A(z1yi1, . . . , z1yin)H .

Since A is semidefinite, (z1yi1, . . . , z1yin)A(z1yi1, . . . , z1yin)H = 0 for i = 1, . . . , k.

By Lemma 3.1, A(z1yi1, . . . , znyin)H = 0, which implies Adiag(z1, . . . , zn)vi = 0 for

i = 1, . . . , k. Therefore

ADB =
k

∑

i=1

Adiag(z1, . . . , zn)viv
H
i = 0.

(3) =⇒ (4) =⇒ (5) is obvious.

(5) =⇒ (2). Clearly, the (i, i) entry of DADB is equal to
n
∑

k=1

aikzizkbki. Hence

0 = tr(DADB) =

n
∑

i=1

n
∑

k=1

aikbikzizk = zH(A ◦ B)z.

�

Remark. Since Theorem 2.7 holds for A◦B being nonsingular, it is natural to ask

whether the assertion is still true for A ◦ B being singular. The answer is negative.

For example, let

A =









2 0 1 −1

0 2 1 1

1 1 1 0

−1 1 0 1









, B =









1 0 1
√

2
− 1

√

2

0 1 1
√

2
1
√

2
1
√

2
1
√

2
1 0

− 1
√

2
1
√

2
0 1









.

Clearly, A is positive semidefinite and B is a correlation matrix. Moreover, det(A ◦
B) = detA = 0, but |A ◦ B| 6= |A|. However we still have the following result.

Theorem 3.4. Let A and B be two n × n positive semidefinite matrices. If

rank(A) = n− 1, then det(A ◦ B) = detA = 0 if and only if B has a row of zeros or

there exists a permutation P with

PAPT =

(

A11 A12

A21 A22

)

, PBPT =

(

B11 B12

B21 B22

)

such that A11 is singular and A11 ◦ B11 = T1A11T1.
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P r o o f. It is clear for sufficiency. We only consider necessity. We assume that

bii 6= 0 for i = 1, . . . , n. By Theorem 3.3, there exists a diagonal matrix X 6= 0 such

that AXB = 0. Then there exists a permutation matrix P such that

PAPT =

(

A11 A12

A21 A22

)

, PBPT =

(

B11 B12

B21 B22

)

and PXPT = diag(X1, 0), where X1 is an m × m nonsingular diagonal matrix with

1 6 m 6 n. Hence A11X1B11 = 0. So rank(A11) + rank(X1B11) 6 m. On the other

hand, since rank(A) = n−1, rank(A11) > m−1. Therefore, rank(X1B11) = 1, which

implies that rank(B11) = 1. Then let B11 = (
√

b11, . . . ,
√

bmm)T (
√

b11, . . . ,
√

bmm).

Let T1 = diag(
√

b11, . . . ,
√

bmm). We conclude that A11 ◦ B11 = T1AT1. Moreover,

rank(A11) = m − 1. �

4. Proofs of theorems 1.5 and 1.6

Lemma 4.1. Let A = (aij) be an n × n positive definite matrix and B = (bij)

be an n×n positive semidefinite matrix. Then det(A ◦B) = detA
n
∏

i=1

bii if and only

if B has a row of zeros or there exists a diagonal matrix T = diag(t1, . . . , tn) with

|ti| =
√

bii for i = 1, . . . , n such that A ◦ B = TAT .

P r o o f. Sufficiency. If B has a row of zeros, then A ◦ B has a row of zeros and

det(A ◦ B) = 0 = detA
n
∏

i=1

bii. If A ◦ B = TAT , then det(A ◦ B) = det(TAT ) =

detA
n
∏

i=1

bii.

Necessity. Without loss of generality, we assume that bii > 0 for i = 1, . . . , n. Let

D = diag(b11, . . . , bnn) and C = D−1/2BD−1/2. Thus C is a correlation matrix and

det(A◦C) = detA. By Theorem 2.7, there exists a diagonal matrix T1 with |T1| = I

such that A ◦C = T1AT1. Let T = D1/2T1. Then A ◦B = TAT with |ti| =
√

bii for

i = 1, . . . , n. �

Corollary 4.2. Let A = (aij) be an n× n positive definite matrix and B = (bij)

be an n × n positive semidefinite matrix. Suppose that G(A) is connected. Then

det(A ◦ B) = detA
n
∏

i=1

bii if and only if B has a row of zeros or B = ααH , where

|α| = (
√

b11, . . . ,
√

bnn)H .

P r o o f. It follows from Lemmas 4.1 and 2.5. �

P r o o f o f T h e o r e m 1.5. Sufficiency. Clearly, it is obvious.

Necessity. If A is singular, then det(A ◦ B) = 0, which implies that A ◦ B is

singular. If A is nonsingular, it follows from Lemma 4.1 that the assertion holds. �
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P r o o f o f T h e o r e m 1.6. Sufficiency. Clearly it is obvious.

Necessity. If both A and B are nonsingular, it follows from Theorem 1.4 that (1)

holds. If either A or B is singular, it follows from Theorem 1.5 that either (3) or (4)

holds. If A and B are singular, then det(A ◦ B) = 0 and A ◦ B is singular. �
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